]> AND Private Git Repository - hdrcouchot.git/blobdiff - oxford.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ajout de quelques tex
[hdrcouchot.git] / oxford.tex
index 5cc17c073d68274e462763b7b262ddd7f25490fd..ae247ee4e906e2667d70d2f21a8e5d5ca57ac26e 100644 (file)
@@ -1,10 +1,11 @@
-La propriété de régularité des fonctions chaotiques est à l'origine du marquage de documents numériques: de tout média, même tronqué, on peut réextraire la 
-marque. 
+La propriété de transitivité des fonctions chaotiques est à l'origine du marquage de documents numériques: grâce à cette propriété, la marque est diffusée 
+sur tout le support. Ainsi, de tout média, même tronqué,
+on peut la réextraire.
 Dans ce chapitre, le processus d'embarquement d'un message dans 
 un média est formalisé en section~\ref{sec:watermarking:formulation}.
 Dans ce chapitre, le processus d'embarquement d'un message dans 
 un média est formalisé en section~\ref{sec:watermarking:formulation}.
-La sécurité des approches de watermarking est étudiée selon deux approches:
-l'approche probabiliste (section~\ref{sec:watermarking:security:probas}) 
-et l'approche chaotique (section~\ref{sec:watermarking:security:chaos}).
+La sécurité des approches de watermarking est étudiée selon deux critères:
+probabiliste d'une part (section~\ref{sec:watermarking:security:probas}) 
+et chaotique (section~\ref{sec:watermarking:security:chaos}) d'autre part.
 Une proposition d'embarquement dans le domaine fréquentiel est abordée
 en section~\ref{sec:watermarking:frequentiel}.
 
 Une proposition d'embarquement dans le domaine fréquentiel est abordée
 en section~\ref{sec:watermarking:frequentiel}.
 
@@ -16,7 +17,7 @@ l'image marquée. La section~\ref{sec:watermarking:extension}
 propose une solution à ce problème.
 
 Les trois premières sections de ce chapitre sont une reformulation 
 propose une solution à ce problème.
 
 Les trois premières sections de ce chapitre sont une reformulation 
-du chapitre 22 de~\cite{guyeux10}. Elles ont été publiées à~\cite{bcg11:ij}.
+du chapitre 22 de~\cite{guyeuxphd}. Elles ont été publiées à~\cite{bcg11:ij}.
 L'extension a quant à elle été publiée dans~\cite{bcfg+13:ip}.
 
 
 L'extension a quant à elle été publiée dans~\cite{bcfg+13:ip}.
 
 
@@ -493,7 +494,7 @@ de retrouver le contenu de la marque à partir de l'image marquée.
 C'est l'objectif de l'algorithme présenté dans cette section et introduit 
 dans~\cite{fgb11:ip}.
 Pour des raisons de lisibilité, il n'est pas 
 C'est l'objectif de l'algorithme présenté dans cette section et introduit 
 dans~\cite{fgb11:ip}.
 Pour des raisons de lisibilité, il n'est pas 
-présenté pas dans le formalisme de la première section et
+présenté dans le formalisme de la première section et
 est grandement synthétisé.
 Il a cependant été prouvé comme étant chaos-sécure~\cite{fgb11:ip}.
 
 est grandement synthétisé.
 Il a cependant été prouvé comme étant chaos-sécure~\cite{fgb11:ip}.
 
@@ -501,7 +502,7 @@ Il a cependant été prouvé comme étant chaos-sécure~\cite{fgb11:ip}.
 
 Commençons par quelques conventions de notations: 
 \begin{itemize}
 
 Commençons par quelques conventions de notations: 
 \begin{itemize}
-\item $\mathbb{S}_\mathsf{k}$ est l'ensemble des stratégies unaire sur $[k]$;
+\item $\mathbb{S}_\mathsf{k}$ est l'ensemble des stratégies unaires sur $[k]$;
 \item $m^0 \in \mathbb{B}^{\mathsf{P}}$ est un vecteur de $\mathsf{P}$ bits
   représentant la marque;
 \item comme précédemment, 
 \item $m^0 \in \mathbb{B}^{\mathsf{P}}$ est un vecteur de $\mathsf{P}$ bits
   représentant la marque;
 \item comme précédemment, 
@@ -510,10 +511,10 @@ Commençons par quelques conventions de notations:
  \item $S_p \in \mathbb{S}_\mathsf{N}$ 
    est la \emph{stratégie de place} et définit quel 
    élément de $x$ est modifié à chaque itération;
  \item $S_p \in \mathbb{S}_\mathsf{N}$ 
    est la \emph{stratégie de place} et définit quel 
    élément de $x$ est modifié à chaque itération;
-  \item $S_c \in \mathbb{S}_\mathsf{P}$ est la \textbf{stratégie de  choix}
+  \item $S_c \in \mathbb{S}_\mathsf{P}$ est la \emph{stratégie de  choix}
     qui définit quel indice du vecteur de marque est embarqué à chaque 
     itération;
     qui définit quel indice du vecteur de marque est embarqué à chaque 
     itération;
-  \item $S_m \in \mathbb{S}_\mathsf{P}$ est la \textbf{stratégie de mélange}
+  \item $S_m \in \mathbb{S}_\mathsf{P}$ est la \emph{stratégie de mélange}
     qui précise quel élément de la marque est inversé à chaque itération.
 \end{itemize}
 
     qui précise quel élément de la marque est inversé à chaque itération.
 \end{itemize}
 
@@ -552,8 +553,8 @@ m_j^{n-1} & \text{ si }S_m^n\neq j \\
 \noindent où $\overline{m_j^{n-1}}$ est la négation booléenne de $m_j^{n-1}$.
 On impose de plus la contrainte suivante.
 Soit $\Im(S_p) = \{S^1_p, S^2_p, \ldots,  S^l_p\}$ 
 \noindent où $\overline{m_j^{n-1}}$ est la négation booléenne de $m_j^{n-1}$.
 On impose de plus la contrainte suivante.
 Soit $\Im(S_p) = \{S^1_p, S^2_p, \ldots,  S^l_p\}$ 
-l'ensemble de cardinalité $k \leq l$ (les doublons sont supprimés).  
-qui contient la liste des indices $i$, $1 \le i \le p$,
+l'ensemble de cardinalité $k \leq l$ (les doublons sont supprimés)  
+qui contient la liste des indices $i$, $1 \le i \le \mathsf{N}$,
 tels que $x_i$ a été modifié.
 On considère $\Im(S_c)_{|D}= \{S^{d_1}_c, S^{d_2}_c, \ldots,  S^{d_k}_c\}$
 où  
 tels que $x_i$ a été modifié.
 On considère $\Im(S_c)_{|D}= \{S^{d_1}_c, S^{d_2}_c, \ldots,  S^{d_k}_c\}$
 où