-
-Soit $(X_t)_{t\in \mathbb{N}}$ une chaîne de Markov et
-$f(X_{t-1},Z_t)$ une représentation fonctionnelle de celle-ci.
-Un \emph{temps d'arrêt aléatoire} pour la chaîne de
-Markov est un temps d'arrêt pour
-$(Z_t)_{t\in\mathbb{N}}$.
-Si la chaîne de Markov est irréductible et a $\pi$
-comme distribution stationnaire, alors un
-\emph{temps stationnaire} $\tau$ est temps d'arrêt aléatoire
-(qui peut dépendre de la configuration initiale $X$),
-tel que la distribution de $X_\tau$ est $\pi$:
-$$\P_X(X_\tau=Y)=\pi(Y).$$
-
-
-Un temps d'arrêt $\tau$ est qualifié de \emph{fort} si $X_{\tau}$
-est indépendant de $\tau$. On a les deux théorèmes suivants, dont les
-démonstrations sont données en annexes~\ref{anx:generateur}.
-
-
-\begin{theorem}
-Si $\tau$ est un temps d'arrêt fort, alors $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}}
-\P_X(\tau > t)$.
-\end{theorem}
+Intuitivement, $t_{\rm mix}(\varepsilon)$ est le nombre d'itérations nécessaire
+pour être proche de la distribution stationnaire à $\varepsilon$ près,
+peu importe la configuration de départ. On a le théorème suivant démontré en annexe~\ref{anx:generateur}.