]> AND Private Git Repository - hdrcouchot.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
après correction sylvaine
authorcouchot <couchot@localhost.localdomain>
Mon, 19 Sep 2016 07:29:29 +0000 (09:29 +0200)
committercouchot <couchot@localhost.localdomain>
Mon, 19 Sep 2016 07:29:29 +0000 (09:29 +0200)
25 files changed:
12TIPE.tex
14Secrypt.tex
15RairoGen.tex
15TSI.tex
ahmad.tex
annexePreuveDistribution.tex
annexePreuveGrayEquilibre.tex
annexePreuveMarquageCorrectioncompletude.tex
annexePreuveMarquagedhci.tex
annexePreuveMarquagefldblement.tex
annexePreuveMixage.tex
annexePreuveStopping.tex
annexePromelaProof.tex
annexesccg.tex
chaosANN.tex
conclusion.tex
intro.tex
main.tex
mixage.tex
modelchecking.tex
oxford.tex
preuveDistanceGeneralisee.tex
sdd.tex
stabylo.tex
stegoyousra.tex

index 7c04d4905f9aa47d262af09869898a02dc5ad66c..e54ed79e7c96a01777d4635a244d63ad03edeb95 100644 (file)
@@ -41,7 +41,7 @@ G_{f_u}(x,s)=(F_{f_u}(x,s_0),\sigma(s)).
 \end{equation}
 
 Dans cette définition, la fonction 
-$\sigma: {\mathsf{N}}]^{\Nats} \longrightarrow
+$\sigma: [{\mathsf{N}}]^{\Nats} \longrightarrow
  [{\mathsf{N}}]^{\Nats} 
 $
 décale
@@ -54,7 +54,7 @@ $$
 
 Ainsi, effectuer des itérations unaires sur la fonction 
 $f$ selon une stratégie $s$ revient à effectuer des itérations
-parallèles de la fonctions $G_{f_u}$ dans  $\mathcal{X}_u$.
+parallèles de la fonction $G_{f_u}$ dans  $\mathcal{X}_u$.
 La section suivante introduit une métrique sur $\mathcal{X}_u$.
 
 \subsection{Une métrique pour $\mathcal{X}_u$}
@@ -99,7 +99,7 @@ chaotiques $G_{f_u}$ sur $\mathcal{X}_u$}
 % $G_{f_u}$ est continue sur $\mathcal{X}_u$ (cf annexe~\ref{anx:cont}).   
 
 Pour caractériser les fonctions rendant chaotiques dans $\mathcal{X}_u$ les itérations de $G_{f_u}$ 
-on se focalise donc que sur la régularité et sur la transitivité de $G_{f_u}$.
+on se focalise donc sur la régularité et sur la transitivité de $G_{f_u}$.
 Ceci se réalise en établissant les relations d'inclusion entre 
 les ensembles $\mathcal{T}$ des fonctions topologiquement transitives, 
 $\mathcal{R}$ des fonctions régulières  
index 858a8e52ac44cb9620f4fb573df55e8991ee7003..5e4cafc4272a23dbcf3348975b5b5cec818ea973 100644 (file)
@@ -12,7 +12,7 @@ Une approche plus pragmatique consiste  à supprimer un cycle hamiltonien dans l
 graphe d'itérations $\textsc{giu}(\neg)$ (section~\ref{sec:hamiltonian}). 
 Pour obtenir plus rapidement une distribution uniforme, l'idéal serait
 de supprimer un cycle hamiltonien qui nierait autant de fois chaque bit. 
-Cette forme de cycle est dit équilibré. La section~\ref{sub:gray} établit le
+Cette forme de cycle est dite équilibré. La section~\ref{sub:gray} établit le
 lien avec les codes de Gray équilibrés, étudiés dans la littérature. 
 La section suivante présente une démarche de génération automatique de code de Gray équilibré (section~\ref{sec:induction}).
 La vitesse avec laquelle l'algorithme de PRNG converge en interne vers 
@@ -55,7 +55,7 @@ la matrice est stochastique à droite;
 \item pour chaque indice de colonne $j$, 
   $1 \le j\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le i\le 2^{\mathsf{N}}} M_{ij}$: 
   la matrice est stochastique à gauche;
-\item Toutes les éléments de la somme $\sum_{1\le k\le 2^{\mathsf{N}}}M^k$ sont strictement positif, \textit{i.e.}, le graphe $\textsc{giu}(f)$ est fortement connexe;
+\item Tous les éléments de la somme $\sum_{1\le k\le 2^{\mathsf{N}}}M^k$ sont strictement positifs, \textit{i.e.}, le graphe $\textsc{giu}(f)$ est fortement connexe;
 \end{enumerate}
 Ce problème s'exprime sur des domaines finis entiers avec des opérateurs  
 arithmétiques simples (sommes et produits). Il pourrait théoriquement être 
@@ -69,7 +69,7 @@ ici pour  $\mathsf{N} = 2$. Dans ce code,
 \verb+summ(+$X,Y,R$\verb+)+ 
 valent True si et seulement si $R$ 
 est le produit matriciel  (ou la somme matricielle) 
-entre  $X$ and $Y$ respectivement. 
+entre  $X$ et $Y$ respectivement. 
 Il n'est pas difficile d'adapter ce code à n'importe quelle valeur 
 entière naturelle  $\mathsf{N}$.  
 
@@ -120,7 +120,7 @@ Cette approche, basée sur une démarche de type \emph{générer, tester} ne peu
 pas être retenue pour $n$ de grande taille, même 
 en s'appuyant sur l'efficience de l'algorithme de backtrack natif de PROLOG.
 
-Cependant, pour des valeurs de $n$ petites, nous avons 
+Cependant, pour des petites valeurs de $n$, nous avons 
 comparé les fonctions non équivalentes selon leur proportion
 à engendrer des temps de mélange petits (cf. équation~(\ref{eq:mt:ex})).
 
@@ -162,9 +162,9 @@ $$
 \end{table}
 \end{xpl}
 
-Une analyse syntaxique de ces fonctions ne permet pas, à priori, 
+Une analyse syntaxique de ces fonctions ne permet pas, a priori, 
 de déduire des règles permettant de construire de nouvelles
-fonction dont le temps de mélange serait faible.
+fonctions dont le temps de mélange serait faible.
 Cependant, le graphe $\textsc{giu}(f^*)$ 
 (donné à la Figure~\ref{fig:iteration:f*})
 est le $3$-cube dans lequel le cycle 
@@ -320,9 +320,9 @@ hamiltonien $c$.
 Aucun arc n'appartient à la fois  à $r$ et à $c$: 
 en effet, sinon $c$ contiendrait un n{\oe}ud deux fois.
 Ainsi aucune arête de $r$ n'est enlevée dans $C_1$.
-Le cycle $r$ est évidement un cycle hamiltonien et contient tous les n{\oe}uds.
-Tous les n{\oe}uds de $C_1$ dans lequel $c$ a été enlevé sont accessibles 
-depuis n'importe quel n{\oe}ud. Le graphe des itérations $\textsf{giu}$ qui
+Le cycle $r$ est évidemment un cycle hamiltonien et contient tous les n{\oe}uds.
+Tous les n{\oe}uds de $C_1$ dans lesquels $c$ a été enlevé sont accessibles 
+depuis n'importe quel n{\oe}ud. Le graphe des itérations $\textsc{giu}$ qui
 étend le précédent graphe est ainsi fortement connexe. 
 
 \end{proof}
@@ -435,17 +435,17 @@ deux premiers éléments qui ont été intervertis.
 
 L'étape~(\ref{item:nondet}) n'est pas constructive: il n'est pas précisé
 comment sélectionner des sous-séquences qui assurent que le code obtenu est équilibré.
-La théorème suivante montre que c'est possible et sa preuve,
-donnée en annexes~\ref{anx:generateur}, explique comment le faire. 
+Le théorème suivant montre que c'est possible et sa preuve,
+donnée en annexe~\ref{anx:generateur}, explique comment le faire. 
 
 \begin{restatable}[Existence d'un code de Gray équilibré]{theorem}{theograyequilibre}
 \label{prop:balanced}
 Soit $\mathsf{N}$ dans $\Nats^*$, et $a_{\mathsf{N}}$ défini par 
 $a_{\mathsf{N}}= 2 \left\lfloor \dfrac{2^{\mathsf{N}}}{2\mathsf{N}} \right\rfloor$. 
-il existe une séquence $l$ dans l'étape~(\ref{item:nondet}) de l'extension
-de l'algorithme de \emph{Robinson-Cohn} extension telle que 
-le nombres de transitions $\textit{TC}_{\mathsf{N}}(i)$ 
-sont tous $a_{\mathsf{N}}$ ou $a_{\mathsf{N}}+2$ 
+Il existe une séquence $l$ dans l'étape~(\ref{item:nondet}) de l'extension
+de l'algorithme de \emph{Robinson-Cohn}  telle que 
+les nombres de transitions $\textit{TC}_{\mathsf{N}}(i)$ 
+valent tous $a_{\mathsf{N}}$ ou $a_{\mathsf{N}}+2$ 
 pour chaque  $i$, $1 \le i \le \mathsf{N}$.
 \end{restatable}
 
@@ -461,11 +461,11 @@ stratégie donnée.
 Tout d'abord, celles-ci peuvent être interprétées comme une marche le long d'un 
 graphe d'itérations $\textsc{giu}(f)$ tel que le choix de tel ou tel arc est donné par la 
 stratégie.
-On remarque que ce graphe d'itération est toujours un sous graphe 
+On remarque que ce graphe d'itérations est toujours un sous graphe 
 du   ${\mathsf{N}}$-cube augmenté des 
 boucles sur chaque sommet, \textit{i.e.}, les arcs
 $(v,v)$ pour chaque $v \in \Bool^{\mathsf{N}}$. 
-Ainsi, le travail ci dessous répond à la question de 
+Ainsi, le travail ci-dessous répond à la question de 
 définir la longueur du chemin minimum dans ce graphe pour 
 obtenir une distribution uniforme.
 Ceci se base sur la théorie des chaînes de Markov.
@@ -513,7 +513,7 @@ On remarque que dans cette marche on reste sur place avec une probabilité égal
 à $\frac{1}{2}+\frac{1}{2\mathsf{N}}$ et l'on passe d'un sommet à son voisin
 lorsque c'est possible avec une probabilité $\frac{1}{2\mathsf{N}}$.
 Les probabilités usuelles que l'on appliquerait aux transitions de 
-l'algorithme~\ref{CI Algorithm} serait quant à elles uniformément égales 
+l'algorithme~\ref{CI Algorithm} seraient quant à elles uniformément égales 
 à $\frac{1}{\mathsf{N}}$.
 Cette manière paresseuse d'itérer (puisqu'on reste plus souvent sur place) n'est donc pas équivalente à celle issue de l'algorithme. 
 
@@ -530,7 +530,7 @@ $$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$
 On sait que 
 $$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$
 De plus, si 
-$\nu$ est une distribution on $\Bool^{\mathsf{N}}$, on a 
+$\nu$ est une distribution sur $\Bool^{\mathsf{N}}$, on a 
 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}.$$
 
 Soit $P$ une matrice d'une chaîne de Markov sur $\Bool^{\mathsf{N}}$. 
@@ -545,8 +545,8 @@ et
 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
  
 Intuitivement, $t_{\rm mix}(\varepsilon)$ est le nombre d'itérations nécessaire 
-pour Ãªtre proche de la distribution stationnaire Ã  $\varepsilon$ prêt
-peut importe la configuration de départ. On a le théorème suivant démontré en annexes~\ref{anx:generateur}.
+pour Ãªtre proche de la distribution stationnaire Ã  $\varepsilon$ près
+peu importe la configuration de départ. On a le théorème suivant démontré en annexe~\ref{anx:generateur}.
 
 
 \begin{restatable}[Temps de mixage sans chemin hamiltonien]{theorem}{theotpsmix}
@@ -577,7 +577,7 @@ pour chaque n{\oe}ud du $\mathsf{N}$-cube
 un arc entrant et un arc sortant sont supprimés.
 Le fait qu'on enlève un cycle  hamiltonien et que ce dernier 
 soit équilibré n'est pas pris en compte.
-En intégrant cette contrainte, ce majorant  pourrait être réduite.
+En intégrant cette contrainte, ce majorant  pourrait être réduit.
 
 En effet, le temps de mixage est en $\Theta(N\ln N)$ lors d'une
 marche aléatoire classique paresseuse dans le $\mathsf{N}$-cube.
@@ -596,7 +596,7 @@ résume ces résultats. Dans celle-ci, un cercle  représente une approximation
 $E[\ts]$ pour un  $\mathsf{N}$ donné tandis que la courbe est une représentation de 
 la fonction $x \mapsto 2x\ln(2x+8)$. 
 On  constate que l'approximation de $E[\ts]$ est largement inférieure 
-à le majorant quadratique donné au théorème~\ref{prop:stop} et que la conjecture 
+au majorant quadratique donné au théorème~\ref{prop:stop} et que la conjecture 
 donnée au paragraphe précédent est sensée.
 
 
@@ -695,8 +695,9 @@ Elle n'est donc pas rappelée.
 \begin{xpl}
 
   On reprend l'exemple donné à la section~\ref{sec:plc}.
-  Dans le $3$-cube, le cycle hamiltonien défini par la séquence
-  $000,100,101,001,011,111,110,010,000$ a été supprimé engendrant 
+  On considère le cycle hamiltonien défini par la séquence
+  $000,100,101,001,011,111,110,010,000$. En supprimant celui-ci dans 
+  le $3$-cube, cela engendre 
   la fonction $f^*$ définie par 
   $$f^*(x_1,x_2,x_3)=
   (x_2 \oplus x_3, \overline{x_1}.\overline{x_3} + x_1\overline{x_2},
@@ -827,7 +828,7 @@ fonctions qui  ont été  générées selon  la méthode détaillée
 à la  section~\ref{sec:hamiltonian}.
 Pour  chaque nombre $n=3$,  $4$, $5$ et $6$,
 tous  les cycles  hamiltoniens non isomorphes  ont été générés.   Pour les
-valeur de $n=7$ et $8$,  seules $10^{5}$ cycles ont été évalués.  Parmi
+valeur de $n=7$ et $8$,  seuls $10^{5}$ cycles ont été évalués.  Parmi
 toutes  les fonctions  obtenues en  enlevant du  $n$-cube ces  cycles,  n'ont été
 retenues que celles  qui minimisaient le temps de mélange relatif  à une valeur de
 $\epsilon$ fixée à $10^{-8}$ et pour un mode donné.  
@@ -837,7 +838,7 @@ colonne sous la variable $b$.
 La variable $b'$ reprend le temps de mélange pour
 l'algorithme~\ref{CI Algorithm}. 
 On note que pour un nombre $n$ de bits fixé et un mode donné d'itérations, 
-il peut avoir plusieurs fonctions minimisant ce temps de mélange. De plus, comme ce temps 
+il peut avoir plusieurs fonctions minimisant ce temps de mélange. De plus, comme ce temps 
 de mélange est construit à partir de la matrice de Markov et que celle-ci dépend 
 du mode, une fonction peut être optimale pour un mode et  ne pas l'être pour l'autre
 (c.f. pour $n=5$).
@@ -901,7 +902,7 @@ $$
 \end{array}
 $$
 \caption{Nombre moyen 
-  d'appels à un générateurs binaire par bit généré}\label{table:marchevssaute}
+  d'appels à un générateur binaire par bit généré}\label{table:marchevssaute}
 \end{table}
 
 
@@ -926,7 +927,7 @@ permet de générer la stratégie aléatoire.
  que la chaîne est considérée comme aléatoire avec une confiance de $99\%$.
 
 
-Les tableau~\ref{fig:TEST:generalise} donnent
+Les tableaux~\ref{fig:TEST:generalise} donnent
 une vision synthétique de ces expérimentations. 
 Nous avons évalué les fonctions préfixées par 
 $f$ (respectivement $g$) avec les générateurs issus des itérations 
@@ -936,10 +937,10 @@ générateurs passe
 avec succès le test de NIST. 
 
 Interpréter ces résultats en concluant que ces générateurs sont 
-tous équivalents serait erroné: la meilleur des 
+tous équivalents serait erroné: la meilleure des 
 méthodes basées sur le mode des itérations
 généralisées (pour $n=8$ par exemple) 
-est au moins deux fois plus rapide que la meilleur de celles qui 
+est au moins deux fois plus rapide que la meilleure de celles qui 
 sont basées sur les itérations unaires.
 
 
index 432991fb638780d70496df8040141d53282eeb99..a57e19f8e3d4028e850c0db6abf1133b9d43c9d3 100644 (file)
@@ -59,7 +59,7 @@ En interne, il exploite un algorithme de génération
 de nombres pseudo aléatoires donné en paramètre.
 Cela peut être n'importe quel PRNG (XORshift, Mersenne-Twister) dont la 
 sortie est uniformément distribuée.
-Notre approche vise a donner des propriétés de chaos a ce générateur embarqué.
+Notre approche vise a donner des propriétés de chaos à ce générateur embarqué.
 
 
 % \textit{Random}$(l)$. 
@@ -97,11 +97,11 @@ Notre approche vise a donner des propriétés de chaos a ce générateur embarqu
 
 Nous avons vu au chapitre~\ref{chap:carachaos} que 
 $G_{f_u}$ est chaotique dans l'espace $\mathcal{X}_u$ 
-si et seulement le graphe d'itérations $\textsc{giu}(f)$ 
+si et seulement si le graphe d'itérations $\textsc{giu}(f)$ 
 est fortement connexe.
 Pour $b=1$, l'algorithme itère la fonction $F_{f_u}$.
 
-Pour simuler au mieux l'aléa, un bon générateur de nombre pseudo-aléatoires
+Pour simuler au mieux l'aléa, un bon générateur de nombres pseudo-aléatoires
 se doit de fournir  des nombres selon une distribution uniforme.
 Regardons comment l'uniformité de la distribution 
 contraint la fonction $f$ à itérer.
@@ -118,7 +118,7 @@ si  la propriété suivante est établie:
 $$\exists k \in \mathds{N}^\ast, \forall i,j \in \llbracket 1; n \rrbracket, M_{ij}^k>0.$$
 
 On énonce le théorème classique suivant liant les 
-vecteur de probabilités 
+vecteurs de probabilités 
 et les chaînes de Markov.
 
 
@@ -140,7 +140,7 @@ et les chaînes de Markov.
 Montrons sur un exemple jouet à deux éléments 
 que ce théorème permet de vérifier si la sortie d'un générateur de 
 nombres pseudo aléatoires est uniformément distribuée ou non.
-Soit alors $g$ et $h$ deux fonctions  de $\Bool^2$
+Soient alors $g$ et $h$ deux fonctions  de $\Bool^2$
 définies par $g(x_1,x_2)=(\overline{x_1},x_1.\overline{x_2}) $
 et $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$.
 Leurs graphes d'interactions donnés en figure \ref{fig:g:inter} et \ref{fig:h:inter}
@@ -294,7 +294,7 @@ de valeurs  soit suffisamment grand de sorte que
 le vecteur d’état de la chaîne de Markov
 ait une distribution suffisamment proche de la distribution uniforme.
 
-On énonce directement le théorème suivant dont la preuve est donnée en annexes~\ref{anx:generateur}.
+On énonce directement le théorème suivant dont la preuve est donnée en annexe~\ref{anx:generateur}.
 
 \begin{restatable}[Uniformité de la sortie de l'algorithme~\ref{CI Algorithm}]{theorem}{PrngCIUniforme}\label{thm:prng:u}
   Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{giu}(f)$ son 
@@ -478,7 +478,7 @@ F_{f_u}(\hdots (F_{f_u}(F_{f_u}(x,u^0), u^1), \hdots), u^{p_i-1}).
 $$
 
 
-on construit l'espace 
+On construit l'espace 
  $\mathcal{X}_{\mathsf{N},\mathcal{P}}=  \mathds{B}^\mathsf{N} \times \mathds{S}_{\mathsf{N},\mathcal{P}}$, où
 $\mathds{S}_{\mathsf{N},\mathcal{P}}=
 [\mathsf{N}]^{\Nats}\times 
@@ -528,7 +528,7 @@ où $s=(u,v)$ et $\check{s}=(\check{u},\check{v})$ sont dans $ \mathds{S}_{\math
 \mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket} \times \mathcal{S}_\mathcal{P}$. 
 \begin{enumerate}
 \item $e$ et $\check{e}$ sont des entiers appartenant à $\llbracket 0, 2^{\mathsf{N}-1} \rrbracket$. 
-La distance de Hamming $d_{\mathds{B}^\mathsf{N}}$ sur entre les 
+La distance de Hamming $d_{\mathds{B}^\mathsf{N}}$ entre les 
 décompositions binaires de $e$ et de $\check{e}$ (\textit{i.e.}, le 
 le nombre de bits qu'elles ont de différent) constitue 
 la partie entière de $d(X,\check{X})$.
@@ -558,7 +558,7 @@ jusqu'à atteindre
 $p+n\times \max{(\mathcal{P})}$ éléments.
 \item Si $v^0<\check{v}^0$, alors les $ \max{(\mathcal{P})}$  blocs de $n$
 éléments sont $|u^0-\check{u}^0|$, ..., $|u^{v^0-1}-\check{u}^{v^0-1}|$,
-$\check{u}^{v^0}$ (sur $n$ éléments), ..., $\check{u}^{\check{v}^0-1}$ (sur $n$ éléments), suivi par des 0, si besoin.
+$\check{u}^{v^0}$ (sur $n$ éléments), ..., $\check{u}^{\check{v}^0-1}$ (sur $n$ éléments), suivis par des 0, si besoin.
 \item Le cas $v^0>\check{v}^0$ est similaire, et donc omis
 \end{enumerate}
 \item Les $p$ suivants sont $|v^1-\check{v}^1|$, etc.
@@ -615,7 +615,7 @@ On prend alors le $v^0=1$ premier terme de $u$,
 chaque terme étant codé sur $n=2$ éléments, soit 06.
 Comme on itère au plus $\max{(\mathcal{P})}$ fois, 
 on complète cette valeur par des 0 de sorte que 
-la chaîne obtenue a $n\times \max{(\mathcal{P})}=22$ éléments, soit:
+la chaîne obtenue ait $n\times \max{(\mathcal{P})}=22$ éléments, soit:
 0600000000000000000000. 
 De manière similaire, les $\check{v}^0=2$ premiers
 termes de $\check{u}$ sont représentés par 
@@ -652,7 +652,7 @@ la séquence.
 
 
 
-On a la proposition suivante, qui est démontrée en annexes~\ref{anx:generateur}.
+On a la proposition suivante, qui est démontrée en annexe~\ref{anx:generateur}.
 
 
 \begin{restatable}[Une distance dans $\mathcal{X}_{\mathsf{N},\mathcal{P}}$]{theorem}{distancedsxnp}
@@ -722,12 +722,12 @@ $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$ déjà détail
 
 Le graphe $\textsc{giu}_{\{1\}}(h)$ a déjà été donné à la figure~\ref{fig:h:iter}.
 Les graphes $\textsc{giu}_{\{2\}}(h)$, $\textsc{giu}_{\{3\}}(h)$  et
-$\textsc{giu}_{\{2,3\}}(h)$ sont respectivement donnés aux figure~\ref{fig:h2prng}, ~\ref{fig:h3prng} et ~\ref{fig:h23prng}. 
+$\textsc{giu}_{\{2,3\}}(h)$ sont respectivement donnés aux figures~\ref{fig:h2prng}, ~\ref{fig:h3prng} et ~\ref{fig:h23prng}. 
 Le premier (respectivement le second) 
 illustre le comportement du générateur lorsque qu'on itère exactement 
 2 fois (resp. 3 fois) puis qu'on affiche le résultat.
 Le dernier donnerait le comportement d'un générateur qui s'autoriserait 
-à itérer en interne systématiquement 2 ou trois fois avant de retourner un résultat.
+à itérer en interne systématiquement 2 ou 3 fois avant de retourner un résultat.
 
 \end{xpl}
 
@@ -735,12 +735,12 @@ Le dernier donnerait le comportement d'un générateur qui s'autoriserait
 \subsection{le PRNG de l'algorithme~\ref{CI Algorithm} est chaotique sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$}
 
 Le théorème suivant, similaire à ceux dans $\mathcal{X}_u$ et dans $\mathcal{X}_g$
-est prouvé en annexes~\ref{anx:generateur}.
+est prouvé en annexe~\ref{anx:generateur}.
 
-\begin{restatable}[Conditions pour la choticité de $G_{f_u,\mathcal{P}}$]{theorem}{thmchoticitgfp}
+\begin{restatable}[Conditions pour la chaoticité de $G_{f_u,\mathcal{P}}$]{theorem}{thmchoticitgfp}
 La fonction $G_{f_u,\mathcal{P}}$ est chaotique sur 
  $(\mathcal{X}_{\mathsf{N},\mathcal{P}},d)$ si et seulement si 
-le graphe d'itération $\textsc{giu}_{\mathcal{P}}(f)$ 
+le graphe d'itérations $\textsc{giu}_{\mathcal{P}}(f)$ 
 est fortement connexe.
 \end{restatable}
 % On alors corollaire suivant 
index 138036f92e7a62579cc6256a8d806c04fbd229dc..670df80b6db8259294e1e989517c6541f2157fc8 100644 (file)
--- a/15TSI.tex
+++ b/15TSI.tex
@@ -49,7 +49,7 @@ $\mathcal{X}_g = \Bool^{\mathsf{N}} \times
 \subsection{Une métrique pour $\mathcal{X}_g$}
 
 Cette nouvelle distance va comparer des ensembles. 
-On rappelle pour quelques notions ensemblistes. 
+On rappelle quelques notions ensemblistes. 
 Pour $A$ et $B$ deux ensembles de l'univers $\Omega$,
 on rappelle la définition de l'opérateur 
 de \emph{différence ensembliste} symétrique :
@@ -78,7 +78,7 @@ La fonction $d$ est une somme de deux fonctions.
 La fonction $d_H$ est la distance de Hamming; il est aussi établi que la 
 somme de deux distances est une distance.
 Ainsi, pour montrer que $d$ est aussi une distance, il suffit 
-de montrer que $d_S$ en une aussi, ce qui est fait en annexe~\ref{anx:distance:generalise}.
+de montrer que $d_S$ en est une aussi, ce qui est fait en annexe~\ref{anx:distance:generalise}.
 
 La section suivante caractérise les fonctions $f$ qui sont  
 chaotiques pour le schéma généralisé.
index 0f09bdd64a5a197277e0a179865f75cf43668df5..3188a74dcf1dfad1fac82356157a08bfa2cf3356 100644 (file)
--- a/ahmad.tex
+++ b/ahmad.tex
@@ -9,7 +9,7 @@ ajoutent des caractères invisibles dans le document.
 En supprimant ces espaces ou caractères invisibles, la marque s'enlève
 facilement.
 Dans~\cite{PD2008}, les auteurs modifient de manière imperceptible
-le positionnements des caractères. D'autres éléments de positionnement
+le positionnement des caractères. D'autres éléments de positionnement
 sont intégrés dans~\cite{WT08}.
 Une attaque qui modifierait  aléatoirement de manière faible ces positions
  détruirait la marque dans les deux cas.
@@ -164,7 +164,7 @@ possible de remarquer une différence entre le document original
 et le document marqué.
 
 Il nous reste à détailler les expériences d'étude de robustesse de la démarche.
-Comme dans l'évaluation de la transparence, il s'est agit de faire 
+Comme dans l'évaluation de la transparence, il s'est agi de faire 
 varier le paramètre  $\Delta$.
 Pour chacune de ces valeurs, le document a été altéré selon 
 un flou gaussien (de paramètre 0,1 et 0,25)  
index ea5f4f14a1c3f29985cdd33b6b3e200c377fd4ce..af03fed84a474785dbc7c8d940ce76452a21fdb4 100644 (file)
@@ -63,10 +63,10 @@ $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=0$.
 Réciproquement si $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=0$, alors
 $\forall k \in \mathds{N}, v^k=\check{v}^k$ d'après la définition de $d$.
 Or les éléments entre les positions $p+1$ et  $p+n$ 
-sont nules et correspondent à $|u^0-\check{u}^0|$, 
+sont nulles et correspondent à $|u^0-\check{u}^0|$, 
 on peut conclure que $u^0=\check{u}^0$.
 On peut étendre ce résultat aux $n \times \max{(\mathcal{P})}$ premiers 
-bloc engendrant $u^i=\check{u}^i$, $\forall i \leqslant v^0=\check{v}^0$, 
+blocs engendrant $u^i=\check{u}^i$, $\forall i \leqslant v^0=\check{v}^0$, 
 et en vérifiant tous les  $n \times \max{(\mathcal{P})}$ blocs, $u=\check{u}$.
  \item $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ est évidemment  symétrique 
 ($d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(\check{s},s)$). 
@@ -79,7 +79,7 @@ aussi.
 
 Montrons que: 
 \begin{lemma}
-Le graphe d'itération $\textsc{giu}_{\mathcal{P}}(f)$ 
+Le graphe d'itérations $\textsc{giu}_{\mathcal{P}}(f)$ 
 est fortement connexe si et seulement si 
 la fonction $G_{f_u,\mathcal{P}}$ est topologiquement transitive sur
 $(\mathcal{X}_{\mathsf{N},\mathcal{P}},d)$. 
@@ -92,7 +92,7 @@ Soit $x=(e,(u,v)),\check{x}=(\check{e},(\check{u},\check{v}))
 On cherche un point $y$ dans une boule ouverte $\mathcal{B}(x,\varepsilon )$ 
 et un nombre 
 $n_0 \in \mathds{N}$ tels que $G_{f_u,\mathcal{P}}^{n_0}(y)=\check{x}$: 
-Cette transitivité forte entrainera la propriété de transitivité classique.
+Cette transitivité forte entraînera la propriété de transitivité classique.
 On peut supposer que $\varepsilon <1$ sans perte de généralité.
 
 Soit $(E,(U,V))$ les éléments de  $y$. Comme 
index 2d351e7f92767f20d4faa92a299d0ce64a4ebe8e..6d050b46c3f5a4714542684c52b28710356ae216 100644 (file)
@@ -55,7 +55,7 @@ Tout d'abord, l'entier $r$ est pair puisque $r_{\mathsf{N}}$ est un multiple de
 $ r_{\mathsf{N}}= 2^{\mathsf{N}} - q_{\mathsf{N}}.2\mathsf{N}= 2(2^{\mathsf{N}-1} - q_{\mathsf{N}}.\mathsf{N})$. 
 Ensuite,  $a_{\mathsf{N}}$ vaut $\frac{2^{\mathsf{N}}-r_{\mathsf{N}}}{\mathsf{N}}$.
 Ainsi
-$d_{\mathsf{N}}$ vaut $r_{\mathsf{N}}/2$ est est donc un entier positif tel que  
+$d_{\mathsf{N}}$ vaut $r_{\mathsf{N}}/2$. C'est donc un entier positif tel que  
 $0 \le d_{\mathsf{N}} <\mathsf{N}$.
 La preuve pour  $c_{\mathsf{N}}$ est évidente.
 
index 76e6e5ce1e18e717273d2ef3a251bfea08fc759e..287cf09d8592ff67398f6896364d27ceb75ce3fe 100644 (file)
@@ -11,7 +11,7 @@ Soit $D=\{d_i|i \in \Im(S_p) \}$.
 L'ensemble $\Im(S_c)_{|D}$ est donc la restriction de l'image de $S_c$ à $D$.
 
 
-Le vecteur qui résutle de ces itérations est donc
+Le vecteur qui résulte de ces itérations est donc
 $(x^l_0,\ldots,x^l_{\mathsf{N}-1})$ où
 $x^l_i$ est soit  $x^{d_i}_i$ si $i$ appartient à $\Im(S_p)$ ou $x^0_i$ sinon.
 De plus, pour chaque $i \in \Im(S_p)$, l'élément $x^{d_i}_i$ est égal à 
@@ -28,7 +28,7 @@ l'élément $j$ a été invoqué avant $d_i-1$.
 
 Réciproquement, si $\Im(S_c)_{|D} \subsetneq 
 \llbracket 0 ;\mathsf{P} -1 \rrbracket$,
-i lexiste un $j \in \llbracket 0 ;\mathsf{P} -1 \rrbracket$ qui n'appartient pas à $\Im(S_c)_{|\Im(S_p)}$. 
+iexiste un $j \in \llbracket 0 ;\mathsf{P} -1 \rrbracket$ qui n'appartient pas à $\Im(S_c)_{|\Im(S_p)}$. 
 Ainsi, $m_j$ n'est pas présent dans $x^l$ et le message ne peut pas extrait.
 \end{proof}
 
index 22187f7176b2b22e978f3c21ba8666a321f5f4d6..817e62246baa636f7500bfdd96a2995cb06c182b 100644 (file)
@@ -20,7 +20,7 @@ p(\textit{deci}(X^{t}) = j , S^t = k , i =_k j , f_k(j) = i_k )
 \]
 \noindent 
 où  $ i =_k j $ est vraie si et seulement si les représentations binaires de 
-$i$ et de  $j$ ne diffèrent que le $k^{\textrm{ème}}$ élément et 
+$i$ et de  $j$ ne diffèrent que pour le $k^{\textrm{ème}}$ élément et 
 où 
 $i_k$ représente dans cette preuve  le $k^{\textrm{ème}}$ élément dans la représentation binaire 
 du nombre
@@ -29,7 +29,7 @@ $i$.
 En raison des hypothèses sur la stratégie, la probabilité 
 $p(\textit{deci}(X^t) = j , S^t = k , i =_k j, f_k(j) = i_k )$ est égale à
 $\frac{1}{l}.p(\textit{deci}(X^t) = j ,  i =_k j, f_k(j) = i_k)$.
-Enfin, puisque $i =_k j$ et  $f_k(j) = i_k$ sont constant 
+Enfin, puisque $i =_k j$ et  $f_k(j) = i_k$ sont constants 
 et sont donc indépendants de  $X^t$, on a 
 \[
 \pi^{t+1}_i = \sum\limits^{2^l-1}_{j=0}
@@ -85,6 +85,6 @@ $(\frac{1}{2^l},\dots,\frac{1}{2^l}) = (\frac{1}{2^l},\dots,\frac{1}{2^l})M$
 et donc $\pi =  (\frac{1}{2^l},\dots,\frac{1}{2^l})$.
 Il existe donc $q$ t.q.
 $|\pi^q- \pi| < \epsilon$.
-Puisque $p(Y| K)$ est $p(X^q)$, la méthode est donc $\epsilon$-stego-secure
+Puisque $p(Y| K)$ est $p(X^q)$, la méthode est donc $\epsilon$-stégo-sécure
 pour peu que l'adapteur de stratégie soit uniformément distribué.
  \end{proof}
index 2c7c1e1d9e5a234a9e266e0eed39827fdb1ed993..a56ddc2840069142214e435a8bda9ed2385a2ecf 100644 (file)
@@ -16,7 +16,7 @@ x_i \oplus x_{i-1} \textrm{ si $i$ est pair}
 Prouvons que la matrice de Markov associée est doublement stochastique par induction 
 sur la longueur $l$.
 Pour $l=1$ et $l=2$ la preuve est évidente.
-Considérons que le résulat est établi jusqu'à $l=2k$ avec $k \in \Nats$.
+Considérons que le résultat est établi jusqu'à $l=2k$ avec $k \in \Nats$.
 
 On montre d'abord que la double stochasticité est établie pour $l=2k+1$.
 En suivant les notations introduites à la section~\ref{anx:sccg}, soit
@@ -31,7 +31,7 @@ $(x_1,\dots,x_{2k},1) \to (x_1,\dots,x_{2k},0)$.
 Dans $\textsc{giu}(f_{2k+1})$, deux sortes d'arcs pointent vers $(x_1,\dots,x_{2k},0)$.
 Ceux qui sont de la forme $(y_1,\dots,y_{2k},0)$, où un seul des $y_i$ est différent de $x_i$, 
 et leur nombre est celui des arcs qui pointent vers $(x_1,\dots,x_{2k})$ dans $\textsc{giu}(f_{2k})$.
-L'arc $(x_1,\dots,x_{2k},0) \to (x_1,\dots,x_{2k},0)$ qui existe d'après la définition de $f_l$
+L'arc $(x_1,\dots,x_{2k},0) \to (x_1,\dots,x_{2k},0)$ qui existe d'après la définition de $f_l$.
 De même pour le nombre d'arcs dont l'extrémité est de la forme $(x_1,\dots,x_{2k},1)$.
 Par hypothèse d'induction, la chaîne de Markov associée à $\textsc{giu}(f_{2k})$ 
 est doublement stochastique.
@@ -40,22 +40,22 @@ Ainsi tous les sommets $(x_1,\dots,x_{2k})$ ont le même nombre d'arcs entrants
 Montrons à présent la double stochasticité pour $l=2k+2$.
 La fonction $f_l$ est définie par $f_l(x)= (\overline{x_1},x_2 \oplus x_{1},\dots,\overline{x_{2k+1}},x_{2k+2} \oplus x_{2k+1})$.  On se concentre sur  
 $\textsc{giu}(f_{2k+2})^0$ et   $\textsc{giu}(f_{2k+2})^1$ qui sont isomorphes à  $\textsc{giu}(f_{2k+1})$. 
-Parmi les configurations de  $\Bool^{2k+2}$, seuls  quatre suffixes de longueur 2 peuvent appraître:
+Parmi les configurations de  $\Bool^{2k+2}$, seuls  quatre suffixes de longueur 2 peuvent apparaître:
 $00$, $10$, $11$ et $01$.
 Puisque 
 $f_{2k+2}(\dots,0,0)_{2k+2}=0$, $f_{2k+2}(\dots,1,0)_{2k+2}=1$, 
-$f_{2k+2}(\dots,1,1)_{2k+2}=0$ et  $f_{2k+2}(\dots,0,1)_{2k+2}=1$, le nombre d'arcs dont les extrémités est  
+$f_{2k+2}(\dots,1,1)_{2k+2}=0$ et  $f_{2k+2}(\dots,0,1)_{2k+2}=1$, le nombre d'arcs dont les extrémités sont  
 \begin{itemize}
 \item $(x_1,\dots,x_{2k},0,0)$
 est le même que celui dont l'extrémité est de la forme  $(x_1,\dots,x_{2k},0)$ dans $\textsc{giu}(f_{2k+1})$
- auquel on ajoute 1 (une boucle autours des configurations $(x_1,\dots,x_{2k},0,0)$);
+ auquel on ajoute 1 (une boucle autour des configurations $(x_1,\dots,x_{2k},0,0)$);
 \item $(x_1,\dots,x_{2k},1,0)$
 est le même que celui dont l'extrémité est de la forme $(x_1,\dots,x_{2k},0)$ in $\textsc{giu}(f_{2k+1})$ 
  auquel on ajoute 1 (l'arc entre les configurations  $(x_1,\dots,x_{2k},1,1)$ et les  configurations 
 $(x_1,\dots,x_{2k},1,0)$); 
 \item $(x_1,\dots,x_{2k},0,1)$
 est le même que celui dont l'extrémité est de la forme $(x_1,\dots,x_{2k},0)$ in $\textsc{giu}(f_{2k+1})$ 
- auquel on ajoute 1 (une boucle autours des configurations $(x_1,\dots,x_{2k},0,1)$);
+ auquel on ajoute 1 (une boucle autour des configurations $(x_1,\dots,x_{2k},0,1)$);
 \item $(x_1,\dots,x_{2k},1,1)$
 est le même que celui dont l'extrémité est de la forme $(x_1,\dots,x_{2k},1)$ in $\textsc{giu}(f_{2k+1})$
 auquel on ajoute 1 (l'arc entre les configurations  
index 8132c680f019bab3fc16df7cc88a2f0e14e7ece2..71c1c8ecde9ab06b1b6abc4bf453d551557275e1 100644 (file)
@@ -8,28 +8,28 @@ s'il existe un chemin de longueur   $\alpha$
 \class{q}. 
 
 \begin{lemma}
-  Il existe un processus de renommage qui effecte un nouvel identifiant aux
-  élément  $i\in$ \class{p}  et $j  \in$ \class{q}  tel que 
+  Il existe un processus de renommage qui affecte un nouvel identifiant aux
+  éléments  $i\in$ \class{p}  et $j  \in$ \class{q}  tel que 
   $i  \le  j$ si et seulement si
   \class{p} $\preceq$ \class{q}.
   \begin{proof}
     
-    Tout d'abord,  soit  \class{p_1},   \ldots,  \class{p_l}  des   classes 
+    Tout d'abord,  soient  \class{p_1},   \ldots,  \class{p_l}  des   classes 
     contenant respectivement les éléments $n_1$,\ldots,  $n_l$
     qui ne dépendent d'aucune autre classe.  
     Les éléments de  \class{p_1} sont renommés par $1$, \ldots,  $n_1$,
-    les elements  de \class{p_i},   $2  \le   i  \le   l$  sont renommés par 
+    les éléments  de \class{p_i},   $2  \le   i  \le   l$  sont renommés par 
     $1+
     \Sigma_{k=1}^{i-1}  n_k$, \ldots, $\Sigma_{k=1}^{i}  n_k$. 
     On considère maintenant les classes \class{p_1},  \ldots, \class{p_{l'}} 
     dont les éléments ont été renommés et soit 
-    $m$ le plus grand indice des elements de \class{p_1}, \ldots,
+    $m$ le plus grand indice des éléments de \class{p_1}, \ldots,
     \class{p_{l'}}.
     Soit une autre classe \class{p} qui dépend exclusivement d'une classe 
-    \class{p_i}, $1 \le i \le l'$ et qui contient $k$ elements. 
+    \class{p_i}, $1 \le i \le l'$ et qui contient $k$ éléments. 
     Les éléments de \class{p} sont renommés par  $m+1$, \ldots, $m+k$.
     Ce processus a été appliqué sur  $l'+1$ classes. Il se termine 
-    puisqu'il diminue le nombre d'elements auquel il reste 
+    puisqu'il diminue le nombre d'éléments auquel il reste 
     à affecter un numéro. 
 
     Il reste à montrer que cette méthode de renommage vérifie la propriété 
@@ -41,7 +41,7 @@ s'il existe un chemin de longueur   $\alpha$
     dépend immédiatement de 
     \class{p},  \textit{i.e.} 
     le chemin le plus long entre les éléments de   \class{p} et les 
-    elements de \class{q} est de longueur 1.  
+    éléments de \class{q} est de longueur 1.  
     En raison de la méthode renommage, chaque numéro d'élément
     \class{q}  est plus grand que tous ceux de  \class{p} et la preuve est 
     établie.
@@ -81,20 +81,20 @@ On peut remarquer que ce processus de renommage est inspiré des \emph{graphes
   fini d'itérations. %pseudo periods. % [[JFC : borner m1/n1]].
   Ainsi toutes les  \emph{classes sources} 
   (indépendantes de toutes les  autres classes) vont aussi converger 
-  dans le mode mixe. 
-  On peut ainsi  supposer que le  mode d'itération mixe avec délais 
+  dans le mode mixte. 
+  On peut ainsi  supposer que le  mode d'itération mixte avec délais 
   uniformes fait converger les classes \class{b_1},  \ldots, \class{b_k}
   en  un temps $t_k$.
   Par construction, la classe \class{b_{k+1}}  dépend uniquement 
   de certaines classes de  \class{b_1}, \ldots,
   \class{b_k} et éventuellement d'elle-même.
-  Il existe un nombre d'iteration suffisamment grand 
-  $t_0$  tel que  $D^{t_0}_{p_{k+1}p_j}$  est suppérieur ou égal à   $t_k$ 
+  Il existe un nombre d'itérations suffisamment grand 
+  $t_0$  tel que  $D^{t_0}_{p_{k+1}p_j}$  est supérieur ou égal à   $t_k$ 
   pour chaque 
   $p_{k+1} \in$ \class{b_{k+1}} et $p_j \in$ \class{b_j}, $1 \le j \le k$.
 
   Il ne reste donc que des itérations synchrones entre les 
-  elements  of \class{b_{k+1}} en démarant dans des configurations
+  éléments  de \class{b_{k+1}} en démarrant dans des configurations
   où tous les éléments de  \class{b_j}, $1 \le j
   \le k$, ont  des valeurs constantes.  
   D'après les hypothèses du théorème, cela converge.
index 5b77e95305a1ac9d0d77f07359e06b3bb3e88c5e..75d05e471221bce31595c3682adb60c496e22483 100644 (file)
@@ -46,7 +46,7 @@ En d'autres mots, $E$ est l'ensemble des tous les arcs du
 ${\mathsf{N}}$-cube. 
 Soit $h: \Bool^{\mathsf{N}} \to [{\mathsf{N}}]$ 
 qui mémorise pour chaque n{\oe}ud $X \in \Bool^{\mathsf{N}}$ quel
-arc est supprimée à partir du cycle hamiltonien,
+arc est supprimé à partir du cycle hamiltonien,
 \textit{i.e.} quel bit dans  $[{\mathsf{N}} ]$ 
 ne peut pas être inversé.
 
@@ -97,8 +97,8 @@ $\ov{h}^{-1}(X)\oplus X = 0^{{\mathsf{N}}-k}10^{k-1}$.
 Supposons $h(X) = h(\ov{h}^{-1}(X))$. Dans un tel cas, $h(X) =k$.
 Par définition  $\ov{h}$, $(X, \ov{h}(X)) \in E $ et
 $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1} = 0^{{\mathsf{N}}-k}10^{k-1}$.
-Ainsi $\ov{h}(X)= \ov{h}^{-1}(X)$, ce qui entraine $\ov{h}(\ov{h}(X))= X$ et 
-qui contredit le fiat que $\ov{h}$ est anti-involutive.
+Ainsi $\ov{h}(X)= \ov{h}^{-1}(X)$, ce qui entraîne $\ov{h}(\ov{h}(X))= X$ et 
+qui contredit le fait que $\ov{h}$ est anti-involutive.
 \end{proof}
 
 Soit $Z$ une variable aléatoire suivant une distribution uniforme sur 
@@ -108,7 +108,7 @@ Pour $X\in \Bool^{\mathsf{N}}$, on définit avec  $Z=(i,b)$,
 \left\{
 \begin{array}{ll}
 f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{ si } b=1 \text{ et } i\neq h(X),\\
-f(X,Z)=X& \text{otherwise.} 
+f(X,Z)=X& \text{sinon.} 
 \end{array}\right.
 \]
 
@@ -121,13 +121,13 @@ X_t= f(X_{t-1},Z_t).
 
 
 Un entier $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ est  \emph{équitable} 
- au temps $t$ s'il existe  $0\leq j <t$ tel que $Z_{j+1}=(\ell,\cdot)$ et $h(X_j)\neq \ell$. En d'autres mots, il existe une date $j$ anérieure à  $t$ 
+ au temps $t$ s'il existe  $0\leq j <t$ tel que $Z_{j+1}=(\ell,\cdot)$ et $h(X_j)\neq \ell$. En d'autres mots, il existe une date $j$ antérieure à  $t$ 
 où le premier élément de la variable aléatoire  $Z$ est $l$ 
 (\textit{i.e.}, la stratégie vaut $l$ à la date $j$) 
 et où le n{\oe}ud $X_j$ permet de traverser l'arc  $l$.  
  
-Soit $\ts$ le premier tempsoù touis les éléments de $\llbracket 1, {\mathsf{N}} \rrbracket$ 
-sont  équitables.  On a le lemme suiant:%L'entier $\ts$ est un temps d'arrêt pour la chaîne de Markov $(X_t)$.
+Soit $\ts$ le premier temps où tous les éléments de $\llbracket 1, {\mathsf{N}} \rrbracket$ 
+sont  équitables.  On a le lemme suivant:%L'entier $\ts$ est un temps d'arrêt pour la chaîne de Markov $(X_t)$.
 
 
 \begin{lemma}
@@ -147,7 +147,7 @@ est $0$ ou $1$ avec la même probabilité  ($\frac{1}{2}$).
 A chaque étape, le $l^{\textrm{ème}}$ bit  est inversé de $0$ à $1$ ou de $1$ à $0$, chaque fois avec la même 
 probabilité. Ainsi,  pour $t\geq \tau_\ell$, le
 $\ell^{\textrm{ème}}$ bit de $X_t$ est $0$ ou $1$ avec la même probabilité,
-et ce indépendament de la valeur des autres bits.
+et ce indépendamment de la valeur des autres bits.
 \end{proof}
 
 
@@ -158,7 +158,7 @@ et ce indépendament de la valeur des autres bits.
 
 Pour chaque $X\in \Bool^{\mathsf{N}}$ et $\ell\in [{\mathsf{N}}]$, 
 soit $S_{X,\ell}$ une variable aléatoire qui compte le nombre d'itérations
-tel qu'en démarant de la configuration  $X$ on en atteigne une où 
+tel qu'en démarrant de la configuration  $X$ on en atteigne une où 
 $\ell$  est équitable. Plus formellement, 
 $$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ et }Z_t=(\ell,.)\text{ et } X_0=X\}.$$
 On peut majorer l'espérance de cette variable aléatoire comme suit.
@@ -227,7 +227,7 @@ $i-1$ bits équitables. On a $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}-1}W_i$.
 Dans la configuration $X$ avec $i-1$ bits équitables,
 la probabilité d'obtenir un nouveau bit équitable est soit
 $1-\frac{i-1}{{\mathsf{N}}}$ si $h(X)$ est équitable,
-et $1-\frac{i-2}{{\mathsf{N}}}$ si $h(X)$ ne l'est pas. 
+soit $1-\frac{i-2}{{\mathsf{N}}}$ si $h(X)$ ne l'est pas. 
 
 Ainsi, 
 $\P (W_i=k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}}.$
@@ -257,7 +257,7 @@ ce qui termine la preuve du lemme.
 Tous les éléments sont en place pour majorer l'espérance de $\ts$. 
 \begin{theorem}
 \label{prop:stop}
-Si $\ov{h}$ est bijective et anti involutive 
+Si $\ov{h}$ est bijective et anti- involutive 
 $\ov{h}(\ov{h}(X))\neq X$, alors
 $E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$. 
 \end{theorem}
index 6b3adaa30f9719404ec6dd6a0b80436eee2f7f0f..ade9df01b8b50d8b7f9f07e7c6564f003499ba4a 100644 (file)
@@ -6,17 +6,17 @@ du chapitre~\ref{chap:promela}.
 
 \begin{lemma}[Stratégie équivalente]\label{lemma:strategy}
   Soit $\phi$  un système dynamique discret de stratégie  $(S^t)^{t \in  \Nats}$ 
-  et $\psi$  sa traduction en promela
+  et $\psi$  sa traduction en PROMELA
   Il existe une exécution de $\psi$ sous hypothèse d'équité faible telle 
-  le le scheduler met à jour les  elements of $S^t$
-  donnés par \verb+update_elems+ à l'iteration $t$.
+  le scheduler met à jour les  éléments of $S^t$
+  donnés par \verb+update_elems+ à l'itération $t$.
 \end{lemma}
 \begin{proof}
   La preuve est directe pour $t=0$.
-  Supposons qu'elle est établie jusqu'en $t$ vallant un certain $t_0$. 
+  Supposons qu'elle est établie jusqu'en $t$ valant un certain $t_0$. 
   On considère des stratégies pseudo périodiques.
   Grâce à l'hypothèse d'équité faible, \verb+update_elems+ modifie 
-  les éléments de $S^t$ à l'iteration $t$.
+  les éléments de $S^t$ à l'itération $t$.
 \end{proof}
 
 Dans ce qui suit, soit     $Xd^t_{ji}$     la valeur de 
@@ -33,7 +33,7 @@ $k$, $0 \le k \le  m-1$, le tuple $(Y^k_{ij},a^k_{ij},c^k_{ij})$ en entrant
 dans la fonction \verb+update_elems+ à l'itération $t$ où
 % \begin{itemize}
 % \item
- $Y^k_{ij}$ est la valeur du cannal \verb+channels[i].sent[j]+
+ $Y^k_{ij}$ est la valeur du canal \verb+channels[i].sent[j]+
   à l'indice $k$,
 %\item 
 $a^k_{ij}$ est la  date (antérieure à $t$) mémorisant quand $Y^k_{ij}$ est ajouté et 
@@ -50,8 +50,8 @@ M_{ij}^t: &
 \end{array}  
 \end{equation*}
 
-Intuitivement,  $M_{ij}^t$  est la mémoire du cannal
-\verb+channels[i].sent[j]+ à l'iterations $t$. 
+Intuitivement,  $M_{ij}^t$  est la mémoire du canal
+\verb+channels[i].sent[j]+ à l'itération $t$. 
 On note que le domaine de chaque $M_{ij}^1$ est $\{0\}$ et
 $M_{ij}^1(0)=(\verb+Xp[i]+,0,0)$:    en effet le processus 
 \verb+init+  initialise \verb+channels[i].sent[j]+ avec \verb+Xp[i]+.
@@ -59,8 +59,8 @@ $M_{ij}^1(0)=(\verb+Xp[i]+,0,0)$:    en effet le processus
 Montrons comment l'indéterminisme des deux fonctions 
 \verb+fetch_values+ et  \verb+diffuse_values+  
 permet de modéliser l'équation  \Equ{eq:async}.
-La  function   $M_{ij}^{t+1}$  est  obtenue à l'aide de mises à jour successives
-de  $M_{ij}^{t}$  au travers des deux   functions   \verb+fetch_values+  and
+La  fonction   $M_{ij}^{t+1}$  est  obtenue à l'aide de mises à jour successives
+de  $M_{ij}^{t}$  au travers des deux   fonctions   \verb+fetch_values+  and
 \verb+diffuse_values+.   Par abus,   soit  $M_{ij}^{t+1/2}$  
 la valeur de  $M_{ij}^{t}$ après la première fonction pendant l'itération
  $t$.
@@ -82,8 +82,8 @@ M_{ij}^{t}$.
 Dans la fonction \verb+diffuse_values+, 
 s'il existe un $\tau$, $\tau\ge t$
 tel que \mbox{$D^{\tau}_{ji} = t$}, soit alors   $c_{ij}$ défini par $ \min\{l \mid
-D^{l}_{ji} =  t \} $.  Dans ce cas, on exécution l'instruction qui 
-ajoute la valeur  \verb+Xp[i]+   dans la queue du cannal
+D^{l}_{ji} =  t \} $.  Dans ce cas, on exécute l'instruction qui 
+ajoute la valeur  \verb+Xp[i]+   dans la queue du canal
 \verb+channels[i].sent[j]+.    Alors,
 $M_{ij}^{t+1}$ est défini en étendant $M_{ij}^{t+1/2}$  à $m$ de sorte que 
 $M_{ij}^{t+1}(m)$ est $(\verb+Xp[i]+,t,c_{ij})$.  
@@ -94,7 +94,7 @@ est  exécutée et $M_{ij}^{t+1} = M_{ij}^{t+1/2}$.
 
 
 \begin{lemma}[Existence d'une exécution SPIN]\label{lemma:execution}
-  Pour chaque  sequence $(S^t)^{t  \in \Nats}$,\linebreak $(D^t)^{t \in \Nats}$, 
+  Pour chaque  séquence $(S^t)^{t  \in \Nats}$,\linebreak $(D^t)^{t \in \Nats}$, 
   pour chaque fonction $F$,
   il existe une exécution SPIN  telle que pour toute itération $t$, $t
   \ge  1$, et pour chaque  $i$ et $j$ dans  $[ \mathsf{N} ]$  
@@ -121,21 +121,22 @@ est  exécutée et $M_{ij}^{t+1} = M_{ij}^{t+1/2}$.
 la variable  \verb+Xp[k]+  en sortant du processus 
 \verb+update_elems+  est  égale à
 $X_k^{t}$          \textit{i.e.},          $F_{k}\left(         X_1^{D_{k\,1}^{t-1}},\ldots,
-  X_{\mathsf{N}}^{D_{k\,{\mathsf{N}}}^{t-1}}\right)$ à la fin de la  $t^{\text{th}}$ itération.
+  X_{\mathsf{N}}^{D_{k\,{\mathsf{N}}}^{t-1}}\right)$ à la fin de la  $t^{\text{ème}}$ itération.
 \end{lemma}
 \begin{proof}
 La preuve est faite par induction sur le nombre d'itérations.
 
 \paragraph{Situation initiale:}
-Pour le premier item, par definition de $M_{ij}^t$, on a $M_{ij}^1(0) = \left(
+Pour le premier item, par définition de $M_{ij}^t$, on a $M_{ij}^1(0) = \left(
   \verb+Xp[i]+, 0,0 \right)$ qui est égal à  $\left(X_i^{D_{ji}^{0}},
   0,0 \right)$.
 Ensuite, le premier appel à la  fonction \verb+fetch_value+ 
-soit affecte à la tête de \verb+channels[i].sent[j]+  à   \verb+Xd[j].v[i]+ soit ne modifie par 
+soit affecte la tête de \verb+channels[i].sent[j]+
+à   \verb+Xd[j].v[i]+ soit ne modifie par 
 \verb+Xd[j].v[i]+. 
 Grâce au processus \verb+init+ process, 
 les deux cas sont égaux à 
-\verb+Xp[i]+,  \textit{i.e.}, $X_i^0$.  L'equation (\ref{eq:correct_retrieve})  est ainsi établie.
+\verb+Xp[i]+,  \textit{i.e.}, $X_i^0$.  L'équation (\ref{eq:correct_retrieve})  est ainsi établie.
 
 Pour le dernier item, soit $k$, $0  \le  k \le  \mathsf{N}-1$. 
 A la fin de la première exécution du processus \verb+update_elems+,
@@ -229,17 +230,17 @@ apparaître selon que $D_{ji}^{l}$ et  $D_{ji}^{l-1}$ sont égaux ou non.
 Il reste à prouver la partie inductive de la troisième partie du lemme.
 Soit $k$, $k
 \in S^{l+1}$. % and $\verb+k'+ = k-1$.
-A l'issue de la première exécutions 
+A l'issue de la première exécution 
 du processus \verb+update_elems+, on a 
 $\verb+Xp[+k\verb+]+=                                   F(\verb+Xd[+k\verb+][0]+,
 \ldots,\verb+Xd[+k\verb+][+n\verb+-1]+)+$.  
 Par définition $Xd=F(Xd^{l+1}_{k\,0},      \ldots,Xd^{l+1}_{k\,n-1})$.      
-Grace à~\Equ{eq:correct_retrieve} déjà prouvée, on peut conclure la preuve.
+Grâce à~\Equ{eq:correct_retrieve} déjà prouvée, on peut conclure la preuve.
 \end{proof}
 
 
 \begin{lemma}
-  Borner la taille du cannal à $\textit{max} = \delta_0$ est suffisant 
+  Borner la taille du canal à $\textit{max} = \delta_0$ est suffisant 
   lorsqu'on simule un système dynamique dont les délais sont bornés par  
   $\delta_0$.
 \end{lemma}
@@ -248,7 +249,7 @@ Grace à~\Equ{eq:correct_retrieve} déjà prouvée, on peut conclure la preuve.
   Pour chaque $i$ et $j$, à chaque itération $t+1$, comme les délais sont bornés par 
   $\delta_0$,  l'élément $i$  doit connaître au plus $\delta_0$ 
   valeurs qui sont
-  $X_j^{t}$, \ldots, $X_j^{t-\delta_0+1}$. Elles peuvent être mémorisées dans n'importe quel cannal
+  $X_j^{t}$, \ldots, $X_j^{t-\delta_0+1}$. Elles peuvent être mémorisées dans n'importe quel canal
   de taille $\delta_0$.
 \end{proof}
 
@@ -261,12 +262,12 @@ Grace à~\Equ{eq:correct_retrieve} déjà prouvée, on peut conclure la preuve.
 %   to  convenient  available  dates  $D_{ji}$.   It is  then  easy  to  construct
 %   corresponding iterations of the DDN that are convergent.
 % \ANNOT{quel sens donnes-tu a \emph{convenient} ici ?}
-  Montrons la conraposée du théorème.
+  Montrons la contraposée du théorème.
   Le lemme  précédent a montré que pour chaque séquence d'itérations du système dynamique discret,
   Il existe une exécution du modèle PROMELA qui la simule.
   Si des itérations du système dynamique discret sont divergentes, leur exécution vont empêcher 
   le modèle PROMELA de se stabiliser,  \textit{i.e.} 
-  ce dernier ne verifiera pas la propriété LTL (\ref{eq:ltl:conv}).
+  ce dernier ne vérifiera pas la propriété LTL (\ref{eq:ltl:conv}).
 \end{proof}
 
 
@@ -283,9 +284,9 @@ Grace à~\Equ{eq:correct_retrieve} déjà prouvée, on peut conclure la preuve.
 \promelacomplete*
 
 \begin{proof}
-  Pour chaque  modele  $\psi$ 
+  Pour chaque  modèle  $\psi$ 
   qui ne vérifie pas la propriété  LTL  (\ref{eq:ltl:conv}), 
-  il est immédiat de construire les itérations correpondantes du
+  il est immédiat de construire les itérations correspondantes du
   système dynamique, dont la stratégie est pseudo périodique en raison 
   de la propriété d'équité faible..
 
index bbfc12df24e8bc30cdb84e72cd33040a739c7a87..d6843dcd3f4429fbe33c07e59bd41bad2cd9d87e 100644 (file)
@@ -94,7 +94,7 @@ En d'autres mots, il suffit de prouver que:
 On suppose tout d'abord que ${\mathsf{N}}$ a une boucle 
 négative.
 Alors, d'après la définition de 
-$G(f)$, il existe $x\in\Bool^{\mathsf{N}}$ tel que $f_{{\mathsf{N}}{\mathsf{N}}}(x)<0$. 
+$G(f)$, il existe $x\in\Bool^{\mathsf{N}}$ tel que $f_{{\mathsf{N}}}(x)<0$. 
 Ainsi si $x_{\mathsf{N}}=0$, on a  $f_{\mathsf{N}}(x)>f_{\mathsf{N}}(\overline{x}^{\mathsf{N}})$, et donc 
 $x_{\mathsf{N}}=0\neq f_{\mathsf{N}}(x)$ et
 $\overline{x}^{\mathsf{N}}_{\mathsf{N}}=1\neq f_{\mathsf{N}}(\overline{x}^{\mathsf{N}})$; 
index 89ac939ac65dcf87c12e17d969c0fcdd09291947..a81867590ba516072c0ca0ebce9390fcb3cf84b9 100644 (file)
@@ -12,7 +12,7 @@ leur comportement imprévisible et proche de l'aléa.
 
 Les réseaux de neurones chaotiques peuvent être conçus selon plusieurs 
 principes. Des neurones modifiant leur état en suivant une fonction non 
-linéaire son par exemple appelés neurones chaotiques~\cite{Crook2007267}.
+linéaire sont par exemple appelés neurones chaotiques~\cite{Crook2007267}.
 L'architecture de réseaux de neurones de type Perceptron multi-couches
 (MLP) n'itèrent quant à eux, pas nécessairement de fonctions chaotiques.
 Il a cependant été démontré  que ce sont des approximateurs 
@@ -28,7 +28,7 @@ fonctions chaotiques.
 
 Ces réseaux de neurones partagent le fait qu'ils sont qualifiés de 
 ``chaotiques'' sous prétexte qu'ils embarquent une fonction de ce type 
-et ce sans aucune preuve rigoureuse ne soit fournie.
+et ce sans qu'aucune preuve rigoureuse ne soit fournie.
 Ce chapitre caractérise la 
 classe des réseaux de neurones MLP chaotiques. Il  
 s'intéresse ensuite à l'étude de prévisibilité de systèmes dynamiques
@@ -39,7 +39,7 @@ chaotique selon Devanay. La section~\ref{S3} présente l'approche duale
 de vérification si un réseau de neurones est chaotique ou non.
 La section~\ref{sec:ann:approx} s'intéresse à étudier pratiquement
 si un réseau de 
-neurones peut approximer des itération unaires chaotiques. Ces itérations
+neurones peut approximer des itérations unaires chaotiques. Ces itérations
 étant obtenues à partir de fonctions issues de la démarche détaillée dans 
 le chapitre précédent.
 Ce travail a été publié dans~\cite{bcgs12:ij}.
@@ -58,7 +58,7 @@ Plus précisément, pour chaque entrée
  $(x,s)   \in  \mathds{B}^{\mathsf{N}} \times [{\mathsf{N}}]$,
 la couche de sortie doit générer $F_{f_u}(x,s)$.   
 On peut ainsi lier la couche de sortie avec celle d'entrée pour représenter 
-les dépendance entre deux itérations successives.
+les dépendances entre deux itérations successives.
 On obtient une réseau de neurones dont le comportement est le suivant 
 (voir Figure.~\ref{Fig:perceptron}):
 
@@ -68,8 +68,8 @@ On obtient une réseau de neurones dont le comportement est le suivant
   et calcule le  vecteur de sortie 
   $x^1=F_{f_u}\left(x^0,S^0\right)$. 
   Ce vecteur est publié comme une sortie et est aussi retourné sur la couche d'entrée 
-  à travers les liens de retours.
-\item Lorsque le réseau est  activé à la $t^{th}$  itération, l'état du 
+  à travers les liens de retour.
+\item Lorsque le réseau est  activé à la $t^{\textrm{ème}}$  itération, l'état du 
   système $x^t  \in \mathds{B}^{\mathsf{N}}$ reçu depuis la couche de sortie ainsi que le 
   premier terme de la  séquence $(S^t)^{t  \in \Nats}$
   (\textit{i.e.},  $S^0  \in [{\mathsf{N}}]$)  servent à construire le nouveau vecteur de sortie.
@@ -82,7 +82,7 @@ On obtient une réseau de neurones dont le comportement est le suivant
 \begin{figure}
   \centering
   \includegraphics[scale=0.625]{images/perceptron}
-  \caption{Un Perceptron équivalent  aux itérations unitaires}
+  \caption{Un Perceptron équivalent  aux itérations unaires}
   \label{Fig:perceptron}
 \end{figure}
 
@@ -91,7 +91,7 @@ initial est composé de $x^0~\in~\mathds{B}^{\mathsf{N}}$ et d'une séquence
  $(S^t)^{t  \in \Nats}$, alors la séquence  contenant les vecteurs successifs 
 publiés $\left(x^t\right)^{t \in \mathds{N}^{\ast}}$ est exactement celle produite 
 par les itérations unaires décrites à la section~\ref{sec:TIPE12}.
-Mathématiquement, cela signifie que si on utilise les mêmes vecteurs d'entrées
+Mathématiquement, cela signifie que si on utilise les mêmes vecteurs d'entrée
 les deux approches génèrent successivement les mêmes sorties.
 En d'autres termes ce réseau de neurones modélise le comportement de  
 $G_{f_u}$,  dont les itérations sont chaotiques sur $\mathcal{X}_u$.
@@ -140,10 +140,10 @@ $f_j\left(x_1,x_2,\dots,x_{\mathsf{N}}\right) =
 F\left(\left(x_1,x_2,\dots,x_{\mathsf{N}}\right),j\right)$.
 Si ce réseau de neurones est initialisé avec 
 $\left(x_1^0,\dots,x_{\mathsf{N}}^0\right)$   et $S   \in    [{\mathsf{N}}]^{\mathds{N}}$, 
-il produit exactement les même sorties que les itérations de  $F_{f_u}$ avec une 
+il produit exactement les mêmes sorties que les itérations de  $F_{f_u}$ avec une 
 condition initiale $\left((x_1^0,\dots,  x_{\mathsf{N}}^0),S\right)  \in  \mathds{B}^{\mathsf{N}} \times [{\mathsf{N}}]^{\mathds{N}}$.
 Les itérations de $F_{f_u}$ 
-sont donc un modèle formel de cette classe de réseau de neurones.
+sont donc un modèle formel de cette classe de réseaux de neurones.
 Pour vérifier si un de ces représentants est chaotique, il suffit ainsi 
 de vérifier si le graphe d'itérations
 $\textsc{giu}(f)$ est fortement connexe.
@@ -162,12 +162,12 @@ qui approximerait les itérations de la fonction $G_{f_u}$ comme définie
 à l'équation~(\ref{eq:sch:unaire}).
 
 Sans perte de généralité, on considère dans ce qui suit une instance
-de de fonction à quatre éléments.
+ de fonction à quatre éléments.
 
 \subsection{Construction du réseau} 
 \label{section:translation}
 
-On considère par exemple les deux fonctions $f$ and $g$ de $\Bool^4$
+On considère par exemple les deux fonctions $f$ et $g$ de $\Bool^4$
 dans $\Bool^4$ définies par:
 
 \begin{eqnarray*}
@@ -197,7 +197,7 @@ Dans le premier cas, on considère une entrée booléenne par élément
 tandis que dans le second cas, les configurations  sont mémorisées comme 
 des entiers naturels. Dans ce dernier cas, une approche naïve pourrait 
 consister à attribuer à chaque configuration de $\Bool^{\mathsf{N}}$ 
-l'entier naturel naturel correspondant.
+l'entier naturel correspondant.
 Cependant, une telle représentation rapproche 
 arbitrairement des configurations diamétralement
 opposées dans le ${\mathsf{N}}$-cube comme  une puissance de
@@ -224,7 +224,7 @@ Les sorties (stratégies et configurations) sont mémorisées
 selon les mêmes règles.
 
 Concentrons nous sur la complexité du problème.
-Chaque entrée, de l'entrée-sortie de l'outil est un triplet 
+Chaque entrée de l'entrée-sortie de l'outil est un triplet 
 composé d'une configuration $x$, d'un extrait  $S$ de la stratégie à 
 itérer de taille $l$, $2 \le l \le  k$ et d'un nombre $m \in [l-1]$ d'itérations à exécuter.
 Il y a  $2^{\mathsf{N}}$  configurations $x$ et  ${\mathsf{N}}^l$ stratégies de
@@ -241,7 +241,7 @@ donc
 \dfrac{(k-1)\times {\mathsf{N}}^{k+1}}{{\mathsf{N}}-1} - \dfrac{{\mathsf{N}}^{k+1}-{\mathsf{N}}^2}{({\mathsf{N}}-1)^2} \enspace . \nonumber
 \end{equation}
 \noindent
-Ainsi le nombre de paire d'entrée-sortie pour les réseaux de neurones considérés
+Ainsi le nombre de paires d'entrée-sortie pour les réseaux de neurones considérés
 est 
 $$
 2^{\mathsf{N}} \times \left(\dfrac{(k-1)\times {\mathsf{N}}^{k+1}}{{\mathsf{N}}-1} - \dfrac{{\mathsf{N}}^{k+1}-{\mathsf{N}}^2}{({\mathsf{N}}-1)^2}\right) \enspace .
@@ -259,8 +259,9 @@ ont montré qu'un MLP pouvait apprendre la dynamique du circuit de Chua.
 Ce réseau avec rétropropagation est composé de  deux couches 
 et entraîné à l'aide d'une  propagation arrière Bayesienne.
 
-Le choix de l'architecture du réseau ainsi que de la méthode d'apprentissage 
-ont été détaillé dans~\cite{bcgs12:ij}.
+Les choix de l'architecture de réseau ainsi que ceux concernant les
+ méthodes d'apprentissage 
+ont été détaillés dans~\cite{bcgs12:ij}.
 En pratique, nous avons considéré des configurations de
 quatre éléments booléens 
 et une stratégie fixe de longueur 3.
@@ -366,8 +367,8 @@ apprendre le comportement de la stratégie.
 
 Les résultats concernant le second codage  (\textit{i.e.},  avec les codes
 de   Gray) sont synthétisés dans le tableau~\ref{tab2}. On constate 
-que le réseau apprend cinq fois mieux les comportement non chaotiques
-que ceux qui le sont. Ceci est est illustré au travers des 
+que le réseau apprend cinq fois mieux les comportements non chaotiques
+que ceux qui le sont. Ceci est  illustré au travers des 
 figures~\ref{Fig:chaotic_predictions} et~\ref{Fig:non-chaotic_predictions}.
 De plus, comme dans le codage précédent, les stratégies ne peuvent pas être 
 prédites.  
@@ -417,7 +418,7 @@ Nous avons enfin montré en pratique qu'il est difficile pour un
 réseau de neurones d'apprendre le comportement global d'itérations
 chaotiques.
 Comme il est difficile (voir impossible) d'apprendre le comportement 
-de telles fonction, il paraît naturelle de savoir si celles ci peuvent être 
+de telles fonctions, il paraît naturel de savoir si celles ci peuvent être 
 utilisées pour générer des nombres pseudo aléatoires, ce que propose la partie
 suivante.
 
index e2eac3e7b89caebfc0d6d26b19c4ac1e6b3c0a63..98fcbc57d4b45af29b772036068617b493786944 100644 (file)
@@ -37,24 +37,25 @@ itérations. Elle est présentée au chapitre~\ref{chap:PRNG:gray}.
 Ces méthodes ont permis d'étendre à l'infini la classe des fonctions 
 dont les itérations sont chaotiques.
 
-Nous de plus entrepris d'étudier ces itérations et plus particulièrement leur 
+Nous avons aussi 
+entrepris d'étudier ces itérations et plus particulièrement leur 
 apprentissage par un réseau de neurones. 
 Nous avons notamment pu contribuer à montrer pratiquement qu'il
 est très difficile (voir impossible) de les prédire 
 à l'aide d'outils d'intelligence artificielle (chapitre~\ref{chp:ANN}).
 
-Avec la production d'une grande collection de fonctions à itérations chaotiques, 
-Nous avons donc proposé de répondre à la question suivante: comment engendrer des fonctions 
+Avec la production d'une grande collection de fonctions à itérations chaotiques, nous avons donc proposé de répondre à la question suivante: comment engendrer des fonctions 
 dont les itérations vont produire des nombres simulant correctement l'aléa. 
 En d'autres termes, quelles fonctions peuvent être embarquées dans un PRNG? 
 Nous avons d'abord caractérisé les fonctions dont les itérations produisent des nombres 
 selon une distribution uniforme (chapitre~\ref{chap:PRNG:chao}). Pour cela il a fallu réécrire
 l'algorithme de génération comme une marche aléatoire dans une partie du $\mathsf{N}$-cube,
-de se ramener à une chaîne de Markov puis d'utiliser la théorie élaborée sur ce sujet 
+se ramener ensuite à une chaîne de Markov puis  enfin 
+utiliser la théorie élaborée sur ce sujet 
 pour conclure (chapitre~\ref{chap:PRNG:gray}).
 
 Parmi les fonctions retenues, celles issues de la suppression 
-d'un cycle hamiltonien dans un $\mathsf{N}$ ont retenu notre attention. 
+d'un cycle hamiltonien dans un $\mathsf{N}$-cube ont retenu notre attention. 
 Nous nous sommes aussi attaché à montrer l'importance de l'équilibrage du cycle
 hamiltonien à enlever (chapitre~\ref{chap:PRNG:gray}).
 Nous avons de plus entrepris dans ce chapitre 
@@ -121,7 +122,7 @@ Nous avons fait sauter un premier verrou en proposant une méthode déterministe
 de Robinson-Cohn. Il est apparu récemment des algorithmes permettant d'obtenir des codes de Gray 
 localement équilibrés, c.-à-d. où la longueur du plus grand nombre d'étapes entre 
 deux changements d'un même bit est aussi petite que possible.
-Dans tous les cas, aucun des ces codes n'est globalement équilibré ni même presque équilibré.
+Dans tous les cas, aucun de ces codes n'est globalement équilibré ni même presque équilibré.
 Cette double propriété serait cependant très intéressante aussi bien théoriquement que pratiquement
 pour nos générateurs.
 Un second verrou consistera à adapter ces algorithmes pour proposer des codes possédant les 
index 23fb30400bb8d167467ada0c74bac0a20e3eb0b1..d2bbf98f8a56f70140ec7b3f06acfd873035599a 100644 (file)
--- a/intro.tex
+++ b/intro.tex
@@ -23,8 +23,8 @@ Ces réseaux particuliers sont qualifiés de \emph{réseaux booléens}.
 
 
 Soit ${\mathsf{N}}$ un entier naturel représentant le nombre 
-d'éléments étudiés (le nombre bits qu'un générateur veut engendrer,
-le nombre de pixel que l'on veut modifier\ldots) un réseau booléen  est 
+d'éléments étudiés (le nombre de bits qu'un générateur veut engendrer,
+le nombre de pixels que l'on veut modifier\ldots) un réseau booléen  est 
 défini à partir d'une fonction booléenne $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$
 et un mode de  mise à jour.
 A chaque étape, on peut intuitivement ne modifier qu'une partie des
@@ -33,10 +33,10 @@ En fonction des éléments qui sont susceptibles d'être modifiés à chaque ét
 on peut se poser les questions de savoir si le réseau atteint un point fixe (et qu'il peut donc converger) ou 
 s'il possède des attracteurs cycliques (et qu'il diverge donc).
 
-Détecter la convergence ou son contraire  peut se faire \textit{ a priori} dans
-certain cas. En effet, de nombreux travaux ont énoncé des conditions 
+Détecter la convergence ou son contraire  peut se faire \textit{a priori} dans
+certains cas. En effet, de nombreux travaux ont énoncé des conditions 
 suffisantes sur les réseaux booléens garantissant leur convergence
-ou leur divergence . Lorsqu'aucune d'entre elle ne s'applique, on peut penser
+ou leur divergence. Lorsqu'aucune d'entre elles ne s'applique, on peut penser
 à étendre ces résultats théoriques et compléter ceci par des simulations.
 Lorsque la convergence est pratiquement observée, il reste à vérifier que
 celle-ci est indépendante  du choix des parties à modifier, par exemple.
@@ -47,11 +47,11 @@ Une fonction qui admet un attracteur cyclique égal à l'ensemble
 des sommets diverge. Admet-il cependant un comportement chaotique?
 Les théories mathématiques du chaos ont énoncé des critères permettant
 de décider si une fonction est chaotique ou non, et plus récemment
-si certains réseaux booléens étaient l'étaient. Se pose légitimement
-la question de savoir si cette caractérisation s'étend quelque soient
+si certains réseaux booléens l'étaient. Se pose légitimement
+la question de savoir si cette caractérisation s'étend quelques soient
 les parties modifiées à chaque étape. Naturellement, ceci n'a un sens
 pratique que si le nombre de réseaux booléens qui possèdent cette
-caractéristique est suffisamment grand et que l'on sache engendrer
+caractéristique est suffisamment grand et que l'on sait engendrer
 algorithmiquement de tels réseaux.
 
 Les liens entre chaos et aléas sont certes intuitifs, mais sont-ils suffisants
@@ -68,21 +68,22 @@ d'effectuer pour s'approcher suffisamment de celle-ci?
 
 Les liens entre chaos et marquage d'information sont aussi faciles à établir:
 de tout média marqué même attaqué, la marque doit pouvoir être extraite.
-Cette propriété du marquage est proche en effet de celle de régularité des opérateurs chaotique. Il est alors naturel d'envisager exploiter les
+Cette propriété du marquage est proche en effet de celle de régularité 
+des opérateurs chaotiques. Il est alors naturel d'envisager exploiter les
 fonctions chaotiques extraites dans ce contexte et donc de modifier
 certains bits d'un média pour y insérer de l'information: la marque.
 
 
-Les compétences acquise dans l'étude des algorithme d'insertion d'une marque
+Les compétences acquises dans l'étude des algorithmes d'insertion d'une marque
 dans une image nous permettent aussi d'adresser le problème d'insérer un message dans une image. Cependant, il s'agit de privilégier
 cette fois l'imperceptibilité et non plus la robustesse. Ainsi, tandis que
 l'idée principale était d'étaler le message sur un ensemble conséquent
-de pixels pour adresser la robustesse, il s'agit ici de sélectionner finement
+de pixels pour garantir la robustesse, il s'agit ici de sélectionner finement
 ceux dont les modifications seraient le moins perceptibles possible.
 On pense immédiatement à insérer ces messages dans les pixels
 contenant les zones les plus perturbées.
-Les outils mathématiques d'analyse permettant d'identifier les lignes niveaux
-pour ensuite voir lesquelles sont les moins régulières, les plus perturbées
+Les outils mathématiques d'analyse permettant d'identifier les lignes de niveaux
+pour ensuite voir lesquelles sont les moins régulières (les plus perturbées)
 sont le gradient et la matrice Hessienne.
 Cependant, ces modèles d'analyse  ne sont définis que pour des fonctions de $\R^n$ dans $\R$.
 Se pose alors la question sur la possibilité de les adapter au cadre discret 
@@ -96,7 +97,7 @@ Ce mémoire est organisé en quatre parties.
 La première partie sur les réseaux discrets.
 Dans celle-ci, le chapitre~\ref{chap:sdd} formalise la notion de réseaux booléens
 et leurs modes opératoires. On y définit notamment un nouveau mode opératoire
-combinant convergence et rapidité de convergence. Les résultats de convergence suffisants à la compréhension de ce mémoire y sont rappelés et ceux relatifs à ce nouveau mode y sont prouvés.
+assurant la convergence et ce en un temps réduit. Les résultats de convergence suffisants à la compréhension de ce mémoire y sont rappelés et ceux relatifs à ce nouveau mode y sont prouvés.
 
 Le chapitre~\ref{chap:promela} montre comment nous avons développé une démarche
 de preuve automatique de convergence de réseaux discrets. La démarche  est
@@ -112,7 +113,7 @@ démontré, propose un algorithme permettant de générer des fonctions posséda
 cette caractéristique.
 
 Les itérations unaires de telles fonctions étant chaotiques, nous avons étudié
-au chapitre~\ref{chp:ANN} la possibilité de les faire apprendre par un réseau de neurones, particulièrement un perceptron multi-couches.
+au chapitre~\ref{chp:ANN} la possibilité de les faire apprendre par un réseau de neurones, plus précisement par un perceptron multi-couches.
 
 Le titre de la troisième partie donne une idée de la conclusion de
 cette étude puisqu'on y étudie une famille PRNG construite à partir de fonctions 
@@ -121,18 +122,18 @@ Plus précisément, le chapitre~\ref{chap:PRNG:chao} caractérise les PRNG
 construits à partir de réseaux booléens qui sont chaotiques en donnant
 des conditions suffisantes sur la fonction à itérer.
 Le chapitre~\ref{chap:PRNG:gray} s'intéresse donc à générer
-ce type de fonction de manière autrement plus efficaces qu'à partir de
+ce type de fonction de manière autrement plus efficace qu'à partir de
 la méthode décrite au chapitre~\ref{chap:carachaos}. On y présente aussi un
 majorant du nombre d'itérations à effectuer pour obtenir une distribution
 uniforme.
 
 Comme annoncé dans les motivations à ce travail, les itérations chaotiques
-peuvent s'appliquer à marquage de média et plus généralement
+peuvent s'appliquer auz marquage de média et plus généralement
 au masquage d'information. C'est l'objectif de la quatrième partie.
 
 Dans le premier chapitre de celle-ci (chapitre~\ref{chap:watermarking}), nous
 formalisons le processus de marquage d'information. Grâce à cette formalisation,
-nous pouvons étudier des propriétés de stego securité et chaos sécurité.
+nous pouvons étudier des propriétés de stégo-securité et chaos-sécurité.
 
 Les deux chapitres suivants (chapitre~\ref{chap:watermarking:pdf} et
 chapitre~\ref{chap:stabylo}) sont une parenthèse
@@ -148,10 +149,10 @@ de niveau les moins régulières.
 
 Une conclusion et des perspectives sont données en dernière partie.
 
-\section*{Publications issues des travaux de recherche post doctorale}
+\section*{Publications en tant qu'enseignant-chercheur}
 Le tableau de la figure~\ref{fig:bilan} donné 
-ci dessous synthétise les références auxquelles j'ai participées 
-depusi que je suis au DISC.
+ci dessous synthétise les références auxquelles j'ai participé 
+depuis  mon intégration en tant qu'enseignant chercheur.
 
 \begin{figure}[h]
 \begin{center}
index cac65e94a1965e518b3aac861626902d03f16d33..ceebcdedc3c2506bea3f3b8f81423cc9704ccb82 100644 (file)
--- a/main.tex
+++ b/main.tex
 
 %%--------------------
 %% Set the University where HDR was made
-\hdrpreparedin{Université de Technologie de Belfort-Montbéliard}
+\hdrpreparedin{l'Université de Franche-Comté}
+
  
 %%--------------------
 %% Set the English abstract
-%\hdrabstract[english]{This is the abstract in English}
+\hdrabstract[english]{
+Thanks to its  conciseness, a discrete model may allow  to reason with
+problems  that may  not be  handled  without such  a model.   Discrete
+dynamical systems  (DDS) belong this  computer science area.   In this
+authorization  to direct  researches  manuscript,  we firstly  present
+contributions on  convergence, convergence proof, and  a new iteration
+scheme  of  such  systems.   We further  present  contributions  about
+functions whose iterations  can be chaotic. We  particularly present a
+set of methods leading to such  functions. One of them built over Gray
+codes allows to obtain a Markov chain that is doubly stochastic.  This
+last method permits to produce  a large number of Pseudo-random Number
+Generators  (PRNG).   Theoretical  and  practical   contributions  are
+presented   in  this   field.   Information   Hiding  area   has  been
+strengthened  in  this  manuscript  and some  contributions  are  thus
+presented.  Instances  of  such  algorithms  are  given  according  to
+functions  that can  achieve  a large  robustness.   Finally, we  have
+proposed an new method to  build distortion functions
+that can be embedded  in information hiding schemes  
+with analysis gradient but  expressed in a
+discrete way.}
  
 %%--------------------
 %% Set the English keywords. They only appear if
 %% there is an English abstract
-%\hdrkeywords[english]{Keyword 1, Keyword 2}
+\hdrkeywords[english]{discrete dynamical system, pseudo random number 
+generator, information hiding}
  
 %%--------------------
 %% Set the French abstract
-\hdrabstract[french]{Blabla blabla.}
+\hdrabstract[french]{
+Grâce à  leur concision,  les modèle discrets  permettent d'appréhender
+des  problèmes informatiques  qui ne  seraient parfois  pas traitables
+autrement.  Les systèmes  dynamiques  discrets  (SDD) s'intègrent  dans
+cette  thématique.  Dans  cette habilitation,  nous présenterons  tout
+d'abord  des contributions  concernant  la convergence,  la preuve  de
+convergence  et un  nouveau mode  opératoire de  tels systèmes.   Nous
+présenterons  ensuite   un  ensemble  de  contributions   autour  des
+fonctions       dont      les       itérations      peuvent       être
+chaotiques.  Particulièrement, nous  présentons  plusieurs méthodes
+permettant d'obtenir de telles fonctions, dont une basée sur les codes
+de Gray, permettant d'obtenir en  plus une chaîne de Markov doublement
+stochastique.   Cette   dernière  méthode  nous  a   permis  notamment
+d'obtenir   un    grand   ensemble    de   générateurs    de   nombres
+pseudo-aléatoires  (PRNG). Des  contributions théoriques  et pratiques
+autour de  ces PRNGs  seront présentées.   La thématique  de masquage
+d'information (déjà présente) a été renforcée et des contributions sur
+ce  sujet seront  présentées. Des  instances de  ces algorithmes  sont
+formalisés en  sélectionnant les  fonctions à  itérer pour  garantir une
+robustesse  élevée.  Finalement,  nous  montrons qu'on peut construire 
+de nouvelles fonctions de distorsion utilisables
+en masquage d'information à l'aide de 
+méthodes d'analyse par gradient mais discret cette fois encore.
+
+
+}
  
 %%--------------------
 %% Set the French keywords. They only appear if
 %% there is an French abstract
-%\hdrkeywords[french]{Mot-cl\'e 1, Mot-cl\'e 2}
+\hdrkeywords[french]{systèmes dynamiques discrets, générateur de nombres
+pseudo aléatoires, masquage d'information}
 
 %%--------------------
 %% Change the layout and the style of the text of the "primary" abstract.
 
 %%--------------------
 %% Change the speciality of the PhD thesis
-%\Set{speciality}{Informatique}
+\Set{speciality}{Informatique}
  
 %%--------------------
 %% Change the institution
@@ -195,9 +242,9 @@ dernières sections ont fait l'objet du rapport~\cite{BCVC10:ir}.
 
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
-Dans ce chapitre, après avoir introduit les bases sur les réseaux bouléens,
+Dans ce chapitre, après avoir introduit les bases sur les réseaux booléens,
 nous avons exposé comment construire un mode combinant les
-avantage du synchronisme en terme de convergence avec les avantages 
+avantages du synchronisme en terme de convergence avec les avantages 
 de l'asynchronisme en terme de vitesse de convergence.
 
 
@@ -214,21 +261,21 @@ de l'asynchronisme en terme de vitesse de convergence.
 \part{Des systèmes dynamiques discrets 
 au chaos} 
 
-\chapter[Caracterisation des systèmes 
-  discrets chaotiques]{Caracterisation des systèmes 
+\chapter[Caractérisation des systèmes 
+  discrets chaotiques]{Caractérisation des systèmes 
   discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos}
 
 La suite de ce document se focalise sur des systèmes dynamiques discrets qui ne 
 convergent pas. Parmi ceux-ci se trouvent ceux qui sont \og chaotiques\fg{}.
 La première section  de ce chapitre rappelle ce que sont les systèmes 
-dynamiques chaotiques et leur caractéristiques.
+dynamiques chaotiques et leurs caractéristiques.
 La section~\ref{sec:TIPE12}, qui est une reformulation de~\cite{guyeux10},
 se focalise sur le schéma unaire. Elle est rappelée pour avoir un document se 
 suffisant à lui-même.
 La section~\ref{sec:chaos:TSI} étend ceci au mode généralisé. Pour chacun de ces modes, 
 une métrique est définie. Finalement, la section~\ref{sec:11FCT}
-exhibe des conditions suffisantes premettant d'engendrer 
-des fonctions chaotiques seon le mode unaire.
+exhibe des conditions suffisantes permettant d'engendrer 
+des fonctions chaotiques selon le mode unaire.
 Les sections~\ref{sec:TIPE12} et~\ref{sec:11FCT} ont été publiées 
 dans~\cite{bcg11:ij,bcgr11:ip}.
 
@@ -252,7 +299,7 @@ Ce chapitre a montré que les itérations unaires sont chaotiques si
 et seulement si le graphe $\textsc{giu}(f)$ est fortement connexe et 
 que les itérations généralisées sont chaotiques si
 et seulement si le graphe $\textsc{gig}(f)$ est aussi fortement connexe.
-On dispose ainsi à priori d'une collection infinie de fonctions chaotiques.
+On dispose ainsi a priori d'une collection infinie de fonctions chaotiques.
 Le chapitre suivant s'intéresse à essayer de prédire le comportement 
 de telles fonctions. 
 
@@ -282,10 +329,10 @@ de telles fonctions.
 \chapter{Une démarche de  marquage de PDF}\label{chap:watermarking:pdf}
 \input{ahmad}
 
-\chapter{Une démarches plus classique de dissimulation: STABYLO}\label{chap:stabylo}
+\chapter[STABYLO] {Une démarche plus classique de dissimulation: STABYLO}\label{chap:stabylo}
  \input{stabylo}
 
-\chapter{Schéma de stéganographie: les dérivées du second ordre}\label{chap:th:yousra}
+\chapter[Stéganographie par dérivées secondes]{Schémas de stéganographie: les dérivées secondes}\label{chap:th:yousra}
  \input{stegoyousra}
 
 
@@ -306,7 +353,7 @@ de telles fonctions.
 
 \chapter{Preuves sur les réseaux discrets}
 
-\section{Convergence du mode mixe}\label{anx:mix}
+\section{Convergence du mode mixte}\label{anx:mix}
 \input{annexePreuveMixage}
 
 
@@ -348,7 +395,7 @@ de telles fonctions.
 \input{annexePreuveStopping}
 
 \chapter{Preuves sur le marquage de média}\label{anx:marquage}
-\section{Le marquage est $\epsilon$-sego-secure}
+\section{Le marquage est $\epsilon$-stégo-sécure}
 \input{annexePreuveMarquagedhci}
 
 \section{Le mode $f_l$ est doublement stochastique}\label{anx:marquage:dblesto}
index 4ee1171951de32a11e3f7674db2114cb10c5faa3..4045262e14bb1804a6922ef944c37cfd6ddccc75 100644 (file)
@@ -50,11 +50,11 @@ et les quatre derniers éléments (15  est  01111).
 % strategy $s$, as in the synchronous mode. 
 Dans le mode asynchrone, a chaque itération $t$, chaque composant peut
 mettre à jour son état en 
-fonction des dernières valeurs qu'il connaît des autre composants.
+fonction des dernières valeurs qu'il connaît des autres composants.
 Obtenir ou non les valeurs les plus à jour dépend du temps de calcul et 
 du temps d'acheminement de celles-ci. On parle de latence, de délai.
 
-Formalisons le mode les itérations asynchrone.
+Formalisons le mode des itérations asynchrone.
 Soit $x^0 =(x_1^0, \ldots, x_n^0)$ une configuration initiale.
 Soit $(D^{t})^{t \in  \Nats}$ la suite de matrice de taille $n  \times n$  
 dont chaque élément $D_{ij}^{t}$ représente la date (inférieure ou égale à $t$) 
@@ -155,7 +155,7 @@ le système peut infiniment boucler entre 11 et 3, entre 15 et 7.
 
 Comme les itérations unaires ne convergent pas pour certaines stratégies,
 les itérations asynchrones basées sur les même stratégies peuvent ne pas 
-converger aussi. Cependant, même si l'on considère que tous les composants 
+converger non plus. Cependant, même si l'on considère que tous les composants 
 sont activés à chaque itération, c'est à dire si $s^t$ est 
 constamment égal à $2^n-1$, le délai peut introduire de la divergence.
 On considère par exemple la matrice $D^t$ dont chaque élément vaut  $t$
@@ -169,13 +169,13 @@ f_5(x^{t})
 $$
 \noindent sinon. 
 En démarrant de $x^0=00011$, le système atteint $x^1 = 01011$ et boucle entre 
-ces deux configurations. Pour une même stratégies, les itérations 
+ces deux configurations. Pour une même stratégie, les itérations 
 asynchrones divergent alors que les synchrones convergent.
 Les sections suivantes de ce chapitre montrent comment résoudre ce problème.
 
-\subsection{Itérations Mixes}
+\subsection{Itérations mixtes}
 Introduit dans~\cite{abcvs05}  
-le mode d'\emph{itérations mixes} combine synchronisme et asynchronisme.
+le mode d'\emph{itérations mixtes} combine synchronisme et asynchronisme.
 Intuitivement, les n{\oe}uds qui pourraient introduire des cycles dans 
 les itérations asynchrones sont regroupés. 
 Les noeuds à l'intérieur de chaque groupe seront itérés de manière 
@@ -194,11 +194,11 @@ On peut facilement démontrer que la relation de synchronisation est une
 relation d'équivalence sur l'ensemble des éléments. 
 On introduit quelques notations: par la suite \class{i} représente la classe 
 d'équivalence de $i$ et $\mathcal{K}$ représente l'ensemble de toutes 
-les classe, \textit{i.e.},
-$\mathcal{K}=\{1,\ldots,n\}/\eqNode$. On peut définir les itérations mixes.
+les classes, \textit{i.e.},
+$\mathcal{K}=\{1,\ldots,n\}/\eqNode$. On peut définir les itérations mixtes.
 
-\begin{Def}[Itérations mixes]
-Les itérations mixes d'un système discret suit l'équation \Equ{eq:async} où
+\begin{Def}[Itérations mixtes]
+Les itérations mixtes d'un système discret suivent l'équation \Equ{eq:async} où
 de plus   $bin(s^t)[i]=bin(s^t)[j]$ et $D_{ij}^t=D_{ji}^t=t$ si $i \eqNode j$.
 \end{Def}
 
@@ -210,8 +210,8 @@ des délais différents entre $p_0$ et $q$  et entre  $p_1$ et $q$.
 Ainsi $p_1$ et $p_2$ sont distinguables même s'ils appartiennent à la même 
 classe.
 Pour gommer cette distinction, on définit le mode suivant:
-\begin{Def}[Itérations mixes avec delais uniformes]
-  Le mode mixe a des \emph{délais uniformes} si pour chaque 
+\begin{Def}[Itérations mixtes avec delais uniformes]
+  Le mode mixte a des \emph{délais uniformes} si pour chaque 
   $t=0,1,\ldots$ et pour chaque paire de  classes  $(\class{p}, \class{q})$,
   il existe une constante $d^t_{pq}$  telle que la propriété suivante est 
   établie:
@@ -229,7 +229,7 @@ On a alors le théorème suivant.
   Soit une fonction $f$ possédant un unique point fixe $x^*$ et une stratégie 
   pseudo périodique $s$.
   Si les itérations synchrones convergent vers $x^*$ pour cette stratégie, 
-  alors les itérations mixes à délai uniforme convergent aussi vers $x^*$
+  alors les itérations mixtes à délai uniforme convergent aussi vers $x^*$
   pour cette stratégie.
 \end{theorem}
 
@@ -240,7 +240,7 @@ La preuve de ce théorème est donnée en section~\ref{anx:mix}.
 
 \subsection{Durées de convergence} 
 Cette section donne des bornes supérieures et inférieures des durées 
-globales de convergence pour les modes synchrones, mixes et asynchrones.
+globales de convergence pour les modes synchrones, mixtes et asynchrones.
 Pour simplifier le discours, on considère que les itérations 
 convergent en $I$ étapes dans le mode synchrone et que le graphe 
 d'interaction ne contient qu'une seule composante connexe.
@@ -259,7 +259,7 @@ Les notations utilisées sont les suivantes:
   de bits
   nécessaires 
   pour représenter  l'état courant du composant $i$ et est notée $\textit{cs}_i$;
-\item [Temps de calcul] le composant $i$ a besoins de  $\textit{cp}_i$ unités de temps 
+\item [Temps de calcul] le composant $i$ a besoin de  $\textit{cp}_i$ unités de temps 
   pour faire une mise à jour locale de son état;
 \item   [Temps de communication] on utilise le modèle classique de communication 
   $\beta+L\tau$  où $L$ est le nombre de bits  transférés. 
@@ -289,7 +289,7 @@ graphe d'interaction, le temps global de convergence est
 
 \begin{xpl}
   Intuitivement la convergence se propage selon les dépendances internes au système:
-  un n{\oe}uds se stabilise lorsque ceux dont il dépend sont eux aussi stables.
+  un n{\oe}ud se stabilise lorsque ceux dont il dépend sont eux aussi stables.
   Cette stabilisation progressive est illustrée à la \Fig{fig:evalsync} qui
   représente des exécutions synchrones dans le cas d'une initialisation avec la 
   valeur (00100).
@@ -307,7 +307,7 @@ graphe d'interaction, le temps global de convergence est
   
   \begin{minipage}{1\textwidth}
     \includegraphics[scale=0.4]{eval_mixte}
-    \caption{Itérations mixes avec
+    \caption{Itérations mixtes avec
       \class{1} $=\{1,2\}$, \class{3} $=\{3\}$,
       \class{4} $=\{4,5\}$.}
     \label{fig:evalmixte}
@@ -379,15 +379,15 @@ graphe d'interaction, le temps global de convergence est
 %   \end{figure}
 % \end{xpl}
 
-\subsection{le mode mixe}
+\subsection{le mode mixte}
 \label{sec:evalmixed}
 
 
 On considère $|\mathcal{K}|$  classes de composants synchronisés.
 (comme donné  en équation~(\ref{eq:I})).
-Soit $I_k$ le nombre d'itérations suffisants pour que la classe 
+Soit $I_k$ le nombre d'itérations suffisant pour que la classe 
 $\class{k}  \in \mathcal{K}$ se stabilise 
-sachant  toutes ses dépendances ont déjà convergé. 
+sachant que toutes ses dépendances ont déjà convergé. 
 Ainsi $I$ vaut $\sum_{\class{k} \in \mathcal{K}} I_k$.
 La borne inférieure pour la durée de convergence des itérations asynchrones est 
 \begin{equation}
@@ -411,7 +411,7 @@ ascendants pour converger. On a dans ce cas:
 \end{equation}
 
 \begin{xpl}
-  Une exécution du mode mixe est donnée à la~\Fig{fig:evalmixte}.
+  Une exécution du mode mixte est donnée à la~\Fig{fig:evalmixte}.
   On peut constater que le temps d'exécution peut être  
   plus petit que pour le 
   mode synchrone.
@@ -420,7 +420,7 @@ ascendants pour converger. On a dans ce cas:
 \subsection{Le mode unaire asynchrone}
 \label{sec:evalasync}
 En terme de durée de convergence, ce mode peut être vu comme un 
-cas particulier du mode mixe où toutes les classes sont des singletons.
+cas particulier du mode mixte où toutes les classes sont des singletons.
 La borne minimale peut donc s'exprimer comme:
 \begin{equation}
   \label{eq:asynclow}
index d9e626e015fd099041e8bfa4d0bbac4aef8a96ea..96a85865e9e59264441c042f6f7bdaba7b67d8c0 100644 (file)
@@ -1,15 +1,15 @@
 
 L'étude de convergence de systèmes dynamiques discrets est simple à vérifier 
 pratiquement pour le mode synchrone. Lorsqu'on introduit des stratégies 
-pseudo périodiques pour les modes unaires et généralisées, le problème 
+pseudo périodiques pour les modes unaires et généralisés, le problème 
 se complexifie. C'est pire encore lorsqu'on traite des itérations asynchrones 
-et mixes prenant de plus en compte les délais. 
+et mixtes prenant de plus en compte les délais. 
 
 Des méthodes de simulation basées sur des stratégies et des délais générés aléatoirement 
 ont déjà été présentées~\cite{BM99,BCV02}.
 Cependant, comme ces implantations ne sont pas exhaustives, elles ne donnent un résultat 
 formel que lorsqu'elles fournissent un contre-exemple. Lorsqu'elles exhibent une convergence,  
-cela ne permet que donner une intuition de convergence, pas  une preuve.
+cela ne permet que de donner une intuition de convergence, pas  une preuve.
 Autant que nous sachions, aucune démarche de preuve formelle automatique 
 de convergence n'a jamais été établie. 
 Dans le travail théorique~\cite{Cha06}, Chandrasekaran a montré que les itérations asynchrones sont convergentes 
@@ -17,7 +17,7 @@ si et seulement si on peut construire une fonction de Lyaponov décroissante, ma
 automatique pour construire cette fonction.
 
 Un outil qui construirait automatiquement toutes 
-les transitons serait le bienvenu. 
+les transitions serait le bienvenu. 
 Pour peu qu'on établisse la preuve de correction et de complétude de la 
 démarche, la convergence du réseau discret ne reposerait
  alors que sur le verdict 
@@ -31,7 +31,7 @@ combinatoire, ces outils appliquent des méthodes d'ordre partiel, d'abstraction
 de quotientage selon une relation d'équivalence.
 
 Ce chapitre montre comment nous simulons 
-des réseaux discrets selon pour établir 
+des réseaux discrets  pour établir 
 formellement leur convergence (ou pas).
 Nous débutons par un exemple et faisons quelques rappels sur 
 le langage PROMELA qui est le langage du model-checker 
@@ -98,8 +98,8 @@ Pour les  modes unaires ou généralisés  avec  une
 stratégie pseudo périodique, on a des comportements qui dépendent 
 de la configuration initiale:
 \begin{itemize}
-\item initialisée avec 7, les itérations restent en 7;
-\item initialisée avec 0, 2, 4 ou 6 les itérations convergent vers 2;
+\item initialisées avec 7, les itérations restent en 7;
+\item initialisées avec 0, 2, 4 ou 6 les itérations convergent vers 2;
 \item initialisées avec 1, 3 ou 5, les itérations convergent vers un des 
 deux points fixes 2 ou 7.
 \end{itemize}   
@@ -155,12 +155,12 @@ déclarations de variables qui servent dans l'exemple de ce chapitre.
 Il définit:
 \begin{itemize}
 \item les constantes \verb+N+ et \verb+d_0+ qui précisent respectivement le nombre
- ${\mathsf{N}}$ d'éléments et le délais maximum $\delta_0$;
+ ${\mathsf{N}}$ d'éléments et le délai maximum $\delta_0$;
 \item les deux tableaux  (\verb+X+ et \verb+Xp+) de \verb+N+ variables booléennes; 
 les cellules \verb+X[i]+ et \verb+Xp[i]+ sont associées à la variables $x_{i+1}$
 d'un système dynamique discret;
 elles  mémorisent les  valeurs de $X_{i+1}$ respectivement avant et après sa mise à jour; 
-il suffit ainsi de comparer  \verb+X+ et \verb+Xp+ pour constater si $x$ à changé ou pas;
+il suffit ainsi de comparer  \verb+X+ et \verb+Xp+ pour constater si $x$ a changé ou pas;
 \item le tableau \verb+mods+ contient les éléments qui doivent être modifiés lors de l'itération 
 en cours; cela correspond naturellement à l'ensemble des éléments $s^t$;
 \item le type de données structurées \verb+vals+ et le tableau de tableaux 
@@ -186,9 +186,9 @@ Dans l'exemple précédent, on déclare successivement:
 \item un canal \verb+sent+ qui vise à mémoriser \verb+d_0+ messages de type
  \verb+bool+; le tableau nommé \verb+channels+ de \verb+N+*\verb+N+
  éléments de type \verb+a_send+ est utilisé pour mémoriser les valeurs intermédiaires $x_j$;
- Il permet donc de temporiser leur emploi par d'autres elements $i$.
+ Il permet donc de temporiser leur emploi par d'autres éléments $i$.
 \item les deux canaux  \verb+unlock_elements_update+ et  \verb+sync_mutex+ contenant 
-chacun un message booléen et utilisé ensuite comme des sémaphores.
+chacun un message booléen et sont utilisés ensuite comme des sémaphores.
 \end{itemize}
 \end{xpl}
 
@@ -432,7 +432,7 @@ inline F(){
 
 \begin{enumerate}
 \item elle commence en mettant à jour la variable \texttt{X} avec les valeurs de \texttt{Xp} dans la fonction \texttt{update\_X},~\Fig{fig:spin:sauve}
-\item elle mémorise dans  \texttt{Xd} la valeurs disponible pour chaque élément  grâce à  la fonction \texttt{fetch\_values}; cette fonction est détaillée 
+\item elle mémorise dans  \texttt{Xd} la valeur disponible pour chaque élément  grâce à  la fonction \texttt{fetch\_values}; cette fonction est détaillée 
 dans la section suivante;
 \item  une boucle %sur les  \texttt{ar\_len} éléments qui peuvent être modifiés
   met à jour itérativement la valeur de $j$ (grâce à l'appel de fonction \texttt{f(j)})
@@ -458,8 +458,8 @@ dans la section suivante;
 Cette  section montre comment les délais inhérents au mode asynchrone sont 
 traduits dans le modèle  PROMELA  grâce à deux 
 fonctions \verb+fetch_values+  et   \verb+diffuse_values+.   
-Celles-ci sont données en {\sc Figure}~\ref{fig:val} et~\ref{fig:broadcast}, 
-qui récupèrent et diffusent respectivement les valeurs des elements.
+Celles-ci sont données en {\sc Figure}~\ref{fig:val} et~\ref{fig:broadcast}. 
+Elles récupèrent et diffusent respectivement les valeurs des éléments.
 
 \begin{figure}[t]
   \begin{minipage}[h]{.475\linewidth}
@@ -537,7 +537,7 @@ Il y a deux cas.
 \begin{itemize}
 \item puisque $i$ connaît sa dernière valeur (\textit{i.e.},  $D^t_{ii}$ est toujours $t$)
   \verb+Xd[i].v[i]+ est donc  \verb+Xp[i]+;
-\item sinon, il y a deux sous cas qui peuvent peuvent potentiellement modifier la valeur 
+\item sinon, il y a deux sous-cas qui peuvent peuvent potentiellement modifier la valeur 
   que $j$ a de $i$ (et qui peuvent être choisies de manière aléatoire):
   \begin{itemize}
   \item  depuis la perspective de $j$ la valeur de  $i$ peut ne pas avoir changé  (
@@ -602,7 +602,7 @@ de prouver la formule temporelle linéaire (LTL) suivante:
 \diamond  (\Box  \verb+Xp+ = \verb+X+)
 \label{eq:ltl:conv}
 \end{equation}
-où les opérateur  $\diamond$ et  $\Box$ ont
+où les opérateurs  $\diamond$ et  $\Box$ ont
 la sémantique usuelle, à savoir
 respectivement {\em éventuellement} et {\em toujours} dans les chemins suivants.
 On note que cette propriété, si elle est établie, garantit
@@ -680,7 +680,7 @@ pour prouver formellement sa convergence universelle.
 
 On peut remarquer que SPIN n'impose l'équité faible qu'entre les process
 alors que les preuves des deux théorèmes précédentes reposent sur le fait que 
-celle-ci est établie dès qu'un choix indéterministe est effectué.
+cette équité est établie dès qu'un choix indéterministe est effectué.
 Naïvement, on pourrait considérer comme hypothèse la formule suivante 
 chaque fois qu'un choix indéterministe se produit entre $k$ événements
 respectivement notés $l_1$, \ldots $l_k$:  
@@ -764,7 +764,7 @@ pour établir un verdict.
         \begin{tabular}{|*{13}{c|}}
           \cline{2-13}
           \multicolumn{1}{c|}{ }
-          &\multicolumn{6}{|c|}{Mode Mixe} & \multicolumn{6}{|c|}{Seulement borné} \\
+          &\multicolumn{6}{|c|}{Mode Mixte} & \multicolumn{6}{|c|}{Seulement borné} \\
           \cline{2-13}
           \multicolumn{1}{c|}{ }
           &\multicolumn{3}{|c|}{Synchrones} & \multicolumn{3}{|c|}{Pseudo-Périodique} &
@@ -863,12 +863,13 @@ l'approche.
 \label{sec:spin:concl}
 
 L'idée principale de ce chapitre est que l'on peut, 
-pour des réseaux bouléens à délais bornés de  petite taille, obtenir 
+pour des réseaux booléens à délais bornés de  petite taille, obtenir 
 une preuve de la convergence ou de sa divergence et ce
 de manière automatique.  
 L'idée principale est de traduire le réseau en PROMELA et de laisser 
 le model checker établir la preuve.
-Toute l'approche a été prouvée: le verdict rendu par a donc valeur de vérité.
+Toute l'approche a été prouvée: le verdict rendu par l'approche 
+a donc valeur de vérité.
 L'approche a cependant ses limites et ne peut donc pas être 
 apliquée qu'à des modèles simplifiés de programmes.
 La suite de ce travail consiste à se focaliser sur les systèmes qui ne 
index ebdc41792d9fee3e7e7c85b57a60ed1ae9e3c47b..5cc17c073d68274e462763b7b262ddd7f25490fd 100644 (file)
@@ -51,7 +51,7 @@ dans lui même.
   de  $\Nats$ dans l'ensemble des séquences d'entiers 
   qui associe à chaque entier naturel
   $\mathsf{N}$ la suite 
-  $S \in  [\mathsf{N}@]^{\mathds{N}}$.
+  $S \in  [\mathsf{N}]^{\mathds{N}}$.
 \end{Def}
 
 
@@ -83,15 +83,15 @@ Ceci se fait à l'aide d'une fonction de signification.
 
 \begin{Def}[Fonction de signification ]
 Une  \emph{fonction de signification } 
-est une fonction $u$ qui a toute 
+est une fonction $u$ qui à toute 
 séquence finie de bit $x$ associe la séquence 
 $(u^k(x))$ de taille $\mid x \mid$ à valeur dans les réels.
 Cette fonction peut dépendre du message $y$ à embarquer, ou non.
 \end{Def}
 
 Pour alléger le discours, par la suite, on notera $(u^k(x))$ pour $(u^k)$ 
-lorsque cela n'est pas ambig.
-Il reste à partionner les bits  de $x$ selon qu'ils sont 
+lorsque cela n'est pas ambigüe.
+Il reste à partitionner les bits  de $x$ selon qu'ils sont 
 peu, moyennement ou très significatifs. 
 
 \begin{Def}[Signification des bits]\label{def:msc,lsc}
@@ -100,7 +100,7 @@ $m$ et  $M$ deux réels  t.q. $m < M$.  Alors:
 $u_M$, $u_m$ et $u_p$ sont les vecteurs finis respectivement des 
 \emph{bits les plus significatifs  (MSBs)} de $x$,
 \emph{bits les moins significatifs (LSBs)} de $x$ 
-\emph{bits passifs} of $x$ définis par:
+\emph{bits passifs} de $x$ définis par:
 \begin{eqnarray*}
   u_M &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ et } u^k 
     \geqslant M \textrm{ et }  k \le \mid x \mid \right) \\
@@ -130,7 +130,7 @@ avec
 La fonction qui associe $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$
 pour chaque hôte $x$ est la  \emph{fonction de décomposition}, plus tard notée 
 $\textit{dec}(u,m,M)$ puisqu'elle est paramétrée par 
-$u$, $m$ and $M$. 
+$u$, $m$ et $M$. 
 \end{Def} 
 
 
@@ -189,7 +189,7 @@ $f$ un mode,
 $\mathcal{S}$ un adapteur de stratégie,
 $x$ un hôte, 
 $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ 
-sont image par  $\textit{dec}(u,m,M)$,
+son image par  $\textit{dec}(u,m,M)$,
 $q$ un entier naturel positif
 et $y$ un média numérique de taille $l=|u_m|$.
 
@@ -216,7 +216,7 @@ La figure~\ref{fig:organigramme} synthétise la démarche.
 \centering
 %\includegraphics[width=8.5cm]{organigramme2.pdf}
 \includegraphics[width=8.5cm]{organigramme22}
-\caption{The dhCI dissimulation scheme}
+\caption{Le schéma de marquage dhCI}
 \label{fig:organigramme}
 \end{figure}
 
@@ -227,20 +227,20 @@ La figure~\ref{fig:organigramme} synthétise la démarche.
 
 On caractérise d'abord ce qu'est un média marqué selon la méthode énoncée 
 à la section précédente. On considère que l'on connaît
-la marque à embarquer $y$, le support $x$ et que l'on a face à soit un média 
+la marque à embarquer $y$, le support $x$ et que l'on a face à soi un média 
 $z$.
 
 
 \begin{Def}[Média marqué]
-Soit $\textit{dec}(u,m,M)$ une fonction de décomposition
+Soit $\textit{dec}(u,m,M)$ une fonction de décomposition,
 $f$ un  mode, 
-$\mathcal{S}$ un adapteur de stratégie
+$\mathcal{S}$ un adapteur de stratégie,
 $q$ un entier naturel strictement positif,
 $y$ un média digital et soit  
 $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ l'image par 
 $\textit{dec}(u,m,M)$  du média  $x$. 
 Alors, $z$ est \emph{marqué} avec $y$ si l'image 
-par $\textit{dec}(u,m,M)$ of $z$ est 
+par $\textit{dec}(u,m,M)$ de $z$ est 
 $(u_M,u_m,u_p,\phi_{M},\hat{y},\phi_{p})$, où
 $\hat{y}$ est le second membre de  $G_{f_l}^q(S_y,\phi_{m})$.
 \end{Def}
@@ -273,7 +273,7 @@ que l'algorithme de marquage dont le mode est la fonction
 négation est stégo-sécure. 
 Un des intérêts de l'algorithme présenté ici est qu'il est paramétré par un mode.
 Lorsque celui-ci a les même propriétés que celles vues pour la création de PRNG (\textit{i.e.} graphe des itérations fortement connexes et matrice de Markov doublement 
-stochastique), on a un marquage qui peut Ãªtre rendu stégo-sécure Ã  $\varepsilon$ prêt,
+stochastique), on a un marquage qui peut Ãªtre rendu stégo-sécure Ã  $\varepsilon$ près,
 ce que précise le théorème suivant. La preuve de ce théorème est donnée 
 en annexes~\ref{anx:marquage}.
 
@@ -326,8 +326,8 @@ x_i \oplus x_{i-1} \textrm{ si $i$ est pair}
 
 on peut déduire immédiatement du théorème~\ref{th:Adrien} (chap.~\ref{chap:carachaos})
 que le graphe $\textsc{giu}(f_l)$ est fortement connexe.
-La preuve de double-stochasiticité de la matrice associée 
-à $f_l$ est donnée en annexes~\ref{anx:marquage:dblesto}.
+La preuve de double-stochasticité de la matrice associée 
+à $f_l$ est donnée en annexe~\ref{anx:marquage:dblesto}.
 On dispose ainsi d'un nouvel algorithme de marquage $\varepsilon$-stégo-sécure et 
 chaos-sécure.
 
@@ -350,7 +350,7 @@ la fonction de signification $u$ associe
 \item -1 si c'est un bit apparaissant dans la représentation binaire
 de la valeur d'un coefficient dont les 
   coordonnées appartiennent à $\{(3,1),(2,2),(1,3)\}$ et qui est un des 
des trois bits de poids faible  de cette valeur,
+ trois bits de poids faible  de cette valeur,
 \item 0 sinon.
 \end{itemize}
 Le choix de l'importance de chaque coefficient est défini grâce aux seuils  
@@ -387,13 +387,13 @@ Dans ce qui suit, {dwt}(neg),
 correspondant respectivement aux embarquements en fréquentiels 
 dans les domaines  DWT et  DCT 
 avec le mode de négation et celui issu de la fonction $f_l$
-détaillé à l'équation~\ref{eq:fqq}.
+détaillée à l'équation~\ref{eq:fqq}.
 
 A chaque série d'expériences, un ensemble de 50 images est choisi aléatoirement 
 de la base du concours BOSS~\cite{Boss10}. Chaque hôte est une image 
 en $512\times 512$ en niveau de gris et la marque $y$ est une suite de
 4096 bits.
-La résistances à la robustesse est évaluée en appliquant successivement
+La résistance à la robustesse est évaluée en appliquant successivement
 sur l'image marquée des attaques de découpage, de compression, de 
 transformations géométriques. 
 Si les différences entre  $\hat{y}$ and $\varphi_m(z)$.
@@ -473,19 +473,19 @@ Pour les deux modes dans le domaine DCT,
 la détection est optimale pour le seuil de 44\% 
 (correspondant aux points (0.05, 0.18) et (0.05, 0.28)).
 On peut alors donner des intervalles de confiance pour les attaques évaluées.
-L'approche est résistante à:
+L'approche est résistante:
 \begin{itemize}
-\item tous les découpages où le pourcentage est inférieur à 85\%;
-\item les compression dont le ratio est supérieur à 82\% dans le domaine 
+\item à tous les découpages où le pourcentage est inférieur à 85\%;
+\item aux compression dont le ratio est supérieur à 82\% dans le domaine 
   DWT et  67\% dans celui des DCT;
-\item les modifications du contraste lorsque le renforcement est dans 
+\item aux modifications du contraste lorsque le renforcement est dans 
   $[0.76,1.2]$ dans le domaine DWT et  $[0.96,1.05]$ dans le domaine DCT;
-\item toutes les rotations dont l'angle est inférieur à 20 degrés dans le domaine DCT et 
+\item à toutes les rotations dont l'angle est inférieur à 20 degrés dans le domaine DCT et 
   celles dont l'angle est inférieur à 13 degrés dans le domaine DWT.
 \end{itemize}
 
 
-\section{Embarquons d'avantage qu'1 bit}\label{sec:watermarking:extension}
+\section{Embarquons davantage qu'1 bit}\label{sec:watermarking:extension}
 L'algorithme présenté dans les sections précédentes
 ne  permet de savoir, \textit{in fine}, 
 que si l'image est marquée ou pas. Cet algorithme ne permet pas
@@ -532,17 +532,17 @@ Pour chaque $(n,i,j) \in
 \begin{array}{l}
 x_i^n=\left\{
 \begin{array}{ll}
-x_i^{n-1} & \text{ if }S_p^n\neq i \\
-m_{S_c^n}^{n-1} & \text{ if }S_p^n=i.
+x_i^{n-1} & \text{ si }S_p^n\neq i \\
+m_{S_c^n}^{n-1} & \text{ si }S_p^n=i.
 \end{array}
 \right.
 \\
 \\
 m_j^n=\left\{
 \begin{array}{ll}
-m_j^{n-1} & \text{ if }S_m^n\neq j \\
+m_j^{n-1} & \text{ si }S_m^n\neq j \\
  & \\
-\overline{m_j^{n-1}} & \text{ if }S_m^n=j.
+\overline{m_j^{n-1}} & \text{ si }S_m^n=j.
 \end{array}
 \right.
 \end{array}
@@ -594,32 +594,32 @@ embarqué plusieurs fois dans $x^l$.
 Or, en comptant le nombre de fois où ce  bit a été inversé dans 
 $S_m$, la valeur de $m_j$ peut se déduire en plusieurs places. 
 Sans attaque, toutes ces valeurs sont identiques 
-et le message est obtenus immédiatement.
+et le message est obtenu immédiatement.
 Si attaque il y a, la valeur de $m_j$ peut s'obtenir en prenant la valeur 
 moyenne de toutes les valeurs obtenues. 
 
 \subsection{Détecter si le média est marqué}\label{sub:ci2:distances}
 On considère un média $y$ marqué par un message $m$. 
 Soit $y'$ une version altérée de $y$, c.-à-d. une version  
-où certains bits on été modifiés et soit
+où certains bits ont été modifiés et soit
 $m'$ le message extrait de   $y'$. 
 
 Pour mesurer la distance entre $m'$ et $m$, on 
 considère respectivement 
-$M$ et $M$ l'ensemble des indices de $m$ et de $m'$ 
+$M$ et $M'$ l'ensemble des indices de $m$ et de $m'$ 
 où $m_i$ vaut 1 et ou $m'_1$ vaut 1.
 
 Beaucoup de mesures de similarité~\cite{yule1950introduction,Anderberg-Cluster-1973,Rifqi:2000:DPM:342947.342970}, dépendent des ensembles
 $a$, $b$, $c$ et $d$ définis par
 $a = |M \cap M' |$, 
 $b = |M \setminus M' |$,
-$c = |M' \setminus M|$, and
+$c = |M' \setminus M|$ et 
 $d = |\overline{M} \cap \overline{M'}|$
 
 Selon ~\cite{rifq/others03} la mesure de Fermi-Dirac $S_{\textit{FD}}$
 est celle dont le pouvoir de discrimination est le plus fort, 
-c.-à-d. celui qui permet la séparation la plus forte entre des vecteurs 
-corrélés et des ceux qui ne le sont pas.
+c.-à-d. celle qui permet la séparation la plus forte entre des vecteurs 
+corrélés et des des vecteurs qui ne le sont pas.
 La distance entre $m$ et $m'$ est construite selon cette mesure 
 et produit un réel dans $[0;1]$. Si elle est inférieure à un certain 
 seuil (à définir), le média $y'$ est déclaré 
@@ -630,7 +630,7 @@ La méthode d'expérimentation de robustesse appliquée à la section précéden
 pourrait être réappliquée ici et nous pourrions obtenir, grâce aux courbes de 
 ROC une valeur seuil pour déterminer si une marque est présente ou pas.
 Dans~\cite{bcfg+13:ip}, nous n'avons cependant pas poussé
-la démarche plus loin que de l'embarquement 
+la démarche plus loin que dans la direction de l'embarquement 
 dans les bits de poids faible en spatial et l'on sait que ceci est 
 particulièrement peu robuste. 
 
index c8a6c5ce1a3ad69fc277fff1ff98ece1ea2123eb..93c8481d1e3721244c23a4a71cab11391a02a322 100644 (file)
@@ -4,7 +4,7 @@ on définit
 \displaystyle{d_S(S,S')=\frac{9}{{\mathsf{N}}}\sum_{t\in\Nats}\frac{|S_t \Delta S'_t|}{10^{t+1}}}.
 \]
 Montrons que $d_S$ est une distance sur $\mathcal{P}(\{1, \ldots, {\mathsf{N}}\})$ et ainsi 
-que $d$ définie à l'equation~(\ref{eq:distance:Xg}) est une distance.
+que $d$ définie à l'équation~(\ref{eq:distance:Xg}) est une distance.
 
 
 
diff --git a/sdd.tex b/sdd.tex
index c41efa9f35977fa5216b3cff07e52d3b124b0d1a..ad522385352dbd14ed478e39d793dea3e76f8129 100644 (file)
--- a/sdd.tex
+++ b/sdd.tex
@@ -147,7 +147,7 @@ schémas suivants :
   jour.  La  suite $S  = \left(s^t\right)^{t \in  \mathds{N}}$ est  une séquence
   de sous-ensembles 
   de   $[{\mathsf{N}}]$   appelée   \emph{stratégie généralisée}.
-  Il est basé sur la relation définie pour tout $i \in [{\mathsf{N}}]$ par
+  Ce schéma est basé sur la relation définie pour tout $i \in [{\mathsf{N}}]$ par
   \begin{equation}
   x^{t+1}_i=
   \left\{ \begin{array}{l}
@@ -184,7 +184,7 @@ sont les éléments de $\Bool^{\mathsf{N}}$ (voir \textsc{Figure}~\ref{fig:xpl:g
 est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si 
 et seulement si $y=f(x)$.
 \item Le \emph{graphe des itérations unaires} de $f$, noté $\textsc{giu}(f)$
-est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ pour $x \neq$ si 
+est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si 
 et seulement s'il existe $i \in \Delta f(x)$ tel que $y = \overline{x}^i$.
 Si $\Delta f(x)$ est vide, on ajoute l'arc $x \rightarrow x$.
 
@@ -275,7 +275,7 @@ On a la proposition suivante:
 
 \begin{theorem}\label{Prop:attracteur}
 La configuration $x$ est un point fixe si et seulement si 
-$\{x\}$ est un attracteur du graphe d'itération (synchrone, unaire, généralisé).
+$\{x\}$ est un attracteur du graphe d'itérations (synchrone, unaire, généralisé).
 En d'autres termes, les attracteurs non cycliques de celui-ci 
 sont les points fixes de $f$.
 Ainsi pour chaque $x\in \Bool^{\mathsf{N}}$, il existe au moins un chemin 
@@ -316,7 +316,7 @@ ${\mathsf{N}}\times {\mathsf{N}}$.
 Celle-ci mémorise uniquement 
 l'existence d'une dépendance de tel élément vis à vis de 
  tel élément.
-Elle ne mémorise pas \emph{comment} dépendent les éléments 
+Elle ne mémorise pas \emph{comment}  les éléments dépendent
 les uns par rapport aux autres. Cette matrice est nommée 
 \emph{matrice d'incidence}.  
 
index c08354afdc761648b83f4a86093eef72dc2c2e22..5c9bce5bd9344d761907a4cb7895ba14273fe9fa 100644 (file)
@@ -8,8 +8,8 @@ un hôte vierge d'une image contenant un message.
 Les outils les plus récents et les plus efficaces de cette famille  
 sont  HUGO~\cite{DBLP:conf/ih/PevnyFB10}, WOW~\cite{conf/wifs/HolubF12} 
 et UNIWARD~\cite{HFD14}.
-Pour détecter de la présence ou non d'un message dans une image,
-on peut demander l'oracle à un 
+Pour détecter la présence ou non d'un message dans une image,
+on peut demander l'oracle à 
 un \emph{stéganalyseur}~\cite{LHS08,DBLP:conf/ih/Ker05,FK12}.
 Usuellement, un outil de cette famille, après 
 une démarche d'apprentissage, classifie les images
@@ -22,7 +22,7 @@ SPAM~\cite{DBLP:journals/tifs/PevnyBF10}, HUGO mesure la distorsion
 qui serait induite par la modification
 de chaque pixel. Similairement, 
 WOW et UNIWARD construisent une carte de distorsion mais celle-ci est  
-issue caractéristiques directionnelles calculées à partir d'ondelettes.
+issue de caractéristiques directionnelles calculées à partir d'ondelettes.
 A partir de ces cartes de distorsion, chacun de ces algorithmes sélectionne
 les pixels dont les modifications induisent la distorsion la plus faible 
 possible. Ceci revient à définir une fonction de signification $u$.
@@ -78,7 +78,7 @@ le message $m$.
 
 
 \subsection{Un embarquement dans les bords}\label{sub:edge}
-L'idée d'embarquer dans des bords dans une image
+L'idée d'embarquer dans les bords d'une image
 repose sur le fait que les pixels de ceux-ci représentent déjà une 
 rupture de continuité entre pixels voisins. 
 Une faible modification de ceux-ci n'aurait donc pas un grand impact sur la qualité
@@ -105,18 +105,18 @@ Nous argumentons que le schéma d'embarquement doit s'adapter
 au message $m$ et au nombre de bits disponibles pour cet embarquement.
 Deux stratégies sont possibles dans STABYLO. 
 Dans la première, dite \emph{adaptative}, le taux d'embarquement 
-(rapport entre le nombre de  bits embarqués par rapport au nombre de pixels 
+(rapport entre le nombre de  bits embarqués et le nombre de pixels 
 modifiés) dépend du nombre de bits disponibles à l'issue de l'extraction 
 des pixels de bords. Si ce nombre de bits est inférieur au double de
 la taille du message, celui-ci est découpé en plusieurs parties.
-La justification de ce rapport de 1 à 2 à donné ci dessous dans la partie STC.
+%La justification de ce rapport de 1 à 2 à donné ci dessous dans la partie STC.
 Dans la seconde dite \emph{fixe}, ce taux est fixe et l'algorithme augmente 
 iterrativement la valeur de $T$ jusqu'à obtenir à nouveau deux fois plus de bits 
 de bords qu'il n'y en a dans le message.
 
 STABYLO applique alors 
 par défaut  l'algorithme STC~\cite{DBLP:journals/tifs/FillerJF11}
-pour ne modifier aussi peu que possible les bits parmi ceux dont il dispose.
+pour modifier aussi peu que possible les bits parmi ceux dont il dispose.
 Dans le cas où c'est la stratégie adoptive qui est choisie, le paramètre
 $\rho$ de cet algorithme vaut 1 pour chacun des bits.
 Dans le cas contraire, la valeur de ce paramètre varie en 
@@ -175,7 +175,7 @@ La figure~\ref{fig:compared} représente graphiquement les complexités
 des étapes d'embarquement des schémas WOW/UNIWARD, HUGO, and STABYLO en
 considérant des images de la taille $n \times n$ où $n$ varie entre 
 512 et 4096. L'axe des $y$ est exprimé selon une échelle logarithmique.
-Cette figure illustre bien le fait que le qualificatif de \og LOw cost\fg{} 
+Cette figure illustre bien le qualificatif de \og LOw cost\fg{} 
 attribué à STABYLO. 
 \begin{figure}
 \begin{center}
@@ -189,8 +189,8 @@ attribué à STABYLO.
 Comme dans le chapitre~\ref{chap:watermarking}, 
 la base BOSS~\cite{Boss10} de 10,000 images (au format RAW, de taille $512\times 512$ en niveau de gris) a été à nouveau prise pour évaluer 
 le schéma face à une épreuve de  stéganalyse.
-Pour des rapport entre le nombre de  bits embarqués par
-rapport au nombre de pixels  entre 1/2 et 1/9, le choix de la 
+Pour des rapports entre le nombre de  bits embarqués et le 
+nombre de pixels  entre 1/2 et 1/9, le choix de 
 la matrice dupliquée dans STC est celui énoncé dans les travaux de 
 Filler~\cite{FillerJF11}.
 
index de9836b905cd2470fdbd49b85c3bc0062d0e323a..d931298e660071f141c86d1c5ae4bab6bbe631e9 100644 (file)
@@ -1,7 +1,7 @@
 La plupart des schémas de stéganographie sont conçus de sorte  à minimiser une 
 fonction de distorsion. Dans les exemples du chapitre précédent, 
 ces fonctions de distorsion sont construites dans l'objectif de préserver 
-les caractéristiques de l'images
+les caractéristiques de l'image. 
 On comprend aisément que dans des régions uniformes ou sur des bords clairement définis,
 une modification même mineure de l'image est facilement détectable.
 Au contraire les textures, le bruit ou les régions chaotiques 
@@ -73,7 +73,7 @@ En un pixel $(x_0,y_0)$, plus les valeurs de cette matrice sont éloignées de z
 plus le gradient varie en ce point. Évaluer ce type de matrice est ainsi primordial
 en stéganographie. Cependant cette tâche n'est pas aussi triviale qu'elle n'y 
 paraît puisque les images naturelles ne sont pas  définies à l'aide 
-de fonction différentiables de $\R^+\times \R^+$
+de fonctions différentiables de $\R^+\times \R^+$
 dans $\R^+$. 
 La suite montre comment obtenir des approximations de telles matrices. 
 
@@ -125,9 +125,9 @@ de gradient d'images}\label{sub:class:2}
 Il est connu que  
 $\dfrac{\partial^2 P}{\partial x \partial y} $ est égal à 
 $\dfrac{\partial^2 P}{\partial y \partial x}$ si 
-les méthode qui calculent le gradient et le gradient du gradient (la matrice hessienne)
+les méthodes qui calculent le gradient et le gradient du gradient (la matrice hessienne)
 sont les mêmes.
-Le tableau~\ref{table:hessian:usual} résume les les noyaux 
+Le tableau~\ref{table:hessian:usual} résume les noyaux 
 $K_{x^2}''$ et
 $K_{xy}''$  
 qui permettent de calculer respectivement 
@@ -239,14 +239,15 @@ pour chacun des opérateurs de gradient rappelés à la section précédente.
 \end{table}
 
 Le noyau $\textit{Ks}_{x^2}''$ permet de détecter si le 
-pixel central appartient à un bord ``vertical'', même si celui contient du bruit,
-en considérant ces voisins verticaux. Ces derniers sont vraiment 
+pixel central appartient à un bord ``vertical'', même si celui-ci
+ contient du bruit,
+en considérant ses voisins verticaux. Ces derniers sont vraiment 
 pertinents dans un objectif de détecter les bords. Cependant, leur lien avec 
 les lignes de niveau n'est pas direct. De plus tous les pixels qui sont dans la 
 deuxième et la quatrième colonne de ce noyau sont ignorés.
 Le noyau de Prewitt a des propriétés similaires.
 Le noyau de différence centrale $\textit{Kc}_{x^2}''$ n'est pas influencé par les 
-voisins verticaux du pixel central et peu paraître plus adapté ici.
+voisins verticaux du pixel central et peut paraître plus adapté ici.
 Cependant, le noyau $\textit{Kc}_{xy}''$ perd aussi les valeurs des pixels 
 qui sont alignés verticalement et diagonalement avec le pixel central.
 Enfin, le noyau de différence intermédiaire  $\textit{Ki}_{x^2}''$ décale
@@ -291,7 +292,7 @@ qui représente en effet les variation horizontales de la partie horizontale
 du gradient autour du pixel central. On obtient donc bien une approximation de 
 $\dfrac{\partial^2 P}{\partial x^2}$.
 Lorsque $n$ vaut 1, ce noyau est une version centrée du noyau horizontal de différence 
-intermédiaires. $\textit{Ki}_{x^2}''$ à un facteur  $1/2$ près).
+intermédiaire. $\textit{Ki}_{x^2}''$ à un facteur  $1/2$ près).
 Lorsque $n$ vaut 2, on retrouve $\textit{Kc}_{x^2}''$.
 
 Les variations verticales du gradient sont aussi obtenues en faisant subir 
@@ -375,7 +376,7 @@ et de
 $\dfrac{\partial^2 P}{\partial y^2}$.
 
 La section suivante étudie la pertinence d'interpoler une image par un polynome 
-lorsqu'on cherche a obtenir ces dérivées secondes.
+lorsqu'on cherche à obtenir ces dérivées secondes.
 
 
 \section{Interpolation polynomiale pour le calcul de la matrice hessienne}\label{sec:poly}
@@ -545,7 +546,7 @@ On remarque que pour $n=1$, le noyau est égal à $Kc''_{xy}$.
 
 \section{Fonction de distorsion}\label{sec:distortion}
 Une fonction de distorsion associe à chaque pixel  $(i,j)$ 
-le coût $\rho_{ij}$ du modification  par $\pm 1$. L'objectif est d'associer une 
+le coût $\rho_{ij}$ de modification  par $\pm 1$. L'objectif est d'associer une 
 valeur faible aux pixels dont toutes les dérivées secondes sont éloignées de 0 
 et une valeur rédhibitoire sinon.
 Dans WOW comme dans  UNIWARD la fonction de distorsion est définie par 
@@ -559,7 +560,7 @@ Dans WOW comme dans  UNIWARD la fonction de distorsion est définie par
 \]
 où $p$ est un nombre négatif et  
 $\xi_{ij}^h$ (resp. $\xi_{ij}^v$ et $\xi_{ij}^d$)
-représentent la pertinence horizontale (resp. verticale et diagonale) de modification.
+représente la pertinence horizontale (resp. verticale et diagonale) de modification.
 Une faible pertinence dans une direction signifie que l'embarquement 
 dans ce pixel est inapproprié.
 La fonction de distorsion que l'on a retenu est une particularisation ($p=-1$) 
@@ -615,9 +616,8 @@ concentrent les changements.
 Les deux méthodes présentées ici dépendent de noyaux dont la taille va jusqu'à  
 $(2N+1)\times(2N+1)$. Cette section montre comment évaluer $N$ pour maximiser 
 le niveau de sécurité.
-Pour chaque approche, 1,000 images stégos avec  
-$N=2$, $4$, $6$, $8$, $10$, $12$ et $14$ et dont les supports appartiennent 
-à l'ensemble des 10000 images du challenge BOSS. 
+Pour chaque approche ($N=2$, $4$, $6$, $8$, $10$, $12$ et $14$),
+1000 images stégos du challenge BOSS ont été selectionnées.
 La sécurité de l'approche a été évaluée avec le stéganalyseur 
 Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12}.
 Pour un taux d'embarquement   $\alpha$ égal soit à  $0.1$ ou soit à  $0.4$, 
@@ -626,7 +626,7 @@ Le tableau~\ref{table:choice:parameter} synthétise les résultats.
 On observe que la taille $N=4$ (respectivement $N=12$) 
 permet d'obtenir des erreurs suffisamment élevées pour l'approche basée sur $Ky$  
 (resp. pour celle basée sur  $Ko$). 
-Ces deux valeurs de paramètre sont retenues par la suite.
+Ces deux valeurs de paramètres sont retenues par la suite.
 
 \begin{table}[ht]
 \caption{Erreur moyenne de test en fonction de la taille du noyau}