]> AND Private Git Repository - hdrcouchot.git/blobdiff - sdd.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modif résumé
[hdrcouchot.git] / sdd.tex
diff --git a/sdd.tex b/sdd.tex
index c41efa9f35977fa5216b3cff07e52d3b124b0d1a..ad522385352dbd14ed478e39d793dea3e76f8129 100644 (file)
--- a/sdd.tex
+++ b/sdd.tex
@@ -147,7 +147,7 @@ schémas suivants :
   jour.  La  suite $S  = \left(s^t\right)^{t \in  \mathds{N}}$ est  une séquence
   de sous-ensembles 
   de   $[{\mathsf{N}}]$   appelée   \emph{stratégie généralisée}.
-  Il est basé sur la relation définie pour tout $i \in [{\mathsf{N}}]$ par
+  Ce schéma est basé sur la relation définie pour tout $i \in [{\mathsf{N}}]$ par
   \begin{equation}
   x^{t+1}_i=
   \left\{ \begin{array}{l}
@@ -184,7 +184,7 @@ sont les éléments de $\Bool^{\mathsf{N}}$ (voir \textsc{Figure}~\ref{fig:xpl:g
 est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si 
 et seulement si $y=f(x)$.
 \item Le \emph{graphe des itérations unaires} de $f$, noté $\textsc{giu}(f)$
-est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ pour $x \neq$ si 
+est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si 
 et seulement s'il existe $i \in \Delta f(x)$ tel que $y = \overline{x}^i$.
 Si $\Delta f(x)$ est vide, on ajoute l'arc $x \rightarrow x$.
 
@@ -275,7 +275,7 @@ On a la proposition suivante:
 
 \begin{theorem}\label{Prop:attracteur}
 La configuration $x$ est un point fixe si et seulement si 
-$\{x\}$ est un attracteur du graphe d'itération (synchrone, unaire, généralisé).
+$\{x\}$ est un attracteur du graphe d'itérations (synchrone, unaire, généralisé).
 En d'autres termes, les attracteurs non cycliques de celui-ci 
 sont les points fixes de $f$.
 Ainsi pour chaque $x\in \Bool^{\mathsf{N}}$, il existe au moins un chemin 
@@ -316,7 +316,7 @@ ${\mathsf{N}}\times {\mathsf{N}}$.
 Celle-ci mémorise uniquement 
 l'existence d'une dépendance de tel élément vis à vis de 
  tel élément.
-Elle ne mémorise pas \emph{comment} dépendent les éléments 
+Elle ne mémorise pas \emph{comment}  les éléments dépendent
 les uns par rapport aux autres. Cette matrice est nommée 
 \emph{matrice d'incidence}.