]> AND Private Git Repository - hdrcouchot.git/blobdiff - main.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
fin chap FCT11 juste la génération
[hdrcouchot.git] / main.tex
index a31f0bd8962debdbd302597e10104ef33fd924cf..6887ceca45aa7b5742604918e5cfb1fa59769b6b 100644 (file)
--- a/main.tex
+++ b/main.tex
 \newcommand{\Bool}[0]{\ensuremath{\mathds{B}}}
 \newcommand{\rel}[0]{\ensuremath{{\mathcal{R}}}}
 \newcommand{\Gall}[0]{\ensuremath{\mathcal{G}}}
 \newcommand{\Bool}[0]{\ensuremath{\mathds{B}}}
 \newcommand{\rel}[0]{\ensuremath{{\mathcal{R}}}}
 \newcommand{\Gall}[0]{\ensuremath{\mathcal{G}}}
-\newcommand{\Sec}[1]{Sect\,\ref{#1}}
+\newcommand{\Sec}[1]{Section\,\ref{#1}}
 \newcommand{\Fig}[1]{{\sc Figure}~\ref{#1}}
 \newcommand{\Alg}[1]{Algorithme~\ref{#1}}
 \newcommand{\Tab}[1]{Tableau~\ref{#1}}
 \newcommand{\Fig}[1]{{\sc Figure}~\ref{#1}}
 \newcommand{\Alg}[1]{Algorithme~\ref{#1}}
 \newcommand{\Tab}[1]{Tableau~\ref{#1}}
@@ -139,9 +139,12 @@ Blabla blabla.
 
 \mainmatter
 
 
 \mainmatter
 
-\part{Système Booléens}
+\part{Réseaux Discrets}
 
 
-\chapter{Iterations discrètes de Systèmes Dynamiques booléens}
+
+
+\chapter{Iterations discrètes de réseaux booléens}
+\JFC{chapeau à refaire}
 \section{Formalisation}
 \input{sdd}
 
 \section{Formalisation}
 \input{sdd}
 
@@ -151,6 +154,8 @@ Blabla blabla.
 
 
 \section{Conclusion}
 
 
 \section{Conclusion}
+\JFC{Conclusion à refaire}
+
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
 Dans ce chapitre, nous avons exposé comment construire un mode combinant les
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
 Dans ce chapitre, nous avons exposé comment construire un mode combinant les
@@ -160,7 +165,7 @@ de l'asynchronisme en terme de vitesse de convergence.
 
 
 
 
 
 
-\chapter[Preuve de convergence de systèmes booléens]{Preuve automatique de  convergence de systèmes booléens}\label{chap:promela}
+\chapter[Preuve de convergence de systèmes booléens]{Preuve automatique de  convergence}\label{chap:promela}
 \input{modelchecking}
 
 
 \input{modelchecking}
 
 
@@ -172,7 +177,7 @@ de l'asynchronisme en terme de vitesse de convergence.
 au chaos} 
 
 \chapter{Characterisation des systèmes 
 au chaos} 
 
 \chapter{Characterisation des systèmes 
-  discrets chaotiques}
+  discrets chaotiques pour les schémas unaires et généralisés}
 
 La première section  rappelle ce que sont les systèmes dynamiques chaotiques.
 Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), 
 
 La première section  rappelle ce que sont les systèmes dynamiques chaotiques.
 Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), 
@@ -192,7 +197,9 @@ On montre qu'on a des résultats similaires.
 \input{15TSI}
 
 
 \input{15TSI}
 
 
-générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien).
+\section{Générer des fonctions chaotiques}
+\input{11FCT} 
+
 
 \chapter{Prédiction des systèmes chaotiques}
 
 
 \chapter{Prédiction des systèmes chaotiques}
 
@@ -206,7 +213,21 @@ générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien)
 
 
 
 
 
 
-% \part{Conclusion et Perspectives}
+
+ \part{Conclusion et Perspectives}
+
+\JFC{Perspectives pour SDD->Promela}
+Among drawbacks of the method,  one can argue that bounded delays is only 
+realistic in practice for close systems. 
+However, in real large scale distributed systems where bandwidth is weak, 
+this restriction is too strong. In that case, one should only consider that 
+matrix $s^{t}$ follows the  iterations of the system, \textit{i.e.},
+for all $i$, $j$, $1 \le i \le j \le n$,  we have$
+\lim\limits_{t \to \infty} s_{ij}^t = + \infty$. 
+One challenge of this work should consist in weakening this constraint. 
+We plan as future work to take into account other automatic approaches 
+to discharge proofs notably by deductive analysis~\cite{CGK05}. 
+
 
 % \chapter{Conclusion}
 
 
 % \chapter{Conclusion}
 
@@ -230,26 +251,22 @@ générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien)
 \chapter{Preuves sur les systèmes chaotiques}
 
 
 \chapter{Preuves sur les systèmes chaotiques}
 
 
-\section{Continuité de $G_f$ dans $(\mathcal{X},d)$}\label{anx:cont}
+\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont}
 \input{annexecontinuite.tex}
 
 
 \input{annexecontinuite.tex}
 
 
-
-
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:unaire}
+\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire}
 \input{caracunaire.tex}
 
 
 \input{caracunaire.tex}
 
 
-\section{Preuve que $d$ est une distance sur $\mathcal{X}$}\label{anx:distance:generalise}
+\section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise}
 \input{preuveDistanceGeneralisee}
 
 
 \input{preuveDistanceGeneralisee}
 
 
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:generalise}
+\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_g}$ dans $(\mathcal{X}_g,d)$}\label{anx:chaos:generalise}
 \input{caracgeneralise.tex}
 
 
 \input{caracgeneralise.tex}
 
 
-
-
 \section{Théorème~\ref{th:Adrien}}\label{anx:sccg}
 \input{annexesccg}
 
 \section{Théorème~\ref{th:Adrien}}\label{anx:sccg}
 \input{annexesccg}