]> AND Private Git Repository - hdrcouchot.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
fin chap FCT11 juste la génération
authorJean-François Couchot <couchot@couchot.iut-bm.univ-fcomte.fr>
Thu, 28 May 2015 12:51:39 +0000 (14:51 +0200)
committerJean-François Couchot <couchot@couchot.iut-bm.univ-fcomte.fr>
Thu, 28 May 2015 12:51:39 +0000 (14:51 +0200)
11FCT.tex
12TIPE.tex
15TSI.tex
annexesccg.tex
caracgeneralise.tex
caracunaire.tex
devaney.tex
main.pdf
main.tex
mixage.tex
modelchecking.tex

index 5c7747a5a9b005bd86b99cb9a5ab816b635e3302..8ab511ed51018c6923b80a45a1d48d801543aefd 100644 (file)
--- a/11FCT.tex
+++ b/11FCT.tex
@@ -59,15 +59,35 @@ $f$ dont le  graphe d'itérations
 Soit $f$ une fonction de $\Bool^{\mathsf{N}}$ vers lui-même telle que:
 \begin{enumerate}
 \item 
-$G(f)$ n'a pas de cycle de longueur supérieure ou égale à deux;
+$\Gamma(f)$ n'a pas de cycle de longueur supérieure ou égale à deux;
 \item 
-chaque sommet de  $G(f)$ qui possède une boucle 
+chaque sommet de  $\Gamma(f)$ qui possède une boucle 
 positive a aussi une boucle négative;
 \item
-chaque sommet de $G(f)$ est accessible depuis un sommet qui possède 
+chaque sommet de $\Gamma(f)$ est accessible depuis un sommet qui possède 
 une boucle négative.
 \end{enumerate}
 Alors, $\textsc{giu}(f)$ est fortement connexe.
 \end{theorem}
 
 La preuve de ce théorème est donnée en annexe~\ref{anx:sccg}.
+
+Illustrons ce théorème par un exemple. On considère par le graphe d'interactions 
+$\Gamma(f)$ donné en figure~\ref{fig:G}. 
+Il vérifie le théorème~\ref{th:Adrien}: 
+toutes les fonctions $f$ possédant un tel graphe d'interactions
+ont un graphe d'itérations  $\textsc{giu}(f)$ fortement connexe.
+Pratiquement, il existe 34226 fonctions de $\Bool^4$ dans lui même qui 
+vérifient ce graphe d'intéraction. 
+Cependant, nombreuses sont celles qui possèdent un comportement équivalent.
+Deux fonctions sont equivalentes si leurs \textsc{giu} sont isomorphes 
+(au sens de l'isomorphisme de graphes). Il ne reste alors plus que 
+520 fonctions $f$ non équivalentes de graphe d'interactions $\Gamma(f)$.
+
+\begin{figure}%[h]
+  \begin{center}
+    \includegraphics[scale=0.5]{images/Gi.pdf}
+  \end{center}
+\caption{Exemple de graphe d'interactions vérifiant le théorème~\ref{th:Adrien}} \label{fig:G}
+\end{figure}
+
index e735c46917e905315ab4cab8a63b42f1742aaaa4..4f9fa9b93687b46740c11992161fe6360c1ce714 100644 (file)
@@ -9,38 +9,32 @@ $\Bool^{{\mathsf{N}}}$ dans lui-même.
 Dans le schéma unaire, à la  $t^{\textrm{ème}}$ itération, 
 seul le  $s_{t}^{\textrm{ème}}$ 
 composant (entre 1 et $n$) est mis à jour.
-
-Formellement, pour une stratégie $s = \left(s_t\right)_{t \in \mathds{N}}$ 
+Pour une stratégie $s = \left(s_t\right)_{t \in \mathds{N}}$ 
 (\textit{i.e.}, une séquence d'indices
-de $\llbracket 1;\mathsf{N} \rrbracket$), on définit
-la fonction $F_f: \Bool^{\mathsf{N}} \times \llbracket1;\mathsf{N}\rrbracket$
+de $\llbracket 1;\mathsf{N} \rrbracket$), on peut définir
+la fonction $F_{f_u}: \Bool^{\mathsf{N}} \times \llbracket1;\mathsf{N}\rrbracket$
 vers $\Bool^\mathsf{N}$ par 
 \[
-F_f(x,i)=(x_1,\dots,x_{i-1},f_i(x),x_{i+1},\dots,x_\mathsf{N}).
+F_{f_u}(x,i)=(x_1,\dots,x_{i-1},f_i(x),x_{i+1},\dots,x_\mathsf{N}).
 \]
 
 Dans le schéma des itérations unaires pour une configuration initiale
 $x^0\in\Bool^\mathsf{N}$ et une stratégie $s\in
 \llbracket1;\mathsf{N}\rrbracket^\Nats$, les configurations $x^t$
 sont définies par la récurrence
-x\begin{equation}\label{eq:asyn}
-x^{t+1}=F_f(x^t,s_t).
+\begin{equation}\label{eq:asyn}
+x^{t+1}=F_{f_u}(x^t,s_t).
 \end{equation}
 
-Les itérations parallèles de $G_f$ depuis un point initial
-$X^0=(s,x^0)$ décrivent la même orbite que les  
-itérations asynchrones de $f$ induites par $x^0$ et la  stratégie
-$s$.
-
 
 On peut alors construire l'espace 
-$\mathcal{X} =
+$\mathcal{X}_u =
 \Bool^{{\mathsf{N}}} \times \llbracket1;{\mathsf{N}}\rrbracket^{\Nats}$ 
-et la fonction d'iteration $G_f$ définie  de 
-$\mathcal{X}$ 
+et la fonction d'iteration $G_{f_u}$ définie  de 
+$\mathcal{X}_u
 dans lui-même par 
 \[
-G_f(x,s)=(F_f(x,s_0),\sigma(s)).
+G_{f_u}(x,s)=(F_{f_u}(x,s_0),\sigma(s)).
 \] 
 
 Dans cette définition, la fonction 
@@ -57,14 +51,13 @@ $$
 
 Ainsi, effectuer des itérations unaires sur la fonction 
 $f$ selon une stratégie $s$ revient à effectuer des itérations
-parallèles de la fonctions $G_f$ dans  $\mathcal{X}$.
+parallèles de la fonctions $G_{f_u}$ dans  $\mathcal{X}_u$.
+La section suivante introduit une métrique sur $\mathcal{X}_u$.
 
-La section suivante introduit une métrique sur $\mathcal{X}$.
-
-\subsection{Une métrique pour $\mathcal{X}$}
-Sur $\mathcal{X}$, 
+\subsection{Une métrique pour $\mathcal{X}_u$}
+Sur $\mathcal{X}_u$, 
 on définit la distance $d$ entre les points $X=(x,s)$ et
-$X'=(x',s')$ de $\mathcal{X}$ par 
+$X'=(x',s')$ de $\mathcal{X}_u$ par 
 \[
 d(X,X')= d_H(x,x')+d_S(s,s'),~\textrm{où}~
 \left\{
@@ -88,40 +81,40 @@ $(l+1)^{\textrm{ème}}$ décimale
 de $d_S(s,s')$ 
 n'est pas nulle, alors $s_l$ est différent de  $s'_l$. 
 
-La section fournit quelques résultats de caractérisation de fonctions 
-chaotiques pour le schéma unaire.
+Se pose la question de caractériser les fonctions $f$ telles que 
+les itérations de $G_{f_u}$ associées à leurs itérations unaires 
+sont chaotiques dans $\mathcal{X}_u$. La section suivante 
+apporte une réponse à cette question. 
+
 
+\subsection{Caractérisation des fonctions rendant 
+chaotiques $G_{f_u}$ sur $\mathcal{X}_u$}
 
-\subsection{Caractérisation des fonctions chaotiques 
-pour le schéma unaire}
 
 On peut tout d'abord démontrer que pour toute fonction booléenne $f$, 
-$G_f$ est continue sur $\mathcal{X}$ (cf annexe~\ref{anx:cont}).   
+$G_{f_u}$ est continue sur $\mathcal{X}_u$ (cf annexe~\ref{anx:cont}).   
 
-Pour charactérister les fonctions rendant chaotiques dans $
-\mathcal{X}$ les itérations de $G_f$ 
-on se focalise donc que sur la régularité et 
-sur la transitivité de $G_f$.
+Pour charactérister les fonctions rendant chaotiques dans $\mathcal{X}_u$ les itérations de $G_{f_u}$ 
+on se focalise donc que sur la régularité et sur la transitivité de $G_{f_u}$.
 Ceci se réalise en établissant les relations d'inclusion entre 
 les ensembles $\mathcal{T}$ des fonctions topologiquement transitives, 
 $\mathcal{R}$ des fonctions régulières  
 et $\mathcal{C}$ des fonctions chaotiques définis respectivement ci-dessous:
 \begin{itemize}
 \item   $\mathcal{T}   =    \left\{f   :   \mathds{B}^n   \to
-\mathds{B}^n \big/ G_f \textrm{ est transitive} \right\}$,
+\mathds{B}^n \big/ G_{f_u} \textrm{ est transitive} \right\}$,
 \item   $\mathcal{R}   =    \left\{f   :   \mathds{B}^n   \to
-\mathds{B}^n \big/ G_f \textrm{ est régulière} \right\}$,
+\mathds{B}^n \big/ G_{f_u} \textrm{ est régulière} \right\}$,
 \item   $\mathcal{C}   =    \left\{f   :   \mathds{B}^n   \to
-\mathds{B}^n  \big/  G_f  \textrm{  est chaotique} \right\}$.
+\mathds{B}^n  \big/  G_{f_u}  \textrm{  est chaotique} \right\}$.
 \end{itemize}
 
 
 On énnonce les théorèmes successifs suivants.
 Leur preuve est donnée en annexe~\ref{anx:chaos:unaire}.
 
-\begin{theorem} $G_f$  est transitive si et seulement si 
- $\Gamma(f)$ est fortement connexe.
+\begin{theorem} $G_{f_u}$  est transitive si et seulement si 
+ $\textsc{giu}(f)$ est fortement connexe.
 \end{theorem}
 
 \begin{theorem}
@@ -133,8 +126,8 @@ On peut conclure  que $\mathcal{C} = \mathcal{R} \cap \mathcal{T}
 
 \begin{theorem}%[Characterization of $\mathcal{C}$]
 \label{Th:CaracIC}  
-Soit $f:\Bool^n\to\Bool^n$. La fonction $G_f$ est chaotique  
-si et seulement si $\Gamma(f)$ est fortement connexe.
+Soit $f:\Bool^n\to\Bool^n$. La fonction $G_{f_u}$ est chaotique  
+si et seulement si $\textsc{giu}(f)$ est fortement connexe.
 \end{theorem}
 
 
index 47ecd366f94f7b130fe1c9cac8693bddf6f50817..7d1d8429d9b21e6015aad11847303cc23aac668e 100644 (file)
--- a/15TSI.tex
+++ b/15TSI.tex
@@ -1,7 +1,6 @@
 On reprend ici le même plan que dans la section précédente.
 
-Soit ${\mathsf{N}}$ un entier naturel et $f$ une fonction de 
-$\Bool^{{\mathsf{N}}}$ dans lui-même.
+
 
 
 \subsection{Des itérations généralisées aux itérations parallèles}
@@ -11,10 +10,10 @@ c'est l'ensemble
 des $s_{t}^{\textrm{ème}}$ éléments (inclus dans $[n]$) qui 
 sont  mis à jour (c.f. équation~(\ref{eq:schema:generalise})).
 On redéfinit la fonction la fonction
-  $F_f:  \Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, \mathsf{N}\}) 
+  $F_{f_g}:  \Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, \mathsf{N}\}) 
   \rightarrow \Bool^{\mathsf{N}}$  par
   \[
-  F_f(x,s)_i=\left\{
+  F_{f_g}(x,s)_i=\left\{
     \begin{array}{l}
       f_i(x) \textrm{ si $i \in s$;}\\   
       x_i \textrm{ sinon.}
@@ -28,28 +27,26 @@ $x^0\in\Bool^{\mathsf{N}}$ et une stratégie $S = \left(s_t\right)_{t \in  \math
 les
 configurations $x^t$ sont définies par la récurrence
 \begin{equation}\label{eq:asyn}
-    x^{t+1}=F_f(s_t,x^t).
+    x^{t+1}=F_{f_g}(s_t,x^t).
   \end{equation}
-  Soit alors $G_f$ une fonction de $\Bool^{\mathsf{N}}  \times  \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$ 
+  Soit alors $G_{f_g}$ une fonction de $\Bool^{\mathsf{N}}  \times  \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$ 
   dans lui-même définie par 
   \[
-  G_f(S,x)=(\sigma(S),F_f(s_0,x)),
+  G_{f_g}(S,x)=(\sigma(S),F_{f_g}(s_0,x)),
   \] 
-  où la fonction $\sigma$ est définit comme à la section précédente.
+  où la fonction $\sigma$ est définie comme à la section précédente.
   A nouveau, les itérations généralisées 
   de $f$ induites par $x^0$ et la  stratégie $S$.
   décrivent la même orbite que les 
-  itérations parallèles de $G_f$ depuis un point initial
+  itérations parallèles de $G_{f_g}$ depuis un point initial
   $X^0=(x^0,S)$ 
   
   
-
-%%%%%%%%%%%%%%%%%%%%
-On peut alors construire l'espace 
-$\mathcal{X} = \Bool^{\mathsf{N}} \times
+On onstruit cette fois-ci l'espace 
+$\mathcal{X}_g = \Bool^{\mathsf{N}} \times
 \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$
 
-\subsection{Une métrique pour $\mathcal{X}$}
+\subsection{Une métrique pour $\mathcal{X}_g$}
 
 Cette nouvelle distance va comparer des ensembles. 
 On rappelle pour quelques notions ensemblistes. 
@@ -61,10 +58,10 @@ A \Delta B = (A \cap \overline{B}) \cup (\overline{A} \cap B)
 \]  
 où $\overline{B}$ désigne le complémentaire de $B$ dans $\Omega$.
 
-On considère l'espace $\mathcal{X}=\mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}\times
+On considère l'espace $\mathcal{X}_g=\mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}\times
 \Bool^{\mathsf{N}}$ et
 on définit la distance $d$ entre les points $X=(S,x)$ et
-$X'=(S',x')$ de $\mathcal{X}$ par 
+$X'=(S',x')$ de $\mathcal{X}_g$ par 
 \[
 d(X,X')= d_H(x,x')+d_S(S,S'),~\textrm{où}~
 \left\{
@@ -84,14 +81,15 @@ de montrer que $d_S$ en une aussi, ce qui est fait en annexe~\ref{anx:distance:g
 La section suivante caractérise les fonctions $f$ qui sont  
 chaotiques pour le schéma généralisées.
 
-
-\subsection{Caractérisation des fonctions chaotiques 
-pour le schéma généralisé}
+\subsection{Caractérisation des fonctions rendant 
+chaotiques $G_{f_g}$ sur $\mathcal{X}_g$}
+On reprend les définitions des ensembles $\mathcal{T}$, $\mathcal{R}$ et $\mathcal{C}$
+en les adaptant à  $G_{f_g}$.
 On a les théorèmes suivants dont les preuves sont données en 
 annexe~\ref{anx:chaos:generalise}.
 
-\begin{theorem} $G_f$  est transitive si et seulement si 
- $\Gamma(f)$ est fortement connexe.
+\begin{theorem} $G_{f_g}$  est transitive si et seulement si 
+ $\textsc{gig}(f)$ est fortement connexe.
 \end{theorem}
 
 \begin{theorem}
@@ -101,8 +99,8 @@ annexe~\ref{anx:chaos:generalise}.
 
 \begin{theorem}%[Characterization of $\mathcal{C}$]
 \label{Th:CaracIC}  
-Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$. La fonction $G_f$ est chaotique  
-si et seulement si $\Gamma(f)$ est fortement connexe.
+Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$. La fonction $G_{f_g}$ est chaotique  
+si et seulement si $\textsc{gig}(f)$ est fortement connexe.
 \end{theorem}
 
 
index 3db4320a045f548e37f9320592b1c12b14e8b7b6..9d32b2236fe3e6ba698471e0c8688586ecf9adb0 100644 (file)
@@ -1,13 +1,13 @@
 Soit $\alpha\in\Bool$. 
-On nomme $f^{\alpha}$ la fonction de $\Bool^{n-1}$ 
+On nomme $f^{\alpha}$ la fonction de $\Bool^{{\mathsf{N}}-1}$ 
 dans lui-même définie pour 
-chaque $x\in\Bool^{n-1}$ par 
+chaque $x\in\Bool^{{\mathsf{N}}-1}$ par 
 \[
-f^{\alpha}(x)=(f_1(x,\alpha),\dots,f_{n-1}(x,\alpha)).
+f^{\alpha}(x)=(f_1(x,\alpha),\dots,f_{{\mathsf{N}}-1}(x,\alpha)).
 \]
-On nomme $\Gamma(f)^\alpha$ le sous-graphe
-de $\Gamma(f)$ engendré par le sous-ensemble
-$\Bool^{n-1} \times \{\alpha\}$ de $\Bool^n$.
+On nomme $\textsc{giu}(f)^\alpha$ le sous-graphe
+de $\textsc{giu}(f)$ engendré par le sous-ensemble
+$\Bool^{{\mathsf{N}}-1} \times \{\alpha\}$ de $\Bool^{\mathsf{N}}$.
 
 
 
@@ -16,27 +16,27 @@ $\Bool^{n-1} \times \{\alpha\}$ de $\Bool^n$.
 
 \begin{lemma}\label{lemma:subgraph}
 $G(f^\alpha)$ est un sous-graphe de $G(f)$: chaque arc de $G(f^\alpha)$ est
-un arc de $G(f)$. De plus si $G(f)$ n'a pas d'arc de $n$ vers un autre 
-sommet $i\neq n$, alors on déduit
-$G(f^\alpha)$ de $G(f)$ en supprimant le sommet $n$ ainsi que tous les 
-arcs dont $n$ est soit l'extrémité, soit l'origine (et dans ce dernier  
-cas, les arcs sont des boucles sur $n$).
+un arc de $G(f)$. De plus si $G(f)$ n'a pas d'arc de ${\mathsf{N}}$ vers un autre 
+sommet $i\neq {\mathsf{N}}$, alors on déduit
+$G(f^\alpha)$ de $G(f)$ en supprimant le sommet ${\mathsf{N}}$ ainsi que tous les 
+arcs dont ${\mathsf{N}}$ est soit l'extrémité, soit l'origine (et dans ce dernier  
+cas, les arcs sont des boucles sur ${\mathsf{N}}$).
 \end{lemma}
 
 \begin{Proof}
 Supposons que $G(f^{\alpha})$ possède un arc de  $j$ vers $i$ de signe 
-$s$. Par définition, il existe un sommet $x\in\Bool^{n-1}$ tel que
+$s$. Par définition, il existe un sommet $x\in\Bool^{{\mathsf{N}}-1}$ tel que
 $f^{\alpha}_{ij}(x)=s$, et puisque 
 $f^{\alpha}_{ij}(x)=f_{ij}(x,\alpha)$, on en déduit que $G(f)$ possède un arc
 de $j$ à $i$ de signe $s$. Ceci prouve la première assertion. 
 Pour démontrer la seconde, il suffit de  prouver que si
-$G(f)$ a un arc de $j$ vers $i$ de signe $s$, avec $i,j\neq n$, alors
+$G(f)$ a un arc de $j$ vers $i$ de signe $s$, avec $i,j\neq {\mathsf{N}}$, alors
 $G(f^\alpha)$ contient aussi cet arc. Ainsi, supposons que $G(f)$ a un 
-arc de $j$ vers $i$ de signe $s$, avec $i,j\neq n$.
+arc de $j$ vers $i$ de signe $s$, avec $i,j\neq {\mathsf{N}}$.
 Alors, il existe
-$x\in\Bool^{n-1}$ et $\beta\in\Bool$ tels que
+$x\in\Bool^{{\mathsf{N}}-1}$ et $\beta\in\Bool$ tels que
 $f_{ij}(x,\beta)=s$. Si $f_{ij}(x,\beta)\neq f_{ij}(x,\alpha)$, alors
-$f_i$ dépend du  $n^{\textrm{ème}}$ composant, ce qui est en contradiction 
+$f_i$ dépend du  ${\mathsf{N}}^{\textrm{ème}}$ composant, ce qui est en contradiction 
 avec les hypothèses.
 Ainsi $f_{ij}(x,\alpha)$ est égal à $s$.
 On a donc aussi
@@ -45,80 +45,80 @@ arc de $j$ vers $i$ de signe $s$.
 \end{Proof}
 
 \begin{lemma}\label{lemma:iso}
-Les graphes $\Gamma(f^\alpha)$ et $\Gamma(f)^\alpha$ sont isomorphes.
+Les graphes $\textsc{giu}(f^\alpha)$ et $\textsc{giu}(f)^\alpha$ sont isomorphes.
 \end{lemma}
 
 \begin{Proof}
-Soit $h$ la bijection de $\Bool^{n-1}$ vers
-$\Bool^{n-1}\times \{\alpha\}$ définie par $h(x)=(x,\alpha)$ pour chaque
-$x\in\Bool^{n-1}$.
+Soit $h$ la bijection de $\Bool^{{\mathsf{N}}-1}$ vers
+$\Bool^{{\mathsf{N}}-1}\times \{\alpha\}$ définie par $h(x)=(x,\alpha)$ pour chaque
+$x\in\Bool^{{\mathsf{N}}-1}$.
 On voit facilement que $h$ permet de définir un isomorphisme
-entre $\Gamma(f^\alpha)$ et $\Gamma(f)^\alpha$: 
-$\Gamma(f^\alpha)$ possède un arc de $x$ vers $y$ si et seulement si 
-$\Gamma(f)^\alpha$ a un  arc de $h(x)$ vers $h(y)$.
+entre $\textsc{giu}(f^\alpha)$ et $\textsc{giu}(f)^\alpha$: 
+$\textsc{giu}(f^\alpha)$ possède un arc de $x$ vers $y$ si et seulement si 
+$\textsc{giu}(f)^\alpha$ a un  arc de $h(x)$ vers $h(y)$.
 \end{Proof}
 
 
 \begin{Proof}
 du Théorème~\ref{th:Adrien}.
-La preuve se fait par induction sur $n$. 
-Soit $f$ une fonction de $\Bool^n$ dans lui-même et qui vérifie les hypothèses 
+La preuve se fait par induction sur ${\mathsf{N}}$. 
+Soit $f$ une fonction de $\Bool^{\mathsf{N}}$ dans lui-même et qui vérifie les hypothèses 
 du théorème.
-Si $n=1$ la démonstration est élémentaire:
+Si ${\mathsf{N}}=1$ la démonstration est élémentaire:
 en raison du troisième point du théorème, $G(f)$ a une boucle négative;
-ainsi $f(x)=\overline{x}$ et $\Gamma(f)$ est un cycle de longueur 2.
-On suppose donc que $n>1$ et que le théorème est valide pour toutes les 
-fonctions de $\Bool^{n-1}$ dans lui-même. 
+ainsi $f(x)=\overline{x}$ et $\textsc{giu}(f)$ est un cycle de longueur 2.
+On suppose donc que ${\mathsf{N}}>1$ et que le théorème est valide pour toutes les 
+fonctions de $\Bool^{{\mathsf{N}}-1}$ dans lui-même. 
 En raison du premier point du théorème, $G(f)$
 contient au moins un sommet $i$ tel qu'il n'existe pas dans $G(f)$
 d'arc de $i$ vers un autre sommet $j\neq i$.
 Sans perte de généralité, on peut considérer que 
-ce sommet est  $n$.
+ce sommet est  ${\mathsf{N}}$.
 Alors, d'après le lemme~\ref{lemma:subgraph}, 
 $f^0$ et $f^1$ vérifient les conditions de l'hypothèse.
-Alors, par hypothèse d'induction $\Gamma(f^0)$ et
-$\Gamma(f^1)$ sont fortement connexes. 
+Alors, par hypothèse d'induction $\textsc{giu}(f^0)$ et
+$\textsc{giu}(f^1)$ sont fortement connexes. 
 Ainsi, d'après le lemme~\ref{lemma:iso}, 
-$\Gamma(f)^0$ et $\Gamma(f)^1$ sont fortement 
+$\textsc{giu}(f)^0$ et $\textsc{giu}(f)^1$ sont fortement 
 connexes. 
-Pour prouver que $\Gamma(f)$ est fortement connexe, il suffit 
-de prouver que $\Gamma(f)$ contient un arc $x\to y$ avec 
-$x_n=0<y_n$ et un arc $x\to y$ avec $x_n=1>y_n$. 
+Pour prouver que $\textsc{giu}(f)$ est fortement connexe, il suffit 
+de prouver que $\textsc{giu}(f)$ contient un arc $x\to y$ avec 
+$x_{\mathsf{N}}=0<y_{\mathsf{N}}$ et un arc $x\to y$ avec $x_{\mathsf{N}}=1>y_{\mathsf{N}}$. 
 En d'autres mots, il suffit de prouver que:
 \begin{equation}\tag{$*$}
-\forall \alpha\in\Bool,~\exists x\in\Bool^n,\qquad  x_n=\alpha\neq f_n(x).
+\forall \alpha\in\Bool,~\exists x\in\Bool^{\mathsf{N}},\qquad  x_{\mathsf{N}}=\alpha\neq f_{\mathsf{N}}(x).
 \end{equation}
 
-On suppose tout d'abord que $n$ a une boucle 
+On suppose tout d'abord que ${\mathsf{N}}$ a une boucle 
 négative.
 Alors, d'après la définition de 
-$G(f)$, il existe $x\in\Bool^n$ tel que $f_{nn}(x)<0$. 
-Ainsi si $x_n=0$, on a  $f_n(x)>f_n(\overline{x}^n)$, et donc 
-$x_n=0\neq f_n(x)$ et
-$\overline{x}^n_n=1\neq f_n(\overline{x}^n)$; 
-et si  $x_n=1$, on a 
-$f_n(x)<f_n(\overline{x}^n)$, donc $x_n=1\neq f_n(x)$ et $\overline{x}^n_n=0\neq
-f_n(\overline{x}^n)$. 
+$G(f)$, il existe $x\in\Bool^{\mathsf{N}}$ tel que $f_{{\mathsf{N}}{\mathsf{N}}}(x)<0$. 
+Ainsi si $x_{\mathsf{N}}=0$, on a  $f_{\mathsf{N}}(x)>f_{\mathsf{N}}(\overline{x}^{\mathsf{N}})$, et donc 
+$x_{\mathsf{N}}=0\neq f_{\mathsf{N}}(x)$ et
+$\overline{x}^{\mathsf{N}}_{\mathsf{N}}=1\neq f_{\mathsf{N}}(\overline{x}^{\mathsf{N}})$; 
+et si  $x_{\mathsf{N}}=1$, on a 
+$f_{\mathsf{N}}(x)<f_{\mathsf{N}}(\overline{x}^{\mathsf{N}})$, donc $x_{\mathsf{N}}=1\neq f_{\mathsf{N}}(x)$ et $\overline{x}^{\mathsf{N}}_{\mathsf{N}}=0\neq
+f_{\mathsf{N}}(\overline{x}^{\mathsf{N}})$. 
 Dans les deux cas, la condition ($*$) est établie.
 
-Supposons maintenant que  $n$ n'a pas de boucle négative.
+Supposons maintenant que  ${\mathsf{N}}$ n'a pas de boucle négative.
 D'après la seconde hypothèse, 
-$n$ n'a pas de boucle, \emph{i.e.}, la valeur de $f_n(x)$
-ne dépend pas de la valeur de $x_n$. 
+${\mathsf{N}}$ n'a pas de boucle, \emph{i.e.}, la valeur de $f_{\mathsf{N}}(x)$
+ne dépend pas de la valeur de $x_{\mathsf{N}}$. 
 D'après la troisième hypothèse, 
-il existe $i\in \llbracket 1;n \rrbracket$ tel que $G(f)$ a un arc de 
-$i$ vers $n$.
-Ainsi, il existe $x \in \Bool^n$ tel que $f_{ni}(x) \neq 0$ et donc 
+il existe $i\in \llbracket 1;{\mathsf{N}} \rrbracket$ tel que $G(f)$ a un arc de 
+$i$ vers ${\mathsf{N}}$.
+Ainsi, il existe $x \in \Bool^{\mathsf{N}}$ tel que $f_{{\mathsf{N}}i}(x) \neq 0$ et donc 
 %$n$ n'est donc pas de degré zéro dans $G(f)$, \emph{i.e.} 
-$f_n$ n'est pas constante.
-Ainsi, il existe $x,y\in \Bool^n$ tel que
-$f_n(x)=1$ et $f_n(y)=0$. 
-Soit  $x'=(x_1,\dots,x_{n-1},0)$ et
-$y'=(y_1,\dots,y_{n-1},1)$. 
-Puisque la valeur de $f_n(x)$
-(resp. de $f_n(y)$) ne dépend pas de la  valeur de  $x_n$ (resp. de  $y_n$),
-on a $f_n(x')=f_n(x)=1\neq x'_n$ (resp. $f_n(y')=f_n(y)=0\neq
-y'_n$). 
+$f_{\mathsf{N}}$ n'est pas constante.
+Ainsi, il existe $x,y\in \Bool^{\mathsf{N}}$ tel que
+$f_{\mathsf{N}}(x)=1$ et $f_{\mathsf{N}}(y)=0$. 
+Soit  $x'=(x_1,\dots,x_{{\mathsf{N}}-1},0)$ et
+$y'=(y_1,\dots,y_{{\mathsf{N}}-1},1)$. 
+Puisque la valeur de $f_{\mathsf{N}}(x)$
+(resp. de $f_{\mathsf{N}}(y)$) ne dépend pas de la  valeur de  $x_{\mathsf{N}}$ (resp. de  $y_{\mathsf{N}}$),
+on a $f_{\mathsf{N}}(x')=f_{\mathsf{N}}(x)=1\neq x'_{\mathsf{N}}$ (resp. $f_{\mathsf{N}}(y')=f_{\mathsf{N}}(y)=0\neq
+y'_{\mathsf{N}}$). 
 Ainsi la  condition ($*$) est établie, et le théorème est prouvé.
 \end{Proof}
 
index e1c825a65782271dc0d11cb9aeed7a4c0b5aba26..0427db87648bac22bf28aab93b5943f6f6cb4475 100644 (file)
@@ -1,54 +1,54 @@
 
 Commençons par caractériser l'ensemble $\mathcal{T}$ des fonctions transitives:
 
-\begin{theorem} $G_f$  est transitive si et seulement si 
- $\Gamma(f)$ est fortement connexe.
+\begin{theorem} $G_{f_g}$  est transitive si et seulement si 
+ $\textsc{gig}(f)$ est fortement connexe.
 \end{theorem}
 
 \begin{Proof} 
 
-$\Longleftarrow$ Supposons que $\Gamma(f)$ soit fortement connexe.
-Soient $(x,S)$ et $(x',S')$ deux points de $\mathcal{X}$ et  $\varepsilon >0$. 
+$\Longleftarrow$ Supposons que $\textsc{gig}(f)$ soit fortement connexe.
+Soient $(x,S)$ et $(x',S')$ deux points de $\mathcal{X}_g$ et  $\varepsilon >0$. 
 On construit la stratégie $\tilde S$ telle que la distance 
 entre $(x,\tilde S)$ et  $(x,S)$ est inférieure à 
-$\varepsilon$ et telle que les  itérations parallèles de $G_f$ depuis
+$\varepsilon$ et telle que les  itérations parallèles de $G_{f_g}$ depuis
 $(x,\tilde S)$ mènent au point $(x',S')$.
 
 Pour cela, on pose $t_1 =-\lfloor\log_{10}(\varepsilon)\rfloor$ et   $x''$ la 
 configuration de $\Bool^{\mathsf{N}}$ obtenue depuis $(x,S)$
 après $t_1$ itérations
-parallèles de $G_f$. 
-Comme $\Gamma(f)$ est fortement connexe, il existe une 
+parallèles de $G_{f_g}$. 
+Comme $\textsc{gig}(f)$ est fortement connexe, il existe une 
 stratégie $S''$ et un entier  $t_2$ tels que $x'$ est atteint depuis 
-$(x'',S'')$ après $t_2$ itérations de $G_f$.
+$(x'',S'')$ après $t_2$ itérations de $G_{f_g}$.
 
 Considérons à présent la stratégie 
 $\tilde S=(s_0,\dots,s_{t_1-1},s''_0,\dots,s''_{t_2-1},s'_0,s'_1,s'_2,s'_3\dots)$.
 Il est évident que $(x',s')$ est atteint depuis  $(x,\tilde S)$ après 
-$t_1+t_2$ itérations parallèles de $G_f$. Puisque 
+$t_1+t_2$ itérations parallèles de $G_{f_g}$. Puisque 
 $\tilde s_t=s_t$ pour $t<t_1$, grâce au choix de $t_1$,
 on a $d((x,S),(x,\tilde S))<\epsilon$. 
-Par conséquent, $G_f$ est transitive.
+Par conséquent, $G_{f_g}$ est transitive.
 
 $\Longrightarrow$ Démontrons la contraposée.
-Si $\Gamma(f)$ n'est pas  fortement connexe, alors 
+Si $\textsc{gig}(f)$ n'est pas  fortement connexe, alors 
 il existe deux configurations $x$  et $x'$ telles qu'aucun chemin de 
-$\Gamma(f)$ ne mène de $x$ à $x'$. 
+$\textsc{gig}(f)$ ne mène de $x$ à $x'$. 
 Soient $S$ et $S'$ deux stratégies et $\varepsilon \in ]0;1[$.
 Alors, pour tout $(x'',S'')$ tel que 
 $d((x'',S''),(x,S))<\varepsilon$ on a $x''$ qui est égal à $x$.
-Comme il n'existe aucun chemin de $\Gamma(f)$ 
+Comme il n'existe aucun chemin de $\textsc{gig}(f)$ 
 qui mène de $x$ à $x'$, 
-les itérations de $G_f$ à partir de 
+les itérations de $G_{f_g}$ à partir de 
 $(x'',S'') = (x,S'')$ ne peuvent atteindre que des points 
-$(x''',S''')$ de $\mathcal{X}$ tels que $x''' \neq x'$, 
+$(x''',S''')$ de $\mathcal{X}_g$ tels que $x''' \neq x'$, 
 et donc ne peuvent pas atteindre $(x',S')$. 
 On peut remarquer que, du fait que $x''' \neq x'$, 
-elles n'atteignent que des points de $\mathcal{X}$
+elles n'atteignent que des points de $\mathcal{X}_g$
 dont la distance à $(x',S')$ est supérieure à 1.
 Pour tout entier naturel $t$, on a 
-$G_f^t(x'',S'') \neq (x',S')$.
-Ainsi $G_f$ n'est pas transitive et 
+$G_{f_g}^t(x'',S'') \neq (x',S')$.
+Ainsi $G_{f_g}$ n'est pas transitive et 
 par contraposée, on a la démonstration souhaitée.
 \end{Proof}
 
@@ -61,19 +61,19 @@ Prouvons à présent le théorème suivant:
 
 
 \begin{Proof}  
-Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$ telle que  $G_f$ est transitive (\textit{i.e.}
+Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$ telle que  $G_{f_g}$ est transitive (\textit{i.e.}
 $f$ appartient à $\mathcal{T}$). 
-Soit $(x,S) \in\mathcal{X}$ et $\varepsilon >0$. Pour 
+Soit $(x,S) \in\mathcal{X}_g$ et $\varepsilon >0$. Pour 
 prouver que $f$ appartient à  $\mathcal{R}$, il suffit de prouver 
 qu'il existe une stratégie $\tilde S$ telle que la distance entre
 $(x,\tilde S)$ et $(x,S)$ est inférieure à  $\varepsilon$ et telle que 
 $(x,\tilde S)$ est un  point périodique.
 
 Soit $t_1=-\lfloor \log_{10}(\varepsilon)\rfloor$  et soit $x'$ la 
-configuration obtenue après $t_1$ itérations de $G_f$ depuis  $(x,S)$. 
-D'après la proposition précédente, $\Gamma(f)$ est fortement connexe.
+configuration obtenue après $t_1$ itérations de $G_{f_g}$ depuis  $(x,S)$. 
+D'après la proposition précédente, $\textsc{gig}(f)$ est fortement connexe.
 Ainsi, il existe une stratégie $S'$ et un nombre $t_2\in\Nats$ tels
-que $x$ est atteint depuis $(x',S')$ après $t_2$ itérations de $G_f$.
+que $x$ est atteint depuis $(x',S')$ après $t_2$ itérations de $G_{f_g}$.
 
 Soit alors la  stratégie $\tilde S$ qui alterne les $t_1$ premiers termes
 de $S$ avec les $t_2$ premiers termes de $S'$. 
@@ -82,7 +82,7 @@ Ainsi $\tilde S$ est définie par
 (s_0,\dots,s_{t_1-1},s'_0,\dots,s'_{t_2-1},s_0,\dots,s_{t_1-1},s'_0,\dots,s'_{t_2-1},s_0,\dots).
 \end{equation*}
 Il est évident que  $(x,\tilde S)$ s'obtient à partir de  $(x,\tilde S)$ après
-$t_1+t_2$ itérations parallèles de $G_f$. Ainsi $(x,\tilde S)$ est un point 
+$t_1+t_2$ itérations parallèles de $G_{f_g}$. Ainsi $(x,\tilde S)$ est un point 
 périodique. Puisque $\tilde s_t$ est égal à $s_t$ pour $t<t_1$, d'après le 
 choix de  $t_1$, on a  $d((x,S),(x,\tilde S))<\epsilon$.
 \end{Proof}
@@ -92,6 +92,6 @@ On peut conclure  que $\mathcal{C} = \mathcal{R} \cap \mathcal{T}
 
 \begin{theorem}%[Characterization of $\mathcal{C}$]
 \label{Th:CaracIC}  
-Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$. La fonction $G_f$ est chaotique  
-si et seulement si $\Gamma(f)$ est fortement connexe.
+Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$. La fonction $G_{f_g}$ est chaotique  
+si et seulement si $\textsc{gig}(f)$ est fortement connexe.
 \end{theorem}
index d21e7c10f58ebf174bb9d30723d92d9295b766aa..c74aaf063e463c156d6342829e7e9ceca306731c 100644 (file)
@@ -1,8 +1,8 @@
 On prouve les théorèmes suivants
 
 
-\begin{theorem} $G_f$  est transitive si et seulement si 
- $\Gamma(f)$ est fortement connexe.
+\begin{theorem} $G_{f_u}$  est transitive si et seulement si 
+ $\textsc{giu}(f)$ est fortement connexe.
 \end{theorem}
 
 
@@ -10,48 +10,48 @@ On prouve les théorèmes suivants
 
 \begin{Proof} 
 
-$\Longleftarrow$ Supposons que $\Gamma(f)$ soit fortement connexe.
-Soient $(x,S)$ et $(x',S')$ deux points de $\mathcal{X}$ et  $\varepsilon >0$. 
+$\Longleftarrow$ Supposons que $\textsc{giu}(f)$ soit fortement connexe.
+Soient $(x,S)$ et $(x',S')$ deux points de $\mathcal{X}_u$ et  $\varepsilon >0$. 
 On construit la stratégie $\tilde S$ telle que la distance 
 entre $(x,\tilde S)$ et  $(x,S)$ est inférieure à 
-$\varepsilon$ et telle que les  itérations parallèles de $G_f$ depuis
+$\varepsilon$ et telle que les  itérations parallèles de $G_{f_u}$ depuis
 $(x,\tilde S)$ mènent au point $(x',S')$.
 
 Pour cela, on pose $t_1 =-\lfloor\log_{10}(\varepsilon)\rfloor$ et   $x''$ la 
 configuration de $\Bool^{\mathsf{N}}$ obtenue depuis $(x,S)$ après $t_1$ 
 itérations
-parallèles de $G_f$. 
-Comme $\Gamma(f)$ est fortement connexe, il existe une 
+parallèles de $G_{f_u}$. 
+Comme $\textsc{giu}(f)$ est fortement connexe, il existe une 
 stratégie $S''$ et un entier  $t_2$ tels que $x'$ est atteint depuis 
-$(x'',S'')$ après $t_2$ itérations de $G_f$.
+$(x'',S'')$ après $t_2$ itérations de $G_{f_u}$.
 
 Considérons à présent la stratégie 
 $\tilde S=(s_0,\dots,s_{t_1-1},s''_0,\dots,s''_{t_2-1},s'_0,s'_1,s'_2,s'_3\dots)$.
 Il est évident que $(x',s')$ est atteint depuis  $(x,\tilde S)$ après 
-$t_1+t_2$ itérations parallèles de $G_f$. Puisque 
+$t_1+t_2$ itérations parallèles de $G_{f_u}$. Puisque 
 $\tilde s_t=s_t$ pour $t<t_1$, grâce au choix de $t_1$,
 on a $d((x,S),(x,\tilde S))<\epsilon$. 
-Par conséquent, $G_f$ est transitive.
+Par conséquent, $G_{f_u}$ est transitive.
 
 $\Longrightarrow$ Démontrons la contraposée.
-Si $\Gamma(f)$ n'est pas  fortement connexe, alors 
+Si $\textsc{giu}(f)$ n'est pas  fortement connexe, alors 
 il existe deux configurations $x$  et $x'$ telles qu'aucun chemin de 
-$\Gamma(f)$ ne mène de $x$ à $x'$. 
+$\textsc{giu}(f)$ ne mène de $x$ à $x'$. 
 Soient $S$ et $S'$ deux stratégies et $\varepsilon \in ]0;1[$.
 Alors, pour tout $(x'',S'')$ tel que 
 $d((x'',S''),(x,S))<\varepsilon$ on a $x''$ qui est égal à $x$.
-Comme il n'existe aucun chemin de $\Gamma(f)$ 
+Comme il n'existe aucun chemin de $\textsc{giu}(f)$ 
 qui mène de $x$ à $x'$, 
-les itérations de $G_f$ à partir de 
+les itérations de $G_{f_u}$ à partir de 
 $(x'',S'') = (x,S'')$ ne peuvent atteindre que des points 
-$(x''',S''')$ de $\mathcal{X}$ tels que $x''' \neq x'$, 
+$(x''',S''')$ de $\mathcal{X}_u$ tels que $x''' \neq x'$, 
 et donc ne peuvent pas atteindre $(x',S')$. 
 On peut remarquer que, du fait que $x''' \neq x'$, 
-elles n'atteignent que des points de $\mathcal{X}$
+elles n'atteignent que des points de $\mathcal{X}_u$
 dont la distance à $(x',S')$ est supérieure à 1.
 Pour tout entier naturel $t$, on a 
-$G_f^t(x'',S'') \neq (x',S')$.
-Ainsi $G_f$ n'est pas transitive et 
+$G_{f_u}^t(x'',S'') \neq (x',S')$.
+Ainsi $G_{f_u}$ n'est pas transitive et 
 par contraposée, on a la démonstration souhaitée.
 \end{Proof}
 
@@ -64,19 +64,19 @@ Prouvons à présent le théorème suivant:
 
 
 \begin{Proof}  
-Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$ telle que  $G_f$ est transitive (\textit{i.e.}
+Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$ telle que  $G_{f_u}$ est transitive (\textit{i.e.}
 $f$ appartient à $\mathcal{T}$). 
-Soit $(x,S) \in\mathcal{X}$ et $\varepsilon >0$. Pour 
+Soit $(x,S) \in\mathcal{X}_u$ et $\varepsilon >0$. Pour 
 prouver que $f$ appartient à  $\mathcal{R}$, il suffit de prouver 
 qu'il existe une stratégie $\tilde S$ telle que la distance entre
 $(x,\tilde S)$ et $(x,S)$ est inférieure à  $\varepsilon$ et telle que 
 $(x,\tilde S)$ est un  point périodique.
 
 Soit $t_1=-\lfloor \log_{10}(\varepsilon)\rfloor$  et soit $x'$ la 
-configuration obtenue après $t_1$ itérations de $G_f$ depuis  $(x,S)$. 
-D'après la proposition précédente, $\Gamma(f)$ est fortement connexe.
+configuration obtenue après $t_1$ itérations de $G_{f_u}$ depuis  $(x,S)$. 
+D'après la proposition précédente, $\textsc{giu}(f)$ est fortement connexe.
 Ainsi, il existe une stratégie $S'$ et un nombre $t_2\in\Nats$ tels
-que $x$ est atteint depuis $(x',S')$ après $t_2$ itérations de $G_f$.
+que $x$ est atteint depuis $(x',S')$ après $t_2$ itérations de $G_{f_u}$.
 
 Soit alors la  stratégie $\tilde S$ qui alterne les $t_1$ premiers termes
 de $S$ avec les $t_2$ premiers termes de $S'$. 
@@ -85,7 +85,7 @@ Ainsi $\tilde S$ est définie par
 (s_0,\dots,s_{t_1-1},s'_0,\dots,s'_{t_2-1},s_0,\dots,s_{t_1-1},s'_0,\dots,s'_{t_2-1},s_0,\dots).
 \end{equation*}
 Il est évident que  $(x,\tilde S)$ s'obtient à partir de  $(x,\tilde S)$ après
-$t_1+t_2$ itérations parallèles de $G_f$. Ainsi $(x,\tilde S)$ est un point 
+$t_1+t_2$ itérations parallèles de $G_{f_u}$. Ainsi $(x,\tilde S)$ est un point 
 périodique. Puisque $\tilde s_t$ est égal à $s_t$ pour $t<t_1$, d'après le 
 choix de  $t_1$, on a  $d((x,S),(x,\tilde S))<\epsilon$.
 \end{Proof}
@@ -95,7 +95,7 @@ On peut conclure  que $\mathcal{C} = \mathcal{R} \cap \mathcal{T}
 
 \begin{theorem}%[Characterization of $\mathcal{C}$]
 \label{Th:CaracIC}  
-Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$. La fonction $G_f$ est chaotique  
-si et seulement si $\Gamma(f)$ est fortement connexe.
+Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$. La fonction $G_{f_u}$ est chaotique  
+si et seulement si $\textsc{giu}(f)$ est fortement connexe.
 \end{theorem}
 
index 1291793d6ff9c3ba12fe2626d8c55b34061ff708..2a2a167b3c7a4b6d6b732fb7fb561f5ca06043c6 100644 (file)
@@ -1,80 +1,60 @@
 
-Dans  cette  partie, les  définitions  fondamentales  liées  au chaos
-dans  les systèmes booléens sont rappelées.
 
+Dans  cette  partie, les  définitions  fondamentales  liées  au chaos  dans  les
+systèmes booléens sont rappelées et plusieurs résultats théoriques sont montrés.
 
-
-Soit un espace topologique $(\mathcal{X},\tau)$ et une fonction continue $f :
-\mathcal{X} \rightarrow \mathcal{X}$.
-
-
-
-
-\begin{Def}[Chaos selon Devaney~\cite{Devaney}]
-La fonction $f$  \emph{chaotique} sur $(\mathcal{X},\tau)$ 
-si elles est régulière et topologiquement transitive.
+\begin{Def}[Chaos (Devaney)]
+Une fonction $k$ continue sur un espace métrique $(\mathcal{X},d)$ est \textbf{chaotique}
+si elle est transitive,
+régulière et fortement sensible aux conditions initiales.
 \end{Def}
 
-
-
-\begin{Def}[Transitivite topologique]
-La fonction  $f$ est dite  \emph{topologiquement transitive} si, 
-pour chaque paire d'ensembles ouverts
-$U,V \subset \mathcal{X}$, 
-il existe  $k>0$ tel que $f^k(U) \cap V \neq
-\varnothing$.
+\begin{Def}[Transitivité]
+Une fonction $k$ est  \textbf{transitive} sur $(\mathcal{X},d)$ si  la propriété suivante est établie:
+\[
+\forall X, Y\in \mathcal{X},
+\forall \epsilon > 0,
+\exists  Z \in \mathcal{X},
+\exists  t \in \Nats,
+d(X,Z) < \epsilon  \land k^t(Z) = Y
+\] 
 \end{Def}
 
 \begin{Def}[Point périodique]
-  Un point $P  \in \mathcal{X}$ est dit \emph{périodique}  de période $t$ pour
+  Un point $P  \in \mathcal{X}$ est dit \textbf{périodique}  de période $t$ pour
   une fonction $k$ si $t$ est un entier  naturel non nul tel que $k^t(P) = P$ et
   pour tout $n$, $0 < n \le t-1$, on a $k^n(P) \neq P$.
-  Par la  suite, $\emph{Per(k)}$ dénote  l'ensemble des points  périodiques de
+  Par la  suite, $\textbf{Per(k)}$ dénote  l'ensemble des points  périodiques de
   $k$ dans $\mathcal{X}$ de période quelconque.
 \end{Def}
 
-
-
 \begin{Def}[Régularité]
-La fonction $f$ est dite \emph{régulière} 
-sur $(\mathcal{X}, \tau)$ si l'ensemble des points périodiques 
- de $f$ is dense in $\mathcal{X}$: 
-pour chaque point $x \in \mathcal{X}$, chaque voisin 
-de $x$ contient au moins un point périodique 
-(sans que la période soit nécessairement constante).
+Une fonction $k$  est dite \textbf{régulière} dans $(\mathcal{X},d)$ 
+si l'ensemble des points périodiques de $k$ est dense dans $\mathcal{X}$, 
+c'est-à-dire  si la propriété suivante est établie: 
+\[
+\forall X \in \mathcal{X}, \forall \epsilon > 0, \exists Y \in \textit{Per}(k) 
+ \textrm{ tel que } d(X,Y) < \epsilon.
+\]
 \end{Def}
 
-
-
-
-
-
-
-
-
-La propriété de chaos est souvent associée à la notion de 
-\og sensibilité aux conditions initiales\fg{}, notion définie elle 
-sur un espace métrique $(\mathcal{X},d)$ par:
-
-
 \begin{Def}[Forte sensibilité aux conditions initiales]
-Une fonction $k$ définie sur $(\mathcal{X},\tau)$ 
-est  \emph{fortement sensible aux conditions initiales} 
+Une fonction $k$ définie sur $(\mathcal{X},d)$ 
+est  \textbf{fortement sensible aux conditions initiales} 
 s'il existe une valeur $\epsilon> 0$ telle que
 pour tout $X \in \mathcal{X}$ et pour tout 
  $\delta > 0$, il existe  $Y \in  \mathcal{X}$ et  
 $t \in \Nats$ qui vérifient  $d(X,Y) < \delta$ et 
 $d(k^t(X) , k^t(Y)) > \epsilon$.
-
-La constante $\delta$ est appelée \emph{constante de sensibilité} de $f$.
 \end{Def}
 
+
 John Banks et ses collègues ont cependant
 démontré que la sensibilité aux conditions initiales est une conséquence
 de la régularité et de la transitivité topologique~\cite{Banks92}. 
-
-
-
+On ne se focalise donc dans la suite que sur ces deux dernières
+propriétés pour caractériser les fonctions booléennes $f$ 
+rendant chaotique la fonction engendrée $G_f$.
 
 
 
index 8210825f8bf5ff2da646b5c0d7320411a05ca9d3..23c1a19083fd78c669723f475935022aaad3a973 100644 (file)
Binary files a/main.pdf and b/main.pdf differ
index 27c159c8017829f0a7909829d1402375a90a4494..6887ceca45aa7b5742604918e5cfb1fa59769b6b 100644 (file)
--- a/main.tex
+++ b/main.tex
@@ -177,7 +177,7 @@ de l'asynchronisme en terme de vitesse de convergence.
 au chaos} 
 
 \chapter{Characterisation des systèmes 
-  discrets chaotiques}
+  discrets chaotiques pour les schémas unaires et généralisés}
 
 La première section  rappelle ce que sont les systèmes dynamiques chaotiques.
 Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), 
@@ -197,7 +197,9 @@ On montre qu'on a des résultats similaires.
 \input{15TSI}
 
 
-générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien).
+\section{Générer des fonctions chaotiques}
+\input{11FCT} 
+
 
 \chapter{Prédiction des systèmes chaotiques}
 
@@ -249,26 +251,22 @@ to discharge proofs notably by deductive analysis~\cite{CGK05}.
 \chapter{Preuves sur les systèmes chaotiques}
 
 
-\section{Continuité de $G_f$ dans $(\mathcal{X},d)$}\label{anx:cont}
+\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont}
 \input{annexecontinuite.tex}
 
 
-
-
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:unaire}
+\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire}
 \input{caracunaire.tex}
 
 
-\section{Preuve que $d$ est une distance sur $\mathcal{X}$}\label{anx:distance:generalise}
+\section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise}
 \input{preuveDistanceGeneralisee}
 
 
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:generalise}
+\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_g}$ dans $(\mathcal{X}_g,d)$}\label{anx:chaos:generalise}
 \input{caracgeneralise.tex}
 
 
-
-
 \section{Théorème~\ref{th:Adrien}}\label{anx:sccg}
 \input{annexesccg}
 
index a71a36d25735bb68daecf2a65e16e2dbe0a5d1fb..0b24636263588e3ec9a4fb3386f96ae18e67a10f 100644 (file)
@@ -110,7 +110,7 @@ connus~\cite{Bah00} de conditions suffisantes établissant la convergence
 du système pour les itérations généralisées sont
 basés sur l'absence de cycles. Ils ne peuvent donc pas être appliqués ici.
 
-\begin{figure}[ht]
+\begin{figure}%[ht]
   \begin{center}
     $$ f(x)= \left \{
     \begin{array}{lll}
index 1b8843d80ea820bd7b3f7d49a11b636d5ead2bed..6f968bbc292d48a37a491762ff62e7b812fed92b 100644 (file)
@@ -1,21 +1,61 @@
-\JFC{donner dans les rappels les délais et les propriétés de convergence universelle}
 
-\JFC{Statuer sur la taille des exemples traitables par la démarche, cf données pratiques}
 
-\section{Exemple jouet}
 
-\begin{xpl}
-  On considère dans ce chapitre l'exemple où trois éléments dans $\Bool$. 
-  Chaque configuration est ainsi un élement de $\{0,1\}^3$, \textit{i.e.}, 
-  un nombre entre 0 et 7. 
-  La \Fig{fig:map} précise la fonction $f$ considérée et 
-  la \Fig{fig:xplgraph} donne son graphe d'intéraction.
-  
+L'étude de convergence de systèmes dynamiques discrets est simple à vérifier 
+pratiquement pour le mode synchrone. Lorsqu'on introduit des stratégies 
+pseudo périodiques pour les modes unaires et généralisées, le problème 
+se complexifie. C'est pire encore lorsqu'on traite des itérations asynchrones 
+et mixes prenant de plus en compte les délais. 
+
+Des méthodes de simulation basées sur des stratégies et des délais générés aléatoirement 
+ont déjà été présentées~\cite{BM99,BCV02}.
+Cependant, comme ces implantations ne sont pas exhaustives, elles ne donnent un résultat 
+formel que lorsqu'elles fournissent un contre-exemple. Lorsqu'elles exhibent une convergence,  
+cela ne permet que donner une intuition de convergence, pas  une preuve.
+Autant que nous sachions, aucune démarche de preuve formelle automatique 
+de convergence n'a jamais été établie. 
+Dans le travail théorique~\cite{Cha06}, Chandrasekaran a montré que les itérations asynchrones sont convergentes 
+si et seulement si on peut construire une fonction de Lyaponov décroissante, mais il ne donne pas de méthode 
+automatique pour construire cette fonction.
+
+Un outil qui construirait automatiquement toutes 
+les transitons serait le bienvenu. 
+Pour peu qu'on établisse la preuve de correction et de complétude de la 
+démarche, la convergence du réseau discret ne repose alors que sur le verdict 
+donné par l'outil. 
+Cependant, même pour des réseaux discrets à peu d'éléments, 
+le nombre de configurations induites explose rapidement.
+Les \emph{Model-Checkers}~\cite{Hol03,nusmv02,Blast07,MCErlang07,Bogor03}  
+sont des classes d'outils qui addressent le problème de vérifier automatiquement
+qu'un modèle vérifie une propriété donnée. Pour traiter le problème d'explosion 
+combinatoire, ces outils appliquent des méthodes d'ordre partiel, d'abstraction,
+de quotientage selon une relation d'équivalence.
+
+Ce chapitre montre comment nous simulons 
+des réseaux discrets selon toutes les sortes d'itérations pour établir 
+formellement leur convergence (ou pas).
+Nous débutons par un exemple et faisons quelques rappels sur 
+le langage PROMELA qui est le langage du model-checker 
+SPIN~\cite{Hol03} (\Sec{sec:spin:promela}).
+Nous présentons ensuite la démarche de traduction 
+de réseaux discrets dans PROMELA (\Sec{sec:spin:translation}).   
+Les théorèmes de correction et de complétude de la démarche
+sont ensuite donnés à la (\Sec{sec:spin:proof}). 
+Des données pratiques comme la complexité et des synthèses d'expérimentation
+sont ensuite fournies (\Sec{sec:spin:practical}). 
+
+
+
+
+
+
+
+%\section{Exemple jouet}
+
+
 \begin{figure}[ht]
-  \centering
-  \begin{minipage}%[h]
-    {.6\linewidth}
-    \begin{center}
+  \begin{center}
+    \subfigure[Fonction à itérer]{
       $ F(x)= \left \{
         \begin{array}{rcl}
           f_1(x_1,x_2,x_3) & = & x_1.\overline{x_2} + x_3  \\
         \end{array}
       \right.
       $        
-    \end{center}
-    \caption{Fonction à itérer}    \label{fig:map}
-  \end{minipage}
-  \begin{minipage}%[h]
-    {.35\linewidth}
-    \begin{center}
+      \label{fig:map}
+    }
+    \hfill
+    \subfigure[Graphe d'intéraction]{
       \includegraphics[width=4cm]{images/xplCnxMc.eps}
-    \end{center}
-    \caption{Graphe d'intéraction}
-    \label{fig:xplgraph}
-    \end{minipage}
+      \label{fig:xplgraph}
+    }
+  \end{center}
   \caption{Exemple pour SDD $\approx$ SPIN.}
 \end{figure}
 
 
 
+\begin{xpl}
+  On considère un exemple à trois éléments dans $\Bool$. 
+  Chaque configuration est ainsi un élement de $\Bool^3$, \textit{i.e.}, 
+  un nombre entre 0 et 7. 
+  La \Fig{fig:map} précise la fonction $f$ considérée et 
+  la \Fig{fig:xplgraph} donne son graphe d'intéraction.
+  
+
+
+
 
 
 
-On peut facilement vérifier que toutes les itérations parallèles initialisées 
+On peut facilement vérifier que toutes les itérations synchrones initialisées 
 avec $x^0 \neq 7$ soit $(111)$ 
 convergent vers $2$ soit $(010)$; celles initialisées avec 
 $x^0=7$ restent en 7.
-Pour les autres modes synchrones avec  une 
-stratégie pseudo périodique, les comportements selon la configuration initiale:
+Pour les  mode unaires ou généralisés  avec  une 
+stratégie pseudo périodique, on a des comportements qui dépendent 
+de la configuration initiale:
 \begin{itemize}
 \item initialisée avec 7, les itérations restent en 7;
 \item initialisée avec 0, 2, 4 ou 6 les itérations convergent vers 2;
@@ -92,47 +140,50 @@ chan sync_mutex=[1] of {bool};
 \end{figure}
 
 
-Les types primaires de PROMELA sont \texttt{bool}, \texttt{byte},
-\texttt{short} et  \texttt{int}. Comme dans le langage C par exemple,
-on peut déclarer des tableaux à une dimension de taille constante 
+% Les types primaires de PROMELA sont \texttt{bool}, \texttt{byte},
+% \texttt{short} et  \texttt{int}.
+Comme en C,
+on peut déclarer des tableaux à une dimension 
 ou des nouveaux types de données (introduites par le mot clef 
-\verb+typedef+). Ces derniers sont utilisés pour définir des tableaux à deux
-dimensions.
+\verb+typedef+). % Ces derniers sont utilisés
+% pour définir des tableaux à deux
+% dimensions.
 
 \begin{xpl}
 Le programme donné à la {\sc Figure}~\ref{fig:arrayofchannels} correspond à des 
-déclarations de variables qui serviront dans l'exemple jouet de ce chapitre. 
-Il définit tout d'abord:
+déclarations de variables qui servent dans l'exemple de ce chapitre. 
+Il définit:
 \begin{itemize}
 \item les constantes \verb+N+ et \verb+d_0+ qui précisent respectivement le nombre
  $n$ d'éléments et le délais maximum $\delta_0$;
 \item les deux tableaux  (\verb+X+ et \verb+Xp+) de \verb+N+ variables booléennes; 
 les cellules \verb+X[i]+ et \verb+Xp[i]+ sont associées à la variables $x_{i+1}$
-d'un système dynamique discret 
-(le décalages d'un entier est dû à l'indexation à partir de zéro des cellules d'un tableau);
-Elles  mémorisent les  valeurs de $X_{i+1}$ respectivement avant et après sa mise à jour; 
+d'un système dynamique discret;
+elles  mémorisent les  valeurs de $X_{i+1}$ respectivement avant et après sa mise à jour; 
 il suffit ainsi de comparer  \verb+X+ et \verb+Xp+ pour constater si $x$ à changé ou pas;
 \item le tableau \verb+mods+ contient les éléments qui doivent être modifiés lors de l'itération 
 en cours; cela correspond naturellement à l'ensemble des éléments $s^t$;
 \item le type de données structurées \verb+vals+ et le tableau de tableaux 
  \verb+Xd[+$i$\verb+].v[+$j$\verb+]+ qui vise à mémoriser $x_{j+1}^{D^{t-1}_{i+1j+1}}$
- pour l'itération au temps $t$ (en d'autres termes, utile lors du calcul de $x^{t}$).
+ pour l'itération au temps $t$. 
+%(en d'autres termes, utile lors du calcul de $x^{t}$).
 \end{itemize}
 
 
-Puisque le décalage d'un indices ne change pas fondamentalement 
-le comportement de la version PROMELA par rapport au modèle initial
-et pour des raisons de clarté, on utilisera par la suite la même 
-lettre d'indice entre les deux niveaux (pour le modèle: $x_i$ et pour  PROMELA: 
-\texttt{X[i]}). Cependant, ce décalage devra être conservé mémoire.
+Puisque le décalage d'un indices ne change pas fondamentalement 
+le comportement de la version PROMELA par rapport au modèle initial
+et pour des raisons de clarté, on utilisera par la suite la même 
+lettre d'indice entre les deux niveaux (pour le modèle: $x_i$ et pour  PROMELA: 
+\texttt{X[i]}). Cependant, ce décalage devra être conservé mémoire.
 
-Une donnée de type \texttt{channel} permet le 
+Déclarée avec le mot clef \verb+chan+, 
+une donnée de type \texttt{channel} permet le 
 transfert de messages entre processus dans un ordre FIFO.
-Elles serait déclarée avec le mot clef \verb+chan+ suivi par sa capacité 
-(qui est constante), son nom et le type des messages qui sont stockés dans ce canal.
+% Elles serait  suivi par sa capacité 
+(qui est constante), son nom et le type des messages qui sont stockés dans ce canal.
 Dans l'exemple précédent, on déclare successivement:
 \begin{itemize}
-\item un canal \verb+sent+ qui vise à mémoriser\verb+d_0+ messages de type
+\item un canal \verb+sent+ qui vise à mémoriser \verb+d_0+ messages de type
  \verb+bool+; le tableau nommé \verb+channels+ de \verb+N+*\verb+N+
  éléments de type \verb+a_send+ est utilisé pour mémoriser les valeurs intermédiaires $x_j$;
  Il permet donc de temporiser leur emploi par d'autres elements $i$.
@@ -143,8 +194,8 @@ chacun un message booléen et utilisé ensuite comme des sémaphores.
 
 %\subsection{PROMELA Processes} 
 Le langage PROMELA exploite la notion de \emph{process} pour modéliser la concurrence
-au sein de systèmes. Un process est déclaré avec le mot-clé
-\verb+proctype+  et est  instancié soit immédiatement (lorsque sa déclaration est préfixée 
+au sein de systèmes. Un process est  instancié soit immédiatement
+(lorsque sa déclaration est préfixée 
  par le mot-clef  \verb+active+) ou bien au moment de l'exécution de l'instruction 
 \texttt{run}.
 Parmi tous les process,  \verb+init+ est le process  initial qui permet 
@@ -304,7 +355,7 @@ suivi par des mises à jour: ceci est réalisé grâce à la modification de la
 La mise à jour de l'ensemble  $s^t=\{s_1,\ldots, s_m\}$  des éléments qui constituent la stratégie
 $(s^t)^{t \in \Nats}$ est implantée à l'aide du process  \verb+update_elems+ fourni à la 
 {\sc Figure}~\ref{fig:proc}.  
-Ce process actif attend jusqu'à ce qu'il soit débloqué par le process
+Ce processus actif attend jusqu'à ce qu'il soit débloqué par le process
 \verb+scheduler+  à l'aide du sémaphore \verb+unlock_elements_update+.
 L'implantation se déroule en cinq étapes:
 
@@ -514,7 +565,7 @@ n'y a pas d'arc de $j$ à $i$ dans le graphe d'incidence;
 
 L'introduction de l'indéterminisme  à la fois dans les fonctions \verb+fetch_values+ 
 et \verb+diffuse_values+ est nécessaire dans notre contexte. Si celui-ci n'était 
-présent que dans la fonction \verb+fetch_values+, nous ne pourrions pas par exemple récupérer *
+présent que dans la fonction \verb+fetch_values+, nous ne pourrions pas par exemple récupérer 
 la valeur $x_i^{(t)}$ sans considérer la valeur $x_i^{(t-1)}$.  
 De manière duale, si le  non déterminisme  était uniquement
 utilisé dans la fonction \verb+diffuse_values+, alors chaque fois qu'une valeur serait 
@@ -620,11 +671,11 @@ puis présente ensuite les expérimentations issues de ce travail.
   Le nombre de configurations est donc borné par $2^{m(\delta_0+1)+n(n+2)}$.
   On remarque que cette borne est traitable par SPIN pour des valeurs raisonnables de  $n$, 
   $m$ et $\delta_0$.
-  \JFC{Donner un ordre de grandeur de cet ordre de grandeur}
+  %\JFC{Donner un ordre de grandeur de cet ordre de grandeur}
   
 \end{Proof}
 
-La méthode détaillée ici a pu être appliquée sur l'exemple jouet
+La méthode détaillée ici a pu être appliquée sur l'exemple
 pour prouver formellement sa convergence universelle.
 
 On peut remarquer que SPIN n'impose l'équité faible qu'entre les process
@@ -645,7 +696,7 @@ Cependant en raison de l'explosion de la taille du produit entre
 l'automate de Büchi issu de cette formule et celui issu du programme  PROMELA,
 SPIN n'arrive pas à vérifier si la convergence universelle est établie 
 ou non sur des exemples 
-simples\JFC{faire référence à un tel exemple}. 
+simples.%\JFC{faire référence à un tel exemple}. 
 
 Ce problème a été pratiquement résolu en laissant SPIN 
 générer toutes les traces d'exécution,
@@ -669,7 +720,8 @@ Dans le cas contraire on doit analyser le contre exemple produit par SPIN.
 
 
 La méthode détaillée ici a été appliquée sur des exemples pour prouver formellement 
-leur convergence ou leur divergence (\Fig{fig:async:exp}).
+leur convergence ou leur divergence (\Fig{fig:exp:promela}) 
+avec ou sans délais.
 Dans ces expériences, les délais ont été bornés par $\delta_0=10$.
 Dans ce tableau,  $P$ est vrai ($\top$) si et seulement si la convergence 
 universelle 
@@ -679,95 +731,93 @@ $T$ est le temps d'exécution sur un  Intel Centrino Dual Core 2 Duo @1.8GHz ave
 pour établir un verdict.
 
 
-\begin{figure}
-\begin{center}
-\begin{tiny}
-\begin{tabular}{|*{7}{c|}}
-\cline{2-7}
-\multicolumn{1}{c|}{ }
-&\multicolumn{3}{|c|}{Parallèles} & \multicolumn{3}{|c|}{Chaotiques} \\
-\cline{2-7}
-\multicolumn{1}{c|}{ }& 
-P & M & T&
-P & M & T \\
-\hline %\cline{2-7}
-\textit{RE}  &
-$\top$ & 2.7 & 0.01s & 
-$\bot$ & 369.371 & 0.509s \\ 
-\hline %\cline{2-7}
-\cite{RC07} &
-$\bot$ & 2.5 & 0.001s & % RC07_sync.spin
-$\bot$ & 2.5 & 0.01s \\ % RC07_sync_chao_all.spin
-\hline
-\cite{BM99} &
-$\top$ & 36.7 & 12s & % BM99_sync_para.spin
-$\top$ &  &  \\ % BM99_sync_chao.spin
-\hline
-\end{tabular}
-\end{tiny}
-\end{center}
-\caption{Expérimentations avec des itérations synchrones}\label{fig:sync:exp}
-\end{figure} 
-
-
-
-\begin{figure}
-\begin{center}
-\tiny
-\begin{tabular}{|*{13}{c|}}
-\cline{2-13}
-\multicolumn{1}{c|}{ }
-&\multicolumn{6}{|c|}{Mixed Mode} & \multicolumn{6}{|c|}{Only Bounded} \\
-\cline{2-13}
-\multicolumn{1}{c|}{ }
-&\multicolumn{3}{|c|}{Parallel} & \multicolumn{3}{|c|}{Pseudo-Periodic} &
-\multicolumn{3}{|c|}{Parallel} & \multicolumn{3}{|c|}{Pseudo-Periodic} \\
-\cline{2-13}
-\multicolumn{1}{c|}{ }
-&P & M & T &
-P & M & T &
-P & M & T&
-P & M & T \\
-\hline %cline{2-13}
-\textit{RE} & 
-$\top$ & 409 & 1m11s&
-$\bot$ & 370 & 0.54 &
-$\bot$ & 374 & 7.7s&
-$\bot$ & 370 & 0.51s \\
-\hline %\cline{2-13}
-AC2D 
-&$\bot$ & 2.5 & 0.001s  % RC07_async_mixed.spin
-&$\bot$ & 2.5 & 0.01s   % RC07_async_mixed_all.spin
-&$\bot$ & 2.5 & 0.01s   % RC07_async.spin
-&$\bot$ & 2.5 & 0.01s  \\ % RC07_async_all.spin 
-\hline %\cline{2-13}
-\cite{BM99}
-&$\top$ &  &   %BM99_mixed_para.spin 
-&$\top$ &  &    % RC07_async_mixed_all.spin
-&$\bot$ &  &    % RC07_async.spin
-&$\bot$ &  &   \\ % RC07_async_all.spin 
-\hline %\cline{2-13}
-\end{tabular}
-\end{center}
-\caption{Expérimentations avec des itérations asynchrones}\label{fig:async:exp}
+\begin{figure}[ht]
+  \begin{center}
+    \begin{tiny}
+      \subfigure[Sans délais]{
+        \begin{tabular}{|*{7}{c|}}
+          \cline{2-7}
+          \multicolumn{1}{c|}{ }
+          &\multicolumn{3}{|c|}{Synchrones} & \multicolumn{3}{|c|}{Généralisées} \\
+          \cline{2-7}
+          \multicolumn{1}{c|}{ }& 
+          P & M & T&
+          P & M & T \\
+          \hline %\cline{2-7}
+          \textit{RE}  &
+          $\top$ & 2.7 & 0.01s & 
+          $\bot$ & 369.371 & 0.509s \\ 
+          \hline %\cline{2-7}
+          \cite{RC07} &
+          $\bot$ & 2.5 & 0.001s & % RC07_sync.spin
+          $\bot$ & 2.5 & 0.01s \\ % RC07_sync_chao_all.spin
+          \hline
+          \cite{BM99} &
+          $\top$ & 36.7 & 12s & % BM99_sync_para.spin
+          $\top$ &  &  \\ % BM99_sync_chao.spin
+          \hline
+        \end{tabular}
+        \label{fig:sync:exp}  
+      }
+    
+      \subfigure[Avec délais]{
+        \begin{tabular}{|*{13}{c|}}
+          \cline{2-13}
+          \multicolumn{1}{c|}{ }
+          &\multicolumn{6}{|c|}{Mode Mixe} & \multicolumn{6}{|c|}{Seulement borné} \\
+          \cline{2-13}
+          \multicolumn{1}{c|}{ }
+          &\multicolumn{3}{|c|}{Synchrones} & \multicolumn{3}{|c|}{Pseudo-Périodique} &
+          \multicolumn{3}{|c|} {Synchrones} & \multicolumn{3}{|c|}{Pseudo-Périodique} \\
+          \cline{2-13}
+          \multicolumn{1}{c|}{ }
+          &P & M & T &
+          P & M & T &
+          P & M & T&
+          P & M & T \\
+          \hline %cline{2-13}
+          \textit{RE} & 
+          $\top$ & 409 & 1m11s&
+          $\bot$ & 370 & 0.54 &
+          $\bot$ & 374 & 7.7s&
+          $\bot$ & 370 & 0.51s \\
+          \hline %\cline{2-13}
+          AC2D 
+          &$\bot$ & 2.5 & 0.001s  % RC07_async_mixed.spin
+          &$\bot$ & 2.5 & 0.01s   % RC07_async_mixed_all.spin
+          &$\bot$ & 2.5 & 0.01s   % RC07_async.spin
+          &$\bot$ & 2.5 & 0.01s  \\ % RC07_async_all.spin 
+          \hline %\cline{2-13}
+          \cite{BM99}
+          &$\top$ &  &   %BM99_mixed_para.spin 
+          &$\top$ &  &    % RC07_async_mixed_all.spin
+          &$\bot$ &  &    % RC07_async.spin
+          &$\bot$ &  &   \\ % RC07_async_all.spin 
+          \hline %\cline{2-13}
+        \end{tabular}
+        \label{fig:async:exp}
+      }
+    \end{tiny}
+  \end{center}
+  \caption{Résultats des simulations Promela des SDDs}\label{fig:exp:promela}
 \end{figure} 
 
 
 
-L'exemple \textit{RE} est l'exemple jouet de ce chapitre,
+L'exemple \textit{RE} est l'exemple de ce chapitre,
 \cite{RC07} concerne un réseau composé de deux gènes
 à valeur dans $\{0,1,2\}$,
 AC2D est un automate cellulaire  avec 9 elements prenant des
 valeurs booléennes en fonction de 
 de 4 voisins et
 \cite{BM99} consiste en  10 process
-qui modifient leur valeur booléennes dans un graphe d'adjacence proche 
+qui modifient leurs valeurs booléennes dans un graphe d'adjacence proche 
 du graphe complet.
 
 
-L'exemple jouet \textit{RE} a été prouvé comme universellement convergent.
+L'exemple  \textit{RE} a été prouvé comme universellement convergent.
 \JFC{statuer sur AC2D}
-Comme la convergence n'est déjà pas établie pour les itérations parallèles
+Comme la convergence n'est déjà pas établie pour les itérations synchrones
 de~\cite{RC07}, il en est donc 
 de même pour les itérations asynchrones.
 La {\sc Figure}~\ref{fig:RC07CE} donne une trace de la sortie de SPIN de menant à la violation 
@@ -817,28 +867,7 @@ lorsque pour $\delta_0$ vaut 1. Il ne peut donc y avoir convergence universelle.
  
 \section{Conclusion}
 \label{sec:spin:concl}
-Des méthodes de simulation basées sur des stratégies et des délais générés aléatoirement 
-ont déjà été présentées~\cite{BM99,BCV02}.
-Cependant, comme ces implantations ne sont pas exhaustives, elles ne donnent un résultat 
-formel que lorsqu'elles fournissent un contre-exemple. Lorsqu'elles exhibent une convergence,  
-cela ne permet que donner une intuition de convergence, pas  une preuve.
-Autant que nous sachions, aucune démarche de preuve formelle automatique 
-de convergence n'a jamais été établie. 
-Dans le travail théorique~\cite{Cha06}, Chandrasekaran a montré que les itérations asynchrones sont convergentes 
-si et seulement si on peut construire une fonction de Lyaponov décroissante, mais il ne donne pas de méthode 
-automatique pour construire cette fonction.
 
-\JFC{Déplacer ceci dans les perspective}
-Among drawbacks of the method,  one can argue that bounded delays is only 
-realistic in practice for close systems. 
-However, in real large scale distributed systems where bandwidth is weak, 
-this restriction is too strong. In that case, one should only consider that 
-matrix $s^{t}$ follows the  iterations of the system, \textit{i.e.},
-for all $i$, $j$, $1 \le i \le j \le n$,  we have$
-\lim\limits_{t \to \infty} s_{ij}^t = + \infty$. 
-One challenge of this work should consist in weakening this constraint. 
-We plan as future work to take into account other automatic approaches 
-to discharge proofs notably by deductive analysis~\cite{CGK05}.