On suppose tout d'abord que ${\mathsf{N}}$ a une boucle
négative.
Alors, d'après la définition de
-$G(f)$, il existe $x\in\Bool^{\mathsf{N}}$ tel que $f_{{\mathsf{N}}{\mathsf{N}}}(x)<0$.
+$G(f)$, il existe $x\in\Bool^{\mathsf{N}}$ tel que $f_{{\mathsf{N}}}(x)<0$.
Ainsi si $x_{\mathsf{N}}=0$, on a $f_{\mathsf{N}}(x)>f_{\mathsf{N}}(\overline{x}^{\mathsf{N}})$, et donc
$x_{\mathsf{N}}=0\neq f_{\mathsf{N}}(x)$ et
$\overline{x}^{\mathsf{N}}_{\mathsf{N}}=1\neq f_{\mathsf{N}}(\overline{x}^{\mathsf{N}})$;