]> AND Private Git Repository - hdrcouchot.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
début ANN chaotique ?
authorJean-François Couchot <couchot@couchot.iut-bm.univ-fcomte.fr>
Tue, 16 Jun 2015 13:28:24 +0000 (15:28 +0200)
committerJean-François Couchot <couchot@couchot.iut-bm.univ-fcomte.fr>
Tue, 16 Jun 2015 13:28:24 +0000 (15:28 +0200)
chaosANN.tex
main.pdf

index cdcd912b687b2b09b3a83942fcf02e209c204b2e..cb1ce2a0a649cc03911b446a86d702eefa3a419f 100644 (file)
@@ -164,43 +164,43 @@ des itération unaires chaotiques?}
 Cette section s'intéresse à étudier le comportement d'un réseau de neurones 
 face à des itérations unaires chaotiques, comme définies à 
 la section~\ref{sec:TIPE12}.
+Plus précésment, on considère dans cette partie une fonction  dont le graphe 
+des itérations unaires est fortement connexe et une séquence dans 
+$[n]^{\mathds{N}}$. On cherche à construire un réseau de neurones
+qui approximerait les itérations de la fonction $G_{f_u}$ comme définie 
+à l'équation~(\ref{eq:sch:unaire}).
 
+Sans perte de généralité, on considère dans ce qui suit une instance
+de de fonction à quatre éléments.
 
-\subsection{Representing Chaotic Iterations for Neural Networks
+\subsection{Construction du réseau
 \label{section:translation}
 
-The  problem  of  deciding  whether  classical  feedforward  ANNs  are
-suitable  to approximate  topological chaotic  iterations may  then be
-reduced to  evaluate such neural  networks on iterations  of functions
-with  Strongly  Connected  Component  (SCC)~graph of  iterations.   To
-compare with  non-chaotic iterations, the experiments  detailed in the
-following  sections  are carried  out  using  both  kinds of  function
-(chaotic and non-chaotic). Let  us emphasize on the difference between
-this  kind  of  neural  networks  and  the  Chaotic  Iterations  based
-multilayer peceptron.
-
-We are  then left to compute  two disjoint function  sets that contain
-either functions  with topological chaos properties  or not, depending
-on  the strong  connectivity of  their iterations graph.  This  can be
-achieved for  instance by removing a  set of edges  from the iteration
-graph $\Gamma(f_0)$ of the vectorial negation function~$f_0$.  One can
-deduce whether  a function verifies the topological  chaos property or
-not  by checking  the strong  connectivity of  the resulting  graph of
-iterations.
-
-For instance let us consider  the functions $f$ and $g$ from $\Bool^4$
-to $\Bool^4$ respectively defined by the following lists:
-$$[0,  0,  2,   3,  13,  13,  6,   3,  8,  9,  10,  11,   8,  13,  14,
-  15]$$ $$\mbox{and } [11, 14, 13, 14, 11, 10, 1, 8, 7, 6, 5, 4, 3, 2,
-  1, 0]  \enspace.$$ In  other words,  the image of  $0011$ by  $g$ is
-$1110$: it  is obtained as the  binary value of the  fourth element in
-the  second  list  (namely~14).   It   is  not  hard  to  verify  that
-$\Gamma(f)$ is  not SCC  (\textit{e.g.}, $f(1111)$ is  $1111$) whereas
-$\Gamma(g)$ is. The  remaining of this section shows  how to translate
-iterations of such functions into a model amenable to be learned by an
-ANN.   Formally, input  and  output vectors  are pairs~$((S^t)^{t  \in
-  \Nats},x)$          and          $\left(\sigma((S^t)^{t          \in
-  \Nats}),F_{f}(S^0,x)\right)$ as defined in~Eq.~(\ref{eq:Gf}).
+On considère par exemple les deux fonctions $f$ and $g$ de0 $\Bool^4$
+dans $\Bool^4$ définies par:
+
+\begin{eqnarray*}
+f(x_1,x_2,x_3,x_4) &= &
+(x_1(x_2+x_4)+ \overline{x_2}x_3\overline{x_4},
+x_2,
+x_3(\overline{x_1}.\overline{x_4}+x_2x_4+x_1\overline{x_2}),
+x_4+\overline{x_2}x_3) \\
+g(x_1,x_2,x_3,x_4) &= &
+(\overline{x_1},
+\overline{x_2}+ x_1.\overline{x_3}.\overline{x_4},
+\overline{x_3}(x_1 + x_2+x_4),
+\overline{x_4}(x_1 + \overline{x_2}+\overline{x_3}))
+\end{eqnarray*}
+On peut vérifier facilement que le graphe $\textsc{giu}(f)$ 
+n'est pas fortement connexe car $(1,1,1,1)$ est un point fixe de $f$
+tandis que le graphe $\textsc{giu}(g)$ l'est.   
+
+L'entrée du réseau est une paire de la forme 
+$(x,(S^t)^{t  \in  \Nats})$ et sa sortie correspondante est
+de la forme  $\left(F_{h_u}(S^0,x), \sigma((S^t)^{t          \in
+  \Nats})\right)$ comme définie à l'équationà l'équation~(\ref{eq:sch:unaire}).
+
+
 
 Firstly, let us focus on how to memorize configurations.  Two distinct
 translations are  proposed.  In the first  case, we take  one input in
index 02648a4fe891499de46d3728eb08bf003e9ae52e..9d028a2d87f0b66989be544694332d9da8a32770 100644 (file)
Binary files a/main.pdf and b/main.pdf differ