]> AND Private Git Repository - hdrcouchot.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
preuve promela:debut de traduction
authorcouchot <couchot@localhost.localdomain>
Wed, 31 Aug 2016 06:46:41 +0000 (08:46 +0200)
committercouchot <couchot@localhost.localdomain>
Wed, 31 Aug 2016 06:46:41 +0000 (08:46 +0200)
ahmad.tex
annexePreuveMixage.tex
annexePromelaProof.tex
demandeInscription/synthese.tex
main.tex
mixage.tex
modelchecking.tex
sdd.tex
stabylo.tex
stegoyousra.tex

index 1b92dbced478c7e7e615150393e81f8704348b8a..05d91778f94335d76143054fbc50f9af17e3b52c 100644 (file)
--- a/ahmad.tex
+++ b/ahmad.tex
@@ -20,7 +20,13 @@ préétablies et conserver ainsi leur information et donc la marque.
 STDM~\cite{CW01} est une instance de ces schémas de marquage.
 
 Ce chapitre présente une application de STDM au marquage de documents PDFs.
 STDM~\cite{CW01} est une instance de ces schémas de marquage.
 
 Ce chapitre présente une application de STDM au marquage de documents PDFs.
-\JFC{annonce du plan}
+La première section fournit quelques rappels sur la STDM. Le schéma basé sur 
+cette approche est présenté à la section~\ref{sec:stdm:schema}. 
+Finalement, la démarche expérimentale permettant de trouver un compromis entre 
+robustesse et qualité visuelle est présentée à la section~\ref{sec:stdm:exp}
+Ce travail a été publié dans~\cite{BDCC16}.
+
+
 
 \section{Rappels sur la Spread Transform Dither Modulation}
 \label{sec:STDM}
 
 \section{Rappels sur la Spread Transform Dither Modulation}
 \label{sec:STDM}
@@ -66,7 +72,7 @@ $U(\Delta)$.
 Tous les éléments sont en place pour embarquer une marque 
 dans un fichier PDF selon le schéma STDM.
 
 Tous les éléments sont en place pour embarquer une marque 
 dans un fichier PDF selon le schéma STDM.
 
-\section{Application au marquage de documents PDF}
+\section{Application au marquage de documents PDF}\label{sec:stdm:schema}
 
 On détaille successivement comment insérer une marque dans un document PDF, 
 puis comment l'extraire.
 
 On détaille successivement comment insérer une marque dans un document PDF, 
 puis comment l'extraire.
@@ -132,7 +138,7 @@ de taille $L$ mutuellement disjoints dans $[1,N]$.
   en remplaçant $x'$ par $\dot{x'}$ .
 \end{enumerate}
 
   en remplaçant $x'$ par $\dot{x'}$ .
 \end{enumerate}
 
-\section{Expérimentations }
+\section{Expérimentations}\label{sec:stdm:exp}
 Le schéma de marquage est paramétré par $\Delta$,  $d_0$ et la manière de construire le vecteur $p$ pour une taille $L$. 
 Les travaux réalisés se sont focalisés sur l'influence du paramètre 
 $D_S = \frac{\Delta^2}{12L}$ dans l'algorithme en satisfaisant 
 Le schéma de marquage est paramétré par $\Delta$,  $d_0$ et la manière de construire le vecteur $p$ pour une taille $L$. 
 Les travaux réalisés se sont focalisés sur l'influence du paramètre 
 $D_S = \frac{\Delta^2}{12L}$ dans l'algorithme en satisfaisant 
index d4087d42d45e028686c795b2cf5b056815b0d194..12c3223832ddf809b28d9ffa5b949988b48e3982 100644 (file)
@@ -3,11 +3,9 @@ $\preceq$  entre les  classes d'équivalences.
 Formellement, \class{p}
 $\preceq$   \class{q}   
 s'il existe un chemin de longueur   $\alpha$
 Formellement, \class{p}
 $\preceq$   \class{q}   
 s'il existe un chemin de longueur   $\alpha$
-($0<\alpha<|\mathcal{K}|$)  entre un élément le la classe
+($0\le\alpha<|\mathcal{K}|$)  entre un élément le la classe
 \class{p} vers un élément  de
 \class{p} vers un élément  de
-\class{q}.  
-On remarque que si la  \class{p}$\preceq$\class{q}, 
-il n'est alors pas possible que  \class{q}$\preceq$\class{p}.
+\class{q}. 
 
 \begin{lemma}
   Il existe un processus de renommage qui effecte un nouvel identifiant aux
 
 \begin{lemma}
   Il existe un processus de renommage qui effecte un nouvel identifiant aux
@@ -17,7 +15,7 @@ il n'est alors pas possible que  \class{q}$\preceq$\class{p}.
   \begin{Proof}
     
     Tout d'abord,  soit  \class{p_1},   \ldots,  \class{p_l}  des   classes 
   \begin{Proof}
     
     Tout d'abord,  soit  \class{p_1},   \ldots,  \class{p_l}  des   classes 
-    contenant respectivement $n_1$,\ldots,  $n_l$  éléments respectively
+    contenant respectivement les éléments $n_1$,\ldots,  $n_l$
     qui ne dépendent d'aucune autre classe.  
     Les éléments de  \class{p_1} sont renommés par $1$, \ldots,  $n_1$,
     les elements  de \class{p_i},   $2  \le   i  \le   l$  sont renommés par 
     qui ne dépendent d'aucune autre classe.  
     Les éléments de  \class{p_1} sont renommés par $1$, \ldots,  $n_1$,
     les elements  de \class{p_i},   $2  \le   i  \le   l$  sont renommés par 
@@ -72,7 +70,7 @@ On peut remarquer que ce processus de renommage est inspiré des \emph{graphes
 %   Processes numbers are already compliant with the order $\preceq$.
 % \end{xpl}
 
 %   Processes numbers are already compliant with the order $\preceq$.
 % \end{xpl}
 
-\begin{Proof}[of Theorem~\ref{th:cvg}]
+\begin{Proof}[du théorème~\ref{th:cvg}]
 
   Le reste de la preuve est fait par induction sur le numéro de classe. 
   Considérons la première  classe \class{b_1} de $n_1$ éléments 
 
   Le reste de la preuve est fait par induction sur le numéro de classe. 
   Considérons la première  classe \class{b_1} de $n_1$ éléments 
@@ -95,10 +93,10 @@ On peut remarquer que ce processus de renommage est inspiré des \emph{graphes
   pour chaque 
   $p_{k+1} \in$ \class{b_{k+1}} et $p_j \in$ \class{b_j}, $1 \le j \le k$.
 
   pour chaque 
   $p_{k+1} \in$ \class{b_{k+1}} et $p_j \in$ \class{b_j}, $1 \le j \le k$.
 
-  Il nous reste donc des itérations synchronous entre les 
+  Il ne reste donc que des itérations synchrones entre les 
   elements  of \class{b_{k+1}} en démarant dans des configurations
   où tous les éléments de  \class{b_j}, $1 \le j
   elements  of \class{b_{k+1}} en démarant dans des configurations
   où tous les éléments de  \class{b_j}, $1 \le j
-  \le k$, on des valeurs constantes.  
+  \le k$, on des valeurs constantes.  
   D'après les hypothèses du théorème, cela converge.
 \end{Proof}
 
   D'après les hypothèses du théorème, cela converge.
 \end{Proof}
 
index 70981a92fef0588cd3fcb0b7b340712144568724..881383ca188b158e5c0fb60ed4632bb4ecc7f10c 100644 (file)
@@ -1,10 +1,10 @@
-\JFC{Voir section~\ref{sec:spin:proof}}
+%\JFC{Voir section~\ref{sec:spin:proof}}
 
 Cette section donne les preuves des deux théorèmes de correction et complétude 
 du chapitre~\ref{chap:promela}.
 
 
 
 Cette section donne les preuves des deux théorèmes de correction et complétude 
 du chapitre~\ref{chap:promela}.
 
 
-\begin{lemma}[Strategy Equivalence]\label{lemma:strategy}
+\begin{lemma}[Stratégie équivalente]\label{lemma:strategy}
   Soit $\phi$  un système dynamique discret de stratégie  $(S^t)^{t \in  \Nats}$ 
   et $\psi$  sa traduction en promela. 
   Il existe une exécution de $\psi$ sous hypothèse d'équité faible telle 
   Soit $\phi$  un système dynamique discret de stratégie  $(S^t)^{t \in  \Nats}$ 
   et $\psi$  sa traduction en promela. 
   Il existe une exécution de $\psi$ sous hypothèse d'équité faible telle 
@@ -20,7 +20,7 @@ du chapitre~\ref{chap:promela}.
 \end{Proof}
 
 Dans ce qui suit, soit     $Xd^t_{ji}$     la valeur de 
 \end{Proof}
 
 Dans ce qui suit, soit     $Xd^t_{ji}$     la valeur de 
-\verb+Xd[+$j$\verb+].v[+$i$\verb+]+  après le   $t^{\text{th}}$ appel 
+\verb+Xd[+$j$\verb+].v[+$i$\verb+]+  après le   $t^{\text{ème}}$ appel 
 à la fonction 
 \verb+fetch_values+. 
 De plus, soit $Y^k_{ij}$  l'élément à l'indice $k$ 
 à la fonction 
 \verb+fetch_values+. 
 De plus, soit $Y^k_{ij}$  l'élément à l'indice $k$ 
@@ -62,11 +62,11 @@ permet de modéliser l'équation  \Equ{eq:async}.
 La  function   $M_{ij}^{t+1}$  est  obtenue à l'aide de mises à jour successives
 de  $M_{ij}^{t}$  au travers des deux   functions   \verb+fetch_values+  and
 \verb+diffuse_values+.   Par abus,   soit  $M_{ij}^{t+1/2}$  
 La  function   $M_{ij}^{t+1}$  est  obtenue à l'aide de mises à jour successives
 de  $M_{ij}^{t}$  au travers des deux   functions   \verb+fetch_values+  and
 \verb+diffuse_values+.   Par abus,   soit  $M_{ij}^{t+1/2}$  
-la valeur de  $M_{ij}^{t}$ après la première fonctions pendant l'itération
+la valeur de  $M_{ij}^{t}$ après la première fonction pendant l'itération
  $t$.
 
 Dans ce qui suit, on  considère les éléments  $i$ et  $j$
  $t$.
 
 Dans ce qui suit, on  considère les éléments  $i$ et  $j$
-dans  $\llbracket  n  \rrbracket$. 
+dans  $[  \mathsf{N}  ]$. 
 A l'itération   $t$,  $t   \geq  1$,   soit
 $(Y^0_{ij},a^0_{ij},c^0_{ij})$ la valeur de  $M_{ij}^t(0)$ en entrant 
 dans la fonction 
 A l'itération   $t$,  $t   \geq  1$,   soit
 $(Y^0_{ij},a^0_{ij},c^0_{ij})$ la valeur de  $M_{ij}^t(0)$ en entrant 
 dans la fonction 
@@ -97,7 +97,7 @@ est  exécutée et $M_{ij}^{t+1} = M_{ij}^{t+1/2}$.
   Pour chaque  sequence $(S^t)^{t  \in \Nats}$,\linebreak $(D^t)^{t \in \Nats}$, 
   pour chaque fonction $F$,
   il existe une exécution SPIN  telle que pour toute itération $t$, $t
   Pour chaque  sequence $(S^t)^{t  \in \Nats}$,\linebreak $(D^t)^{t \in \Nats}$, 
   pour chaque fonction $F$,
   il existe une exécution SPIN  telle que pour toute itération $t$, $t
-  \ge  1$, et pour chaque  $i$ et $j$ in  $\llbracket n \rrbracket$  
+  \ge  1$, et pour chaque  $i$ et $j$ dans  $[ \mathsf{N} ]$  
   on a la propriété suivante:
    
 \noindent Si le domaine de $M_{ij}^t$ n'est pas vide, alors
   on a la propriété suivante:
    
 \noindent Si le domaine de $M_{ij}^t$ n'est pas vide, alors
@@ -105,7 +105,7 @@ est  exécutée et $M_{ij}^{t+1} = M_{ij}^{t+1/2}$.
   \left\{
     \begin{array}{rcl}
       M_{ij}^1(0) & = & \left(X_i^{D_{ji}^{0}}, 0,0 \right) \\
   \left\{
     \begin{array}{rcl}
       M_{ij}^1(0) & = & \left(X_i^{D_{ji}^{0}}, 0,0 \right) \\
-      \textrm{sit $t \geq 2$ alors }M_{ij}^t(0) & = &
+      \textrm{si $t \geq 2$ alors }M_{ij}^t(0) & = &
       \left(X_i^{D_{ji}^{c}},D_{ji}^{c},c \right) \textrm{, }
       c = \min\{l | D_{ji}^l > D_{ji}^{t-2} \}
     \end{array}
       \left(X_i^{D_{ji}^{c}},D_{ji}^{c},c \right) \textrm{, }
       c = \min\{l | D_{ji}^l > D_{ji}^{t-2} \}
     \end{array}
@@ -117,11 +117,11 @@ est  exécutée et $M_{ij}^{t+1} = M_{ij}^{t+1/2}$.
   \forall t'\, .\,   1 \le t' \le t  \Rightarrow   Xd^{t'}_{ji} = X^{D^{t'-1}_{ji}}_i
   \label{eq:correct_retrieve}
 \end{equation}
   \forall t'\, .\,   1 \le t' \le t  \Rightarrow   Xd^{t'}_{ji} = X^{D^{t'-1}_{ji}}_i
   \label{eq:correct_retrieve}
 \end{equation}
-\noindent Enfin, pour chaque $k\in S^t$, la valeurde 
+\noindent Enfin, pour chaque $k\in S^t$, la valeur de 
 la variable  \verb+Xp[k]+  en sortant du processus 
 \verb+update_elems+  est  égale à
 $X_k^{t}$          \textit{i.e.},          $F_{k}\left(         X_1^{D_{k\,1}^{t-1}},\ldots,
 la variable  \verb+Xp[k]+  en sortant du processus 
 \verb+update_elems+  est  égale à
 $X_k^{t}$          \textit{i.e.},          $F_{k}\left(         X_1^{D_{k\,1}^{t-1}},\ldots,
-  X_{n}^{D_{k\,{n}}^{t-1}}\right)$ à la fin de la  $t^{\text{th}}$ itération.
+  X_{\mathsf{N}}^{D_{k\,{\mathsf{N}}}^{t-1}}\right)$ à la fin de la  $t^{\text{th}}$ itération.
 \end{lemma}
 \begin{Proof}
 La preuve est faite par induction sur le nombre d'itérations.
 \end{lemma}
 \begin{Proof}
 La preuve est faite par induction sur le nombre d'itérations.
@@ -130,20 +130,20 @@ La preuve est faite par induction sur le nombre d'itérations.
 Pour le premier item, par definition de $M_{ij}^t$, on a $M_{ij}^1(0) = \left(
   \verb+Xp[i]+, 0,0 \right)$ qui est égal à  $\left(X_i^{D_{ji}^{0}},
   0,0 \right)$.
 Pour le premier item, par definition de $M_{ij}^t$, on a $M_{ij}^1(0) = \left(
   \verb+Xp[i]+, 0,0 \right)$ qui est égal à  $\left(X_i^{D_{ji}^{0}},
   0,0 \right)$.
-Ensuite, lepremier appel à la  fonction \verb+fetch_value+ 
+Ensuite, le premier appel à la  fonction \verb+fetch_value+ 
 soit affecte à la tête de \verb+channels[i].sent[j]+  à   \verb+Xd[j].v[i]+ soit ne modifie par 
 \verb+Xd[j].v[i]+. 
 Grâce au processus \verb+init+ process, 
 les deux cas sont égaux à 
 \verb+Xp[i]+,  \textit{i.e.}, $X_i^0$.  L'equation (\ref{eq:correct_retrieve})  est ainsi établie.
 
 soit affecte à la tête de \verb+channels[i].sent[j]+  à   \verb+Xd[j].v[i]+ soit ne modifie par 
 \verb+Xd[j].v[i]+. 
 Grâce au processus \verb+init+ process, 
 les deux cas sont égaux à 
 \verb+Xp[i]+,  \textit{i.e.}, $X_i^0$.  L'equation (\ref{eq:correct_retrieve})  est ainsi établie.
 
-Pour le dernier item, soit $k$, $0  \le  k \le  n-1$. 
+Pour le dernier item, soit $k$, $0  \le  k \le  \mathsf{N}-1$. 
 A la fin de la première exécution du processus \verb+update_elems+,
 A la fin de la première exécution du processus \verb+update_elems+,
-la valur   de
+la valeur   de
 \verb+Xp[k]+       est       $F(\verb+Xd[+k\verb+].v[0]+,       \ldots,
 \verb+Xp[k]+       est       $F(\verb+Xd[+k\verb+].v[0]+,       \ldots,
-\verb+Xd[+k\verb+].v[+n-1\verb+]+)$.  
+\verb+Xd[+k\verb+].v[+\mathsf{N}-1\verb+]+)$.  
 Ainsi par définition de  $Xd$, ceci est égal à 
 Ainsi par définition de  $Xd$, ceci est égal à 
-$F(Xd^1_{k\,0}, \ldots,Xd^1_{k\,n-1})$.  Grâce à l'équation \Equ{eq:correct_retrieve},
+$F(Xd^1_{k\,0}, \ldots,Xd^1_{k\,\mathsf{N}-1})$.  Grâce à l'équation \Equ{eq:correct_retrieve},
 on peut conclure la preuve.
 
 
 on peut conclure la preuve.
 
 
@@ -157,79 +157,84 @@ n'est pas vide, par hypothèse d'induction $M_{ij}^{l}(0)$  est
 $\left(X_i^{D_{ji}^{c}}, D_{ji}^{c},c
 \right)$ où $c$ est $\min\{k | D_{ji}^k > D_{ji}^{l-2} \}$.
 
 $\left(X_i^{D_{ji}^{c}}, D_{ji}^{c},c
 \right)$ où $c$ est $\min\{k | D_{ji}^k > D_{ji}^{l-2} \}$.
 
-A l'itération $l$, si  $l < c + 1$ alors  \verb+skip+ statement is executed in
-the   \verb+fetch_values+  function.   Thus,   $M_{ij}^{l+1}(0)$  is   equal  to
-$M_{ij}^{l}(0)$.  Since $c > l-1$  then $D_{ji}^c > D_{ji}^{l-1}$ and hence, $c$
-is $\min\{k  | D_{ji}^k  > D_{ji}^{l-1} \}$.  Obviously, this implies  also that
-$D_{ji}^c > D_{ji}^{l-2}$ and $c=\min\{k | D_{ji}^k > D_{ji}^{l-2} \}$.
-
-We now consider that at iteration $l$, $l$ is $c + 1$.  In other words, $M_{ij}$
-is modified depending on the domain $\dom(M^l_{ij})$ of $M^l_{ij}$:
+A l'itération $l$, si  $l < c + 1$ alors l'instruction 
+ \verb+skip+ est exécutée dans la fonction \verb+fetch_values+. 
+ Ainsi,   $M_{ij}^{l+1}(0)$  est égal à
+$M_{ij}^{l}(0)$.  Puisque $c > l-1$, alors $D_{ji}^c > D_{ji}^{l-1}$ et donc, $c$
+est $\min\{k  | D_{ji}^k  > D_{ji}^{l-1} \}$.
+Cela implique que 
+$D_{ji}^c > D_{ji}^{l-2}$ et $c=\min\{k | D_{ji}^k > D_{ji}^{l-2} \}$.
+
+On considère maintenant qu'à l'itération $l$, celui-ci vaut $c + 1$. 
+Dit autrement, $M_{ij}$ est modifié en fonction du domaine $\dom(M^l_{ij})$ de
+ $M^l_{ij}$:
 \begin{itemize}
 \begin{itemize}
-\item  if $\dom(M_{ij}^{l})=\{0\}$  and $\forall  k\,  . \,  k\ge l  \Rightarrow
-  D^{k}_{ji} \neq l$  is established then $\dom(M_{ij}^{l+1})$ is  empty and the
-  first item of the lemma  is established; 
-\item if $\dom(M_{ij}^{l})=\{0\}$ and $\exists  k\, . \, k\ge l \land D^{k}_{ji}
-  = l$  is established then $M_{ij}^{l+1}(0)$  is $(\verb+Xp[i]+,l,c_{ij})$ that
-  is  added  in  the  \verb+diffuse_values+ function  s.t.\linebreak  $c_{ij}  =
-  \min\{k  \mid  D^{k}_{ji}  = l  \}  $.   Let  us  prove  that we  can  express
-  $M_{ij}^{l+1}(0)$  as  $\left(X_i^{D_{ji}^{c'}},D_{ji}^{c'},c' \right)$  where
-  $c'$ is  $\min\{k |  D_{ji}^k > D_{ji}^{l-1}  \}$.  First,  it is not  hard to
-  establish that  $D_{ji}^{c_{ij}}= l \geq  D_{ji}^{l} > D_{ji}^{l-1}$  and thus
-  $c_{ij}  \geq   c'$.   Next,  since   $\dom(M_{ij}^{l})=\{0\}$,  then  between
-  iterations $D_{ji}^{c}+1$ and $l-1$, the \texttt{diffuse\_values} function has
-  not updated $M_{ij}$.  Formally we have
+\item  si $\dom(M_{ij}^{l})=\{0\}$  et $\forall  k\,  . \,  k\ge l  \Rightarrow
+  D^{k}_{ji} \neq l$ sont vraies, alors  $\dom(M_{ij}^{l+1})$ est vide et le premier
+  item du lemme est vérifié;
+\item si $\dom(M_{ij}^{l})=\{0\}$ et $\exists  k\, . \, k\ge l \land D^{k}_{ji}
+  = l$  sont vraies, alors $M_{ij}^{l+1}(0)$  vaut  $(\verb+Xp[i]+,l,c_{ij})$ qui est ajouté 
+  dans  la fonction \verb+diffuse_values+ de sorte que   $c_{ij}  =
+  \min\{k  \mid  D^{k}_{ji}  = l  \}  $.   
+  Prouvons qu'on peut exprimer 
+  $M_{ij}^{l+1}(0)$  comme  $\left(X_i^{D_{ji}^{c'}},D_{ji}^{c'},c' \right)$  où
+  $c'$ vaut  $\min\{k |  D_{ji}^k > D_{ji}^{l-1}  \}$.  
+  Tout d'abord, il n'est pas difficile de prouver que 
+  $D_{ji}^{c_{ij}}= l \geq  D_{ji}^{l} > D_{ji}^{l-1}$  et que 
+  $c_{ij}  \geq   c'$.   
+  Ensuite, comme   $\dom(M_{ij}^{l})=\{0\}$,  alors, entre les 
+  itérations $D_{ji}^{c}+1$ et $l-1$, la fonction  \texttt{diffuse\_values} n'a pas mis à jour
+   $M_{ij}$. On a ainsi la propriété
 $$
 \forall t,k  \, .\, D_{ji}^c <  t < l \land  k \geq t  \Rightarrow D_{ji}^k \neq
 t.$$
 
 $$
 \forall t,k  \, .\, D_{ji}^c <  t < l \land  k \geq t  \Rightarrow D_{ji}^k \neq
 t.$$
 
-Particularly, $D_{ji}^{c'} \not  \in \{D_{ji}^{c}+1,\ldots,l-1\}$.  We can apply
-the     third    item     of    the     induction    hypothesis     to    deduce
-$\verb+Xp[i]+=X_i^{D_{ji}^{c'}}$ and we can conclude.
-
-\item  if   $\{0,1\}  \subseteq  \dom(M_{ij}^{l})$   then  $M_{ij}^{l+1}(0)$  is
-  $M_{ij}^{l}(1)$.   Let  $M_{ij}^{l}(1)=  \left(\verb+Xp[i]+, a_{ij}  ,  c_{ij}
-  \right)$.   By  construction $a_{ij}$  is  $\min\{t'  |  t' >  D_{ji}^c  \land
-  (\exists k \, .\, k \geq t' \land D_{ji}^k = t')\}$ and $c_{ij}$ is $\min\{k |
-  D_{ji}^k = a_{ij}\}$.  Let us show  $c_{ij}$ is equal to $\min\{k | D_{ji}^k >
-  D_{ji}^{l-1} \}$ further  referred as $c'$.  First we  have $D_{ji}^{c_{ij}} =
-  a_{ij} >  D_{ji}^c$. Since $c$  by definition is  greater or equal to  $l-1$ ,
-  then $D_{ji}^{c_{ij}}>  D_{ji}^{l-1}$ and then $c_{ij} \geq  c'$.  Next, since
-  $c$ is  $l-1$, $c'$ is $\min\{k |  D_{ji}^k > D_{ji}^{c} \}$  and then $a_{ij}
-  \leq  D_{ji}^{c'}$. Thus,  $c_{ij} \leq  c'$  and we  can conclude  as in  the
-  previous part.
+En particulier, on a   $D_{ji}^{c'} \not  \in \{D_{ji}^{c}+1,\ldots,l-1\}$.  
+On peut donc appliquer le troisième item de l'hypothèse d'induction pour déduire
+$\verb+Xp[i]+=X_i^{D_{ji}^{c'}}$ et on peut conclure.
+
+\item  Si   $\{0,1\}  \subseteq  \dom(M_{ij}^{l})$, alors  $M_{ij}^{l+1}(0)$ vaut
+  $M_{ij}^{l}(1)$.   Soit  $M_{ij}^{l}(1)=  \left(\verb+Xp[i]+, a_{ij}  ,  c_{ij}
+  \right)$.   Par construction,  $a_{ij}$  vaut $\min\{t'  |  t' >  D_{ji}^c  \land
+  (\exists k \, .\, k \geq t' \land D_{ji}^k = t')\}$  et  $c_{ij}$ est $\min\{k |
+  D_{ji}^k = a_{ij}\}$.  Montrons que   $c_{ij}$ est égal à  $\min\{k | D_{ji}^k >
+  D_{ji}^{l-1} \}$, noté plus tard $c'$.  On a tout d'abord $D_{ji}^{c_{ij}} =
+  a_{ij} >  D_{ji}^c$. Puisque $c$  par définition est supérieur ou égal à  $l-1$,
+  alors $D_{ji}^{c_{ij}}>  D_{ji}^{l-1}$ et donc $c_{ij} \geq  c'$.  Ensuite, puisque
+  $c=l-1$, $c'$ vaut  $\min\{k |  D_{ji}^k > D_{ji}^{c} \}$  et donc $a_{ij}
+  \leq  D_{ji}^{c'}$. Ainsi,  $c_{ij} \leq  c'$  et on peut conclure comme dans la partie précédente.
 \end{itemize}
 
 
 \end{itemize}
 
 
-The case where  the domain $\dom(M^l_{ij})$ is empty but  the formula $\exists k
-\, .\, k \geq  l \land D_{ji}^k = l$ is established  is equivalent to the second
-case given above and then is omitted.
+Le cas où le domaine $\dom(M^l_{ij})$ est vide mais où la formule  $\exists k
+\, .\, k \geq  l \land D_{ji}^k = l$ est vraie est équivalent au second
+cas ci-dessus et n'est pas présenté.
 
 
 
 
-Secondly, let us focus on the formula~(\ref{eq:correct_retrieve}).  At iteration
-$l+1$, let $c'$ be defined as $\min\{k | D_{ji}^k > D_{ji}^{l-1} \}$.  Two cases
-have to be  considered depending on whether $D_{ji}^{l}$  and $D_{ji}^{l-1}$ are
-equal or not.
+Concentrons nous sur la formule~(\ref{eq:correct_retrieve}).  A l'itération 
+$l+1$, soit $c'$ défini par  $c'=\min\{k | D_{ji}^k > D_{ji}^{l-1} \}$.  Deux cas peuvent 
+apparaître selon que $D_{ji}^{l}$ et  $D_{ji}^{l-1}$ sont égaux ou non.
 \begin{itemize}
 \begin{itemize}
-\item If  $D_{ji}^{l} = D_{ji}^{l-1}$, since $D_{ji}^{c'}  > D_{ji}^{l-1}$, then
-  $D_{ji}^{c'} > D_{ji}^{l}$ and then $c'$  is distinct from $l$. Thus, the SPIN
-  execution detailed  above does not  modify $Xd_{ji}^{l+1}$.  It is  obvious to
-  establish   that   $Xd_{ji}^{l+1}  =   Xd_{ji}^{l}   =  X_i^{D_{ji}^{l-1}}   =
+\item Si  $D_{ji}^{l} = D_{ji}^{l-1}$, puisque $D_{ji}^{c'}  > D_{ji}^{l-1}$, alors
+  $D_{ji}^{c'} > D_{ji}^{l}$ et donc $c'$  est différent de  $l$. L'exécution de SPIN
+  ne modifie pas $Xd_{ji}^{l+1}$.  On a ainsi  $Xd_{ji}^{l+1}  =   Xd_{ji}^{l}   =  X_i^{D_{ji}^{l-1}}   =
   X_i^{D_{ji}^{l}}$.
   X_i^{D_{ji}^{l}}$.
-\item Otherwise $D_{ji}^{l}$ is greater than $D_{ji}^{l-1}$ and $c$ is thus $l$.
-  According     to     \Equ{eq:Mij0}     we     have    proved,     we     have
-  $M_{ij}^{l+1}(0)=(X_i^{D_{ji}^{l}},D_{ji}^{l},l)$.   Then  the SPIN  execution
-  detailed above  assigns $X_i^{D_{ji}^{l}}$ to $Xd_{ji}^{l+1}$,  which ends the
-  proof of (\ref{eq:correct_retrieve}).
+\item Sinon, $D_{ji}^{l}$ et plus grand que $D_{ji}^{l-1}$ et $c$ est donc égal à $l$.
+  Selon l'équation \Equ{eq:Mij0},    on a 
+  $M_{ij}^{l+1}(0)=(X_i^{D_{ji}^{l}},D_{ji}^{l},l)$.  Ainsi l'exécution SPIN 
+  affecte  $X_i^{D_{ji}^{l}}$ à $Xd_{ji}^{l+1}$,  ce qui termine la preuve 
+(\ref{eq:correct_retrieve}).
 \end{itemize}
 
 \end{itemize}
 
-We are left to prove the induction of  the third part of the lemma.  Let $k$, $k
+Il reste à prouver la partie inductive de la troisième partie du lemme.
+Soit $k$, $k
 \in S^{l+1}$. % and $\verb+k'+ = k-1$.
 \in S^{l+1}$. % and $\verb+k'+ = k-1$.
-At the  end of the first  execution of the \verb+update_elems+  process, we have
+A l'issue de la première exécutions 
+du processus \verb+update_elems+, on a 
 $\verb+Xp[+k\verb+]+=                                   F(\verb+Xd[+k\verb+][0]+,
 $\verb+Xp[+k\verb+]+=                                   F(\verb+Xd[+k\verb+][0]+,
-\ldots,\verb+Xd[+k\verb+][+n\verb+-1]+)+$.  By  definition of $Xd$,  it is equal
-to      $F(Xd^{l+1}_{k\,0},      \ldots,Xd^{l+1}_{k\,n-1})$.      Thanks      to
-\Equ{eq:correct_retrieve} we have proved, we can conclude the proof.
+\ldots,\verb+Xd[+k\verb+][+n\verb+-1]+)+$.  
+Par définition $Xd=F(Xd^{l+1}_{k\,0},      \ldots,Xd^{l+1}_{k\,n-1})$.      
+Grace à~\Equ{eq:correct_retrieve} déjà prouvée, on peut conclure la preuve.
 \end{Proof}
 
 
 \end{Proof}
 
 
@@ -284,7 +289,7 @@ to      $F(Xd^{l+1}_{k\,0},      \ldots,Xd^{l+1}_{k\,n-1})$.      Thanks      to
 %   performed under weak  fairness property; we then detail  what are continuously
 %   enabled:
 % \begin{itemize}
 %   performed under weak  fairness property; we then detail  what are continuously
 %   enabled:
 % \begin{itemize}
-% \item if the strategy is not  defined as periodic, elements $0$, \ldots, $n$ are
+% \item if the strategy is not  defined as periodic, elements $0$, \ldots, $\mathsf{N}$ are
 %   infinitely often updated leading to pseudo-periodic strategy;
 % \item  instructions  that  write  or read  into  \verb+channels[j].sent[i]+  are
 %   continuously enabled leading to convenient available dates $D_{ji}$.
 %   infinitely often updated leading to pseudo-periodic strategy;
 % \item  instructions  that  write  or read  into  \verb+channels[j].sent[i]+  are
 %   continuously enabled leading to convenient available dates $D_{ji}$.
index 03c44f738cde1ee014861ccae773848852c2b79e..58ad6b700c30c1edb4ffe80035b894e1e47f3db1 100755 (executable)
@@ -1557,10 +1557,9 @@ Jean-François Couchot, Raphaël Couturier, Yousra Ahmed Fadil and Christophe Gu
   Lisboa, Portugal, July 2016.
 
 \bibitem{kcm16:ip}
   Lisboa, Portugal, July 2016.
 
 \bibitem{kcm16:ip}
-Nesrine Khernane, J.-F. Couchot, A. Mostefaoui.
+N. Khernane, J.-F. Couchot, A. Mostefaoui.
 \newblock Maximizing Network Lifetime in Wireless Video Sensor Networks Under Quality Constraints.
 \newblock Maximizing Network Lifetime in Wireless Video Sensor Networks Under Quality Constraints.
-\newblock In {\em The 19th ACM International Conference on Modeling, Analysis
-and Simulation of Wireless and Mobile Systems, MSWiM'16} Malta,  to appear, November, 2016.
+\newblock In {\em MOBIWAC 2016: The 14th ACM* International Symposium on Mobility Management and Wireless Access} Malta,  to appear, November, 2016.
 
 \bibitem{BCDG07}
 Fabrice Bouquet, Jean-Fran\c{c}ois Couchot, Fr\'ed\'eric Dadeau, and Alain
 
 \bibitem{BCDG07}
 Fabrice Bouquet, Jean-Fran\c{c}ois Couchot, Fr\'ed\'eric Dadeau, and Alain
index da87f229d81d29b568c94e2912e492200512be7f..33a3ba1b69e15e5e583328b8d5dd64b4ad69585c 100644 (file)
--- a/main.tex
+++ b/main.tex
@@ -172,7 +172,7 @@ Blabla blabla.
 
 \mainmatter
 
 
 \mainmatter
 
-\part{Réseaux Discrets}
+\part{Réseaux discrets}
 
 \chapter{Iterations discrètes de réseaux booléens}
 
 
 \chapter{Iterations discrètes de réseaux booléens}
 
@@ -182,8 +182,8 @@ les différents modes opératoires, leur représentation à l'aide de
 graphes et les résultats connus de convergence).
 Ce chapitre montre ensuite à la section~\ref{sec:sdd:mixage}
 comment combiner ces modes pour converger aussi 
 graphes et les résultats connus de convergence).
 Ce chapitre montre ensuite à la section~\ref{sec:sdd:mixage}
 comment combiner ces modes pour converger aussi 
-souvent sans, mais plus rapidement. Cette dernière section 
-a fait l'objet du rapport~\cite{BCVC10:ir}.
+souvent, mais plus rapidement vers un point fixe. Les deux 
+dernières sections ont fait l'objet du rapport~\cite{BCVC10:ir}.
 
 \section{Formalisation}\label{sec:sdd:formalisation}
 \input{sdd}
 
 \section{Formalisation}\label{sec:sdd:formalisation}
 \input{sdd}
@@ -339,7 +339,7 @@ du chapitre 8}
 
 \appendix
 
 
 \appendix
 
-\chapter{Preuves sur les SDD}
+\chapter{Preuves sur les réseaux discrets}
 
 \section{Convergence du mode mixe}\label{anx:mix}
 \input{annexePreuveMixage}
 
 \section{Convergence du mode mixe}\label{anx:mix}
 \input{annexePreuveMixage}
index e4a283ced2a062664ec20595b6bc44f4992ee234..4ee1171951de32a11e3f7674db2114cb10c5faa3 100644 (file)
@@ -21,9 +21,6 @@ s^{t}=24 \textrm{ si  $t$ est pair et  } s^{t}=15 \textrm{ sinon }
 \end{equation}
 \noindent active successivement les deux premiers éléments (24 est 11000) 
 et les quatre derniers éléments (15  est  01111).  
 \end{equation}
 \noindent active successivement les deux premiers éléments (24 est 11000) 
 et les quatre derniers éléments (15  est  01111).  
-On dit que la stratégie est
-\emph{pseudo-periodique}  si tous les éléments sont activés infiniment 
-souvent.
 % , it is sufficient to establish  that the set $\{t \mid t \in \mathbb{N}
 % \land \textit{bin}(s^t)[i]  = 1\}$  is infinite for  any $i$,  $1 \le i  \le n$,
 % where
 % , it is sufficient to establish  that the set $\{t \mid t \in \mathbb{N}
 % \land \textit{bin}(s^t)[i]  = 1\}$  is infinite for  any $i$,  $1 \le i  \le n$,
 % where
@@ -54,7 +51,7 @@ souvent.
 Dans le mode asynchrone, a chaque itération $t$, chaque composant peut
 mettre à jour son état en 
 fonction des dernières valeurs qu'il connaît des autre composants.
 Dans le mode asynchrone, a chaque itération $t$, chaque composant peut
 mettre à jour son état en 
 fonction des dernières valeurs qu'il connaît des autre composants.
-Obtenir ou non les valeurs les plus à jours dépend du temps de calcul et 
+Obtenir ou non les valeurs les plus à jour dépend du temps de calcul et 
 du temps d'acheminement de celles-ci. On parle de latence, de délai.
 
 Formalisons le mode les itérations asynchrone.
 du temps d'acheminement de celles-ci. On parle de latence, de délai.
 
 Formalisons le mode les itérations asynchrone.
@@ -190,7 +187,7 @@ Les itérations asynchrones sont conservées entre les groupes.
   La  \emph{relation de synchronisation} $\eqNode$ est
   définie sur l'ensemble des n{\oe}uds par:
   $i \eqNode j$ si $i$ et $j$  appartiennent à la même composante fortement
   La  \emph{relation de synchronisation} $\eqNode$ est
   définie sur l'ensemble des n{\oe}uds par:
   $i \eqNode j$ si $i$ et $j$  appartiennent à la même composante fortement
-  connexe (CFC) dans $\Gamma(F)$.
+  connexe (CFC) dans $\Gamma(f)$.
 \end{Def}
 
 On peut facilement démontrer que la relation de synchronisation est une 
 \end{Def}
 
 On peut facilement démontrer que la relation de synchronisation est une 
@@ -214,7 +211,7 @@ Ainsi $p_1$ et $p_2$ sont distinguables même s'ils appartiennent à la même
 classe.
 Pour gommer cette distinction, on définit le mode suivant:
 \begin{Def}[Itérations mixes avec delais uniformes]
 classe.
 Pour gommer cette distinction, on définit le mode suivant:
 \begin{Def}[Itérations mixes avec delais uniformes]
-  Le mode mixe a des \emph{délais uniformes}si pour chaque 
+  Le mode mixe a des \emph{délais uniformes} si pour chaque 
   $t=0,1,\ldots$ et pour chaque paire de  classes  $(\class{p}, \class{q})$,
   il existe une constante $d^t_{pq}$  telle que la propriété suivante est 
   établie:
   $t=0,1,\ldots$ et pour chaque paire de  classes  $(\class{p}, \class{q})$,
   il existe une constante $d^t_{pq}$  telle que la propriété suivante est 
   établie:
@@ -420,7 +417,7 @@ ascendants pour converger. On a dans ce cas:
   mode synchrone.
 \end{xpl}
 
   mode synchrone.
 \end{xpl}
 
-\subsection{Le mode généralisé asynchrone}
+\subsection{Le mode unaire asynchrone}
 \label{sec:evalasync}
 En terme de durée de convergence, ce mode peut être vu comme un 
 cas particulier du mode mixe où toutes les classes sont des singletons.
 \label{sec:evalasync}
 En terme de durée de convergence, ce mode peut être vu comme un 
 cas particulier du mode mixe où toutes les classes sont des singletons.
@@ -442,7 +439,7 @@ et apparaît lorsque chaque élément dépend des autres et que les calculs
 ne recouvrent nullement les communications.
 
 \begin{xpl}
 ne recouvrent nullement les communications.
 
 \begin{xpl}
-  La \Fig{fig:evalasync} présente un exemple d'exécution du mode généralisé 
+  La \Fig{fig:evalasync} présente un exemple d'exécution du mode unaire
   asynchrone.
   Certaines communications issues de l'élément $4$ n'ont pas été représentées
   pour des raisons de clarté.
   asynchrone.
   Certaines communications issues de l'élément $4$ n'ont pas été représentées
   pour des raisons de clarté.
index 2a7107fb10dc6778a549fd269346ece5a32d7e2e..b01a5263206e40ce136091ec1376e7548000d8b4 100644 (file)
@@ -19,18 +19,19 @@ automatique pour construire cette fonction.
 Un outil qui construirait automatiquement toutes 
 les transitons serait le bienvenu. 
 Pour peu qu'on établisse la preuve de correction et de complétude de la 
 Un outil qui construirait automatiquement toutes 
 les transitons serait le bienvenu. 
 Pour peu qu'on établisse la preuve de correction et de complétude de la 
-démarche, la convergence du réseau discret ne repose alors que sur le verdict 
+démarche, la convergence du réseau discret ne reposerait
+ alors que sur le verdict 
 donné par l'outil. 
 Cependant, même pour des réseaux discrets à peu d'éléments, 
 le nombre de configurations induites explose rapidement.
 Les \emph{Model-Checkers}~\cite{Hol03,nusmv02,Blast07,MCErlang07,Bogor03}  
 donné par l'outil. 
 Cependant, même pour des réseaux discrets à peu d'éléments, 
 le nombre de configurations induites explose rapidement.
 Les \emph{Model-Checkers}~\cite{Hol03,nusmv02,Blast07,MCErlang07,Bogor03}  
-sont des classes d'outils qui adressent le problème de vérifier automatiquement
-qu'un modèle vérifie une propriété donnée. Pour traiter le problème d'explosion 
+sont des classes d'outils qui adressent le problème de détecter automatiquement
+si un modèle vérifie une propriété donnée. Pour traiter le problème d'explosion 
 combinatoire, ces outils appliquent des méthodes d'ordre partiel, d'abstraction,
 de quotientage selon une relation d'équivalence.
 
 Ce chapitre montre comment nous simulons 
 combinatoire, ces outils appliquent des méthodes d'ordre partiel, d'abstraction,
 de quotientage selon une relation d'équivalence.
 
 Ce chapitre montre comment nous simulons 
-des réseaux discrets selon toutes les sortes d'itérations pour établir 
+des réseaux discrets selon pour établir 
 formellement leur convergence (ou pas).
 Nous débutons par un exemple et faisons quelques rappels sur 
 le langage PROMELA qui est le langage du model-checker 
 formellement leur convergence (ou pas).
 Nous débutons par un exemple et faisons quelques rappels sur 
 le langage PROMELA qui est le langage du model-checker 
@@ -38,8 +39,8 @@ SPIN~\cite{Hol03} (\Sec{sec:spin:promela}).
 Nous présentons ensuite la démarche de traduction 
 de réseaux discrets dans PROMELA (\Sec{sec:spin:translation}).   
 Les théorèmes de correction et de complétude de la démarche
 Nous présentons ensuite la démarche de traduction 
 de réseaux discrets dans PROMELA (\Sec{sec:spin:translation}).   
 Les théorèmes de correction et de complétude de la démarche
-sont ensuite donnés à la (\Sec{sec:spin:proof})
-Des données pratiques comme la complexité et des synthèses d'expérimentation
+sont ensuite donnés à la \Sec{sec:spin:proof}
+Des données pratiques comme la complexité et des synthèses d'expérimentations
 sont ensuite fournies (\Sec{sec:spin:practical}). 
 Ce chapitre a fait l'objet du rapport~\cite{Cou10:ir}.
 
 sont ensuite fournies (\Sec{sec:spin:practical}). 
 Ce chapitre a fait l'objet du rapport~\cite{Cou10:ir}.
 
@@ -88,11 +89,12 @@ Ce chapitre a fait l'objet du rapport~\cite{Cou10:ir}.
 
 
 
 
 
 
-On peut facilement vérifier que toutes les itérations synchrones initialisées 
+On peut facilement vérifier que toutes les itérations parallèles 
+synchrones initialisées 
 avec $x^0 \neq 7$ soit $(111)$ 
 convergent vers $2$ soit $(010)$; celles initialisées avec 
 $x^0=7$ restent en 7.
 avec $x^0 \neq 7$ soit $(111)$ 
 convergent vers $2$ soit $(010)$; celles initialisées avec 
 $x^0=7$ restent en 7.
-Pour les  mode unaires ou généralisés  avec  une 
+Pour les  modes unaires ou généralisés  avec  une 
 stratégie pseudo périodique, on a des comportements qui dépendent 
 de la configuration initiale:
 \begin{itemize}
 stratégie pseudo périodique, on a des comportements qui dépendent 
 de la configuration initiale:
 \begin{itemize}
@@ -153,7 +155,7 @@ déclarations de variables qui servent dans l'exemple de ce chapitre.
 Il définit:
 \begin{itemize}
 \item les constantes \verb+N+ et \verb+d_0+ qui précisent respectivement le nombre
 Il définit:
 \begin{itemize}
 \item les constantes \verb+N+ et \verb+d_0+ qui précisent respectivement le nombre
- $n$ d'éléments et le délais maximum $\delta_0$;
+ ${\mathsf{N}}$ d'éléments et le délais maximum $\delta_0$;
 \item les deux tableaux  (\verb+X+ et \verb+Xp+) de \verb+N+ variables booléennes; 
 les cellules \verb+X[i]+ et \verb+Xp[i]+ sont associées à la variables $x_{i+1}$
 d'un système dynamique discret;
 \item les deux tableaux  (\verb+X+ et \verb+Xp+) de \verb+N+ variables booléennes; 
 les cellules \verb+X[i]+ et \verb+Xp[i]+ sont associées à la variables $x_{i+1}$
 d'un système dynamique discret;
@@ -208,8 +210,8 @@ réception de messages. Pour un canal
 L'instruction de réception consomme la valeur en tête du canal \verb+ch+
 et l'affecte à la variable \verb+m+ (pour peu que  \verb+ch+ soit initialisé et non vide).
 De manière similaire, l'instruction d'envoi ajoute la valeur de \verb+m+ à la queue du canal
 L'instruction de réception consomme la valeur en tête du canal \verb+ch+
 et l'affecte à la variable \verb+m+ (pour peu que  \verb+ch+ soit initialisé et non vide).
 De manière similaire, l'instruction d'envoi ajoute la valeur de \verb+m+ à la queue du canal
-\verb+ch+ (pour peu que celui-ci soit initialisé et non rempli).
-Dans les cas problématiques, canal non initialisé et vide pour une réception ou bien rempli pour un envoi,
+\verb+ch+ (pour peu que celui-ci soit initialisé et pas plein).
+Dans les cas problématiques, canal non initialisé et vide pour une réception ou plein pour un envoi,
 le processus est bloqué jusqu'à ce que les  conditions soient  remplies.
 
 La structures de contrôle   \verb+if+   (resp.   \verb+do+)   définit un choix non déterministe 
 le processus est bloqué jusqu'à ce que les  conditions soient  remplies.
 
 La structures de contrôle   \verb+if+   (resp.   \verb+do+)   définit un choix non déterministe 
@@ -218,9 +220,9 @@ si plus d'une des conditions est établie, l'ensemble des instructions correspon
 sera choisi aléatoirement puis exécuté.
 
 Dans le process \verb+init+ détaillé à la {\sc Figure}~\ref{fig:spin:init}, 
 sera choisi aléatoirement puis exécuté.
 
 Dans le process \verb+init+ détaillé à la {\sc Figure}~\ref{fig:spin:init}, 
-une boucle de taille $N$ initialise aléatoirement la variable  globale de type tableau \verb+Xp+.
+une boucle de taille ${\mathsf{N}}$ initialise aléatoirement la variable  globale de type tableau \verb+Xp+.
 Ceci permet par la suite de vérifier si les itérations sont  convergentes pour n'importe  
 Ceci permet par la suite de vérifier si les itérations sont  convergentes pour n'importe  
-quelle configuration initiale $x^{(0)}$.
+quelle configuration initiale $x^{0}$.
 
 
 
 
 
 
@@ -343,7 +345,7 @@ les éléments possiblement mis à jour à l'itération $t$.
 
 Basiquement, le process est une boucle qui est débloquée lorsque la valeur du sémaphore
 \verb+sync_mutex+ est 1. Dans ce cas, les éléments à modifier sont choisis
 
 Basiquement, le process est une boucle qui est débloquée lorsque la valeur du sémaphore
 \verb+sync_mutex+ est 1. Dans ce cas, les éléments à modifier sont choisis
-aléatoirement  (grâce à  $n$ choix successifs) et sont mémorisés dans le tableau
+aléatoirement  (grâce à  ${\mathsf{N}}$ choix successifs) et sont mémorisés dans le tableau
 \verb+mods+,  dont la taille est  \verb+ar_len+.   
 Dans la séquence d'exécution, le choix d'un élément mis à jour est directement
 suivi par des mises à jour: ceci est réalisé grâce à la modification de la valeur du sémaphore
 \verb+mods+,  dont la taille est  \verb+ar_len+.   
 Dans la séquence d'exécution, le choix d'un élément mis à jour est directement
 suivi par des mises à jour: ceci est réalisé grâce à la modification de la valeur du sémaphore
@@ -588,7 +590,7 @@ délai.
 \subsection{Propriété de convergence universelle}
 Il reste à formaliser dans le model checker SPIN le fait que les 
 itérations d'un système 
 \subsection{Propriété de convergence universelle}
 Il reste à formaliser dans le model checker SPIN le fait que les 
 itérations d'un système 
-dynamique à $n$ éléments est universellement convergent.
+dynamique à ${\mathsf{N}}$ éléments est universellement convergent.
 
 Rappelons tout d'abord que les variables \verb+X+  et \verb+Xp+ 
 contiennent respectivement la valeur de $x$ avant et après la mise à jour. 
 
 Rappelons tout d'abord que les variables \verb+X+  et \verb+Xp+ 
 contiennent respectivement la valeur de $x$ avant et après la mise à jour. 
@@ -650,7 +652,7 @@ Cette section donne tout d'abord quelques mesures de complexité de l'approche
 puis présente ensuite les expérimentations issues de ce travail.
 
 \begin{theorem}[Nombre d'états ]
 puis présente ensuite les expérimentations issues de ce travail.
 
 \begin{theorem}[Nombre d'états ]
-  Soit  $\phi$  un modèle de système dynamique discret à  $n$ éléments, $m$ 
+  Soit  $\phi$  un modèle de système dynamique discret à  ${\mathsf{N}}$ éléments, $m$ 
   arcs dans le graphe d'incidence
   et $\psi$ sa traduction en PROMELA.  Le nombre de configurations 
   de l'exécution en SPIN de $\psi$ est bornée par $2^{m(\delta_0+1)+n(n+2)}$.
   arcs dans le graphe d'incidence
   et $\psi$ sa traduction en PROMELA.  Le nombre de configurations 
   de l'exécution en SPIN de $\psi$ est bornée par $2^{m(\delta_0+1)+n(n+2)}$.
@@ -667,7 +669,7 @@ puis présente ensuite les expérimentations issues de ce travail.
   Puisque le nombre d'arêtes du graphe d'incidence  est $m$,  
   il y a  $m$ canaux non constants,  ce qui génère approximativement $2^{m(\delta_0+1)}$ états. 
   Le nombre de configurations est donc borné par $2^{m(\delta_0+1)+n(n+2)}$.
   Puisque le nombre d'arêtes du graphe d'incidence  est $m$,  
   il y a  $m$ canaux non constants,  ce qui génère approximativement $2^{m(\delta_0+1)}$ états. 
   Le nombre de configurations est donc borné par $2^{m(\delta_0+1)+n(n+2)}$.
-  On remarque que cette borne est traitable par SPIN pour des valeurs raisonnables de  $n$, 
+  On remarque que cette borne est traitable par SPIN pour des valeurs raisonnables de  ${\mathsf{N}}$, 
   $m$ et $\delta_0$.
   %\JFC{Donner un ordre de grandeur de cet ordre de grandeur}
   
   $m$ et $\delta_0$.
   %\JFC{Donner un ordre de grandeur de cet ordre de grandeur}
   
@@ -804,10 +806,7 @@ pour établir un verdict.
 
 L'exemple \textit{RE} est l'exemple de ce chapitre,
 \cite{RC07} concerne un réseau composé de deux gènes
 
 L'exemple \textit{RE} est l'exemple de ce chapitre,
 \cite{RC07} concerne un réseau composé de deux gènes
-à valeur dans $\{0,1,2\}$,
-AC2D est un automate cellulaire  avec 9 elements prenant des
-valeurs booléennes en fonction de 
-de 4 voisins et
+à valeur dans $\{0,1,2\}$ et
 \cite{BM99} consiste en  10 process
 qui modifient leurs valeurs booléennes dans un graphe d'adjacence proche 
 du graphe complet.
 \cite{BM99} consiste en  10 process
 qui modifient leurs valeurs booléennes dans un graphe d'adjacence proche 
 du graphe complet.
@@ -818,7 +817,7 @@ L'exemple  \textit{RE} a été prouvé comme universellement convergent.
 Comme la convergence n'est déjà pas établie pour les itérations synchrones
 de~\cite{RC07}, il en est donc 
 de même pour les itérations asynchrones.
 Comme la convergence n'est déjà pas établie pour les itérations synchrones
 de~\cite{RC07}, il en est donc 
 de même pour les itérations asynchrones.
-La {\sc Figure}~\ref{fig:RC07CE} donne une trace de la sortie de SPIN de menant à la violation 
+La {\sc Figure}~\ref{fig:RC07CE} donne une trace de la sortie de SPIN  menant à la violation 
 de la convergence. Celle-ci correspond à une stratégie périodique qui répète
 $\{1,2\};\{1,2\};\{1\};\{1,2\};\{1,2\}$ et débute avec $x=(0,0)$.
 En raison de la dépendance forte entre les éléments
 de la convergence. Celle-ci correspond à une stratégie périodique qui répète
 $\{1,2\};\{1,2\};\{1\};\{1,2\};\{1,2\}$ et débute avec $x=(0,0)$.
 En raison de la dépendance forte entre les éléments
diff --git a/sdd.tex b/sdd.tex
index 69e09b68564427016e46e4ea2293c4d2b23c968b..c41efa9f35977fa5216b3cff07e52d3b124b0d1a 100644 (file)
--- a/sdd.tex
+++ b/sdd.tex
@@ -30,7 +30,7 @@ et $\overline{x}^i$ pour $\overline{x}^{\{i\}}$ pour $i \in [{\mathsf{N}}]$
 Pour tout $x$ et  $y$ dans  $\Bool^{\mathsf{N}}$, l'ensemble 
 $\Delta(x, y)$,  contient les $i \in [{\mathsf{N}}]$
 tels que $x_i \neq y_i$.
 Pour tout $x$ et  $y$ dans  $\Bool^{\mathsf{N}}$, l'ensemble 
 $\Delta(x, y)$,  contient les $i \in [{\mathsf{N}}]$
 tels que $x_i \neq y_i$.
-Soit enfin $f : \Bool^n \rightarrow \Bool^{\mathsf{N}}$. Son $i^{\textrm{ème}}$ composant
+Soit enfin $f : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$. Son $i^{\textrm{ème}}$ composant
 est nommé $f_i$ qui est une fonction de $\Bool^{\mathsf{N}}$ dans $\Bool$.
 Pour chaque 
 $x$ dans $\Bool^{\mathsf{N}}$, l'ensemble 
 est nommé $f_i$ qui est une fonction de $\Bool^{\mathsf{N}}$ dans $\Bool$.
 Pour chaque 
 $x$ dans $\Bool^{\mathsf{N}}$, l'ensemble 
@@ -95,8 +95,8 @@ Pour $x=(0,1,0)$ les assertions suivantes se déduisent directement du tableau:
 \end{xpl}
 
 \subsection{Réseau booléen}
 \end{xpl}
 
 \subsection{Réseau booléen}
-Soit $n$ un entier naturel représentant le nombre 
-d'éléments étudiés (gènes, protéines,\ldots).
+Soit ${\mathsf{N}}$ un entier naturel représentant le nombre 
+d'éléments étudiés.
 Un réseau booléen  est 
 défini à partir d'une fonction booléenne:
 \[
 Un réseau booléen  est 
 défini à partir d'une fonction booléenne:
 \[
@@ -118,7 +118,7 @@ schémas suivants :
   défini  par une  suite 
   $S  = \left(s^t\right)^{t \in  \mathds{N}}$ qui est  une séquence
   d'indices dans $[{\mathsf{N}}]$. Cette suite est appelée \emph{stratégie unaire}. 
   défini  par une  suite 
   $S  = \left(s^t\right)^{t \in  \mathds{N}}$ qui est  une séquence
   d'indices dans $[{\mathsf{N}}]$. Cette suite est appelée \emph{stratégie unaire}. 
-  Il est basé sur la relation définie pour tout $i \in [{\mathsf{N}}]$ par
+  Ce mode est défini pour tout $i \in [{\mathsf{N}}]$ par
   
 \begin{equation}
   x^{t+1}_i=
   
 \begin{equation}
   x^{t+1}_i=
@@ -274,7 +274,7 @@ On a la proposition suivante:
 
 
 \begin{theorem}\label{Prop:attracteur}
 
 
 \begin{theorem}\label{Prop:attracteur}
-Le point $x$ est un point fixe si et seulement si 
+La configuration $x$ est un point fixe si et seulement si 
 $\{x\}$ est un attracteur du graphe d'itération (synchrone, unaire, généralisé).
 En d'autres termes, les attracteurs non cycliques de celui-ci 
 sont les points fixes de $f$.
 $\{x\}$ est un attracteur du graphe d'itération (synchrone, unaire, généralisé).
 En d'autres termes, les attracteurs non cycliques de celui-ci 
 sont les points fixes de $f$.
@@ -331,7 +331,7 @@ $f'_{ij}(x)=0$. Ainsi $B(f)_{ij}$ est nulle. La réciproque est aussi vraie.
 
 En outre, les interactions peuvent se  représenter à l'aide d'un 
 graphe $\Gamma(f)$ orienté et signé défini ainsi: 
 
 En outre, les interactions peuvent se  représenter à l'aide d'un 
 graphe $\Gamma(f)$ orienté et signé défini ainsi: 
-l'ensemble des sommet %s est 
+l'ensemble des sommets est 
 $[{\mathsf{N}}]$ et il existe un arc de $j$ à $i$ de signe
  $s\in\{-1,1\}$, noté $(j,s,i)$, si $f_{ij}(x)=s$ pour au moins
 un $x\in\Bool^{\mathsf{N}}$. 
 $[{\mathsf{N}}]$ et il existe un arc de $j$ à $i$ de signe
  $s\in\{-1,1\}$, noté $(j,s,i)$, si $f_{ij}(x)=s$ pour au moins
 un $x\in\Bool^{\mathsf{N}}$. 
@@ -527,22 +527,21 @@ Parmi toutes les stratégies unaires de
 $[{\mathsf{N}}]^{\Nats}$, on qualifie de:
 \begin{itemize}
 \item \emph{périodiques} celles 
 $[{\mathsf{N}}]^{\Nats}$, on qualifie de:
 \begin{itemize}
 \item \emph{périodiques} celles 
-qui sont constituées par une répétition infinie 
+qui sont constituées par une répétition infinie 
 d'une même séquence $S$ complète relativement à $[{\mathsf{N}}]$.
 En particulier toute séquence périodique est complète.
 \item \emph{pseudo-périodiques} celles 
 d'une même séquence $S$ complète relativement à $[{\mathsf{N}}]$.
 En particulier toute séquence périodique est complète.
 \item \emph{pseudo-périodiques} celles 
-qui sont constituées par une succession infinie de séquences 
+qui sont constituées par une succession infinie de séquences 
 (de longueur éventuellement variable non supposée bornée) complètes.
 Autrement dit dans chaque stratégie pseudo-périodique, chaque indice de
 (de longueur éventuellement variable non supposée bornée) complètes.
 Autrement dit dans chaque stratégie pseudo-périodique, chaque indice de
-$1$ à ${\mathsf{N}}$ revient infiniment.
+$1$ à ${\mathsf{N}}$ revient infiniment.
 \end{itemize}
 
 
 \end{itemize}
 
 
-François Robert~\cite{Rob95}
-a énoncé en 1995 le théorème suivant de convergence 
+On a le théorème suivant de convergence 
 dans le mode des itérations unaires.
 
 dans le mode des itérations unaires.
 
-\begin{theorem}\label{Th:conv:GIU}
+\begin{theorem}[~\cite{Rob95}]\label{Th:conv:GIU}
 Si le graphe $\Gamma(f)$ n'a pas de cycle et si la stratégie unaire est
 pseudo-périodique, alors tout chemin de $\textsc{giu}(f)$ atteint 
 l'unique point fixe $\zeta$ en au plus ${\mathsf{N}}$ pseudo-périodes.
 Si le graphe $\Gamma(f)$ n'a pas de cycle et si la stratégie unaire est
 pseudo-périodique, alors tout chemin de $\textsc{giu}(f)$ atteint 
 l'unique point fixe $\zeta$ en au plus ${\mathsf{N}}$ pseudo-périodes.
@@ -551,11 +550,11 @@ l'unique point fixe $\zeta$ en au plus ${\mathsf{N}}$ pseudo-périodes.
 Le qualificatif \emph{pseudo-périodique} peut aisément 
 s'étendre aux stratégies généralisées comme suit.
 Lorsqu'une stratégie généralisée est constituée d'une 
 Le qualificatif \emph{pseudo-périodique} peut aisément 
 s'étendre aux stratégies généralisées comme suit.
 Lorsqu'une stratégie généralisée est constituée d'une 
-succession infinie de séquences de parties de $[{\mathsf{N}}]$ 
+succession infinie de séquences de parties de $[{\mathsf{N}}]$ 
 dont l'union est $[{\mathsf{N}}]$, cette stratégie est {pseudo-périodique}.
 dont l'union est $[{\mathsf{N}}]$, cette stratégie est {pseudo-périodique}.
-J. Bahi~\cite{Bah00} a démontré le théorème suivant:
+On a le théorème suivant.
 
 
-\begin{theorem}\label{Th:Bahi}
+\begin{theorem}[~\cite{Bah00}]\label{Th:Bahi}
 Si le graphe $\Gamma(f)$ n'a pas de cycle et si la stratégie généralisée
 est pseudo-périodique alors
 tout chemin de $\textsc{gig}(f)$ (et donc de $\textsc{giu}(f)$) 
 Si le graphe $\Gamma(f)$ n'a pas de cycle et si la stratégie généralisée
 est pseudo-périodique alors
 tout chemin de $\textsc{gig}(f)$ (et donc de $\textsc{giu}(f)$) 
index dda07a403c4544505b2c6c53bdd0816a93710474..8801599793859c5a37dab2e1dd11c289b71c5b99 100644 (file)
@@ -27,7 +27,7 @@ A partir de ces cartes de distortions, chacun de ces algorithmes selectionne
 les pixels dont les modifications induisent la distortion la plus faible 
 possible. Ceci revient à définir une fonction de signification $u$.
 La complexité du schéma de stéganographie est peu ou prou celle du calcul
 les pixels dont les modifications induisent la distortion la plus faible 
 possible. Ceci revient à définir une fonction de signification $u$.
 La complexité du schéma de stéganographie est peu ou prou celle du calcul
-de cette carte, et elle est élevée (cf partie~\ref{XXXXXXXX}) dans le cas
+de cette carte, et elle est élevée  dans le cas
 de ces algorithmes.
 Nous avons proposé un algorithme~\cite{ccg15:ij}
 de complexité beaucoup plus faible 
 de ces algorithmes.
 Nous avons proposé un algorithme~\cite{ccg15:ij}
 de complexité beaucoup plus faible 
index cfda20f760659142c9830504a8c70bc69a52a88d..7f2add36c841f9329be71081a43eef54b15d6994 100644 (file)
@@ -34,6 +34,7 @@ données et prouvées (Section~\ref{sec:second} et Section~\ref{sec:poly}).
 Une adaptation d'une fonction de distorsion existante est étudiée
 en Section~\ref{sec:distortion} et des expériences sont présentées 
 en Section~\ref{sec:experiments}.
 Une adaptation d'une fonction de distorsion existante est étudiée
 en Section~\ref{sec:distortion} et des expériences sont présentées 
 en Section~\ref{sec:experiments}.
+Ce chapitre a été publié dans~\cite{ccfg16:ip}.
 
 
 
 
 
 
@@ -736,23 +737,16 @@ compte des variations dans celle-ci. Les dérivées secondes sont certes faciles
 %\end{figure}
 
 
 %\end{figure}
 
 
-% \section{Conclusion}
-
-% The first contribution of this paper is to propose of a distortion
-% function which is based on second order derivatives. These
-% partial derivatives allow to accurately compute 
-% the level curves and thus to look favorably on pixels
-% without clean level curves. 
-% Two approaches to build these derivatives have been proposed.
-% The first one is based on revisiting kernels usually embedded 
-% in edge detection algorithms. 
-% The second one is based on the polynomial approximation
-% of the bitmap image.
-% These two methods have been completely implemented.
-% The first experiments have shown that the security level 
-% is slightly inferior the one of the most stringent approaches. These first promising results encourage us to deeply investigate this research direction. 
-
-% Future works aiming at improving the security of this proposal are planned as follows. The authors want first to focus on other approaches to provide second order derivatives with larger discrimination power.
-% Then, the objective will be to deeply investigate whether the H\"older norm is optimal when the objective is to avoid null second order derivatives, and to give priority to the largest second order values.
-
-
+\section{Conclusion}
+La principale contribution de ce chapitre est de proposer des 
+fonctions de distorsion basées sur des approximations de dérivées 
+secondes, l'idée sous-jacente étant qu'une zone où les lignes de niveau 
+ne sont pas clairement définies est peu prédictible.
+Deux approches d'approximation ont été présentées.
+La première  basée 
+sur un produit de convolution, exploite des noyaux déjà intégrés dans des
+algorithmes de détection de bords.
+La seconde s'appuie sur une interpolation polynomiale de l'image.
+Ces deux méthodes onté été complètement implantées et leur sécurité 
+face à des stéganalyseurs a été étudiée. Les résultats encouragent 
+à poursuivre dans cette direction.
\ No newline at end of file