Pour obtenir plus rapidement une distribution uniforme, l'idéal serait
de supprimer un cycle hamiltonien qui nierait autant de fois chaque bit.
Cette forme de cycle est dit équilibré. La section~\ref{sub:gray} établit le
-lien avec les codes de Gray équilibrés, étudiés dans la litérature.
+lien avec les codes de Gray équilibrés, étudiés dans la littérature.
La section suivante présente une démarche de génération automatique de code de Gray équilibré (section~\ref{sec:induction}).
La vitesse avec laquelle l'algorithme de PRNG converge en interne vers
-une distribution unifiorme est étduiée théoriquement et pratiquement à la
+une distribution uniforme est étudiée théoriquement et pratiquement à la
section~\ref{sec:mixing}.
-L'extension du travail aux itérations généralisées est présenté à la
+L'extension du travail aux itérations généralisées est présentée à la
section~\ref{sec:prng:gray:general}.
Finalement, des instances de PRNGS engendrés selon les méthodes détaillées dans
ce chapitre sont présentés en section~\ref{sec:prng;gray:tests}.
\item Toutes les éléments de la somme $\sum_{1\le k\le 2^{\mathsf{N}}}M^k$ sont strictement positif, \textit{i.e.}, le graphe $\textsc{giu}(f)$ est fortement connexe;
\end{enumerate}
Ce problème s'exprime sur des domaines finis entiers avec des opérateurs
-arithmétiques simples (sommes et produits). il pourrait théoriquement être
+arithmétiques simples (sommes et produits). Il pourrait théoriquement être
traité par des démarches de programmation logique par contrainte
sur des domaines finis (comme en PROLOG).
L'algorithme donné en Figure~\ref{fig:prolog}
valent True si et seulement si $R$
est le produit matriciel (ou la somme matricielle)
entre $X$ and $Y$ respectivement.
-il n'est pas difficile d'adapter ce code à n'importe quelle valeur
+Il n'est pas difficile d'adapter ce code à n'importe quelle valeur
entière naturelle $\mathsf{N}$.
\begin{figure}[ht]
\end{figure}
Enfin, on définit la relation $\mathcal{R}$, qui est établie pour les deux
-fonctions $f$ et $g$ si leur graphes
-respectifs $\textsf{giu}(f)$ et $\textsf{giu}(g)$
+fonctions $f$ et $g$ si leurs graphes
+respectifs $\textsc{giu}(f)$ et $\textsc{giu}(g)$
sont isomorphes.
C'est évidemment une relation d'équivalence.
%\subsection{Analyse de l'approche}\label{sub:prng:ana}
-Exécutée sur un ordinateur personnelle, PROLOG trouve
+Exécutée sur un ordinateur personnel, PROLOG trouve
en moins d'une seconde les
49 solutions pour $n=2$,
dont 2 seulement ne sont pas équivalentes,
Cependant, pour des valeurs de $n$ petites, nous avons
comparé les fonctions non équivalentes selon leur proportion
-à engendrer des temps de mélange petits (cf. équation~\ref{eq:mt:ex}).
+à engendrer des temps de mélange petits (cf. équation~(\ref{eq:mt:ex})).
(donné à la Figure~\ref{fig:iteration:f*})
est le $3$-cube dans lequel le cycle
$000,100,101,001,011,111,110,010,000$
-a été enlevé. Dans cette figure, le le graphe $\textsc{giu}(f)$ est
+a été enlevé. Dans cette figure, le graphe $\textsc{giu}(f)$ est
en continu tandis que le cycle est en pointillés.
Ce cycle qui visite chaque n{\oe}ud exactement une fois est un
\emph{cycle hamiltonien}.
La suppression d'un cycle hamiltonien dans une matrice de Markov $M$, issue du
$n$-cube, produit une matrice doublement stochastique.
\end{theorem}
-\begin{Proof}
+\begin{proof}
Un cycle hamiltonien passe par chaque n{\oe}ud une et une seule fois.
Pour chaque n{\oe}ud $v$ dans le $n$-cube $C_1$,
une arête entrante $(o,v)$ et une arête sortante $(v,e)$
-est ainsi enlevée.
+sont ainsi enlevées.
Considérons un autre $n$-cube $C_2$ auquel on ajoute les arêtes
pour le rendre complet. La matrice de Markov $M$ correspondante est
remplie de $\frac{1}{2^n}$ et est doublement stochastique.
Dans $M$ les $2^{n-1}$ coefficients correspondants sont mis à 0 et
$M_{vv}$ vaut alors $\frac{2^{n-1} +1}{2}$.
$M$ est donc doublement stochastique.
-\end{Proof}
+\end{proof}
\end{theorem}
-\begin{Proof}
+\begin{proof}
On considère les deux $n$-cubes $C_1$ et $C_2$ définis
dans la preuve du théorème~\ref{th:supprCH}.
Dans $C_1$ on considère le cycle inverse $r$ du cycle
depuis n'importe quel n{\oe}ud. Le graphe des itérations $\textsf{giu}$ qui
étend le précédent graphe est ainsi fortement connexe.
-\end{Proof}
+\end{proof}
%Les preuves, relativement directes, sont laissées en exercices au lecteur.
-La génération de cycles hamiltoniens dans le
-$n$-cube, ce qui revient à trouver des \emph{codes de Gray cycliques}. On
-rappelle que les codes de Gray sont des séquences de mots binaires de taille
-fixe ($n$), dont les éléments successifs ne différent que par un seul bit. Un
+Générer un cycle hamiltonien dans le
+$n$-cube revient à trouver un \emph{code de Gray cyclique}. On
+rappelle qu'un code de Gray est une séquence de mots binaires de taille
+fixe ($\mathsf{N}$), dont les éléments successifs ne différent que par un seul bit. Un
code de Gray est \emph{cyclique} si le premier élément et le dernier ne
différent que par un seul bit.
\log n}\times(1 - o(1))\right)^{2^n}$), donnée dans~\cite{Feder2009NTB},
indique une explosion combinatoire pour notre recherche. Afin de contourner
cette difficulté, nous nous restreignons aux codes induisant un graphe
-d'itérations $\textsf{giu}(f)$ \emph{uniforme}. Cette uniformité se traduit par des
+d'itérations $\textsc{giu}(f)$ \emph{uniforme}. Cette uniformité se traduit par des
nombres d'arcs équilibrés entre les \emph{dimensions} du graphe, la dimension
$i$ correspondant aux seules variations du bit $i$ (parmi les $n$ bits au
total). Cette approche revient à chercher des codes de Gray cycliques
\emph{équilibrés}.
-Un code de Gray équilibré peut être défini de la façon suivante :
-
-\begin{Def}[Code de Gray cyclique équilibré]\label{def:grayequ}
- Soit $L = w_1, w_2, \dots, w_{2^n}$ la séquence d'un code de Gray cyclique à
- $n$ bits. Soit $S = s_1, s_2, \dots, s_{2^n}$ la séquence des transitions où
- $s_i$, $1 \le i \le 2^n$ est l'indice du seul bit qui varie entre les mots
- $w_i$ et $w_{i+1}$. Enfin, soit $\textit{NT}_n : \{1,\dots, n\} \rightarrow
- \{0, \ldots, 2^n\}$ la fonction qui au paramètre $i$ associe le \emph{nombre
- de transitions} présentes dans la séquence $L$ pour le bit $i$, c'est-à-dire
- le nombre d'occurrences de $i$ dans $S$.
+On formalise un code de Gray équilibré comme suit.
+Soit $L = w_1, w_2, \dots, w_{2^n}$ la séquence d'un code de Gray cyclique à
+$n$ bits. Soit $S = s_1, s_2, \dots, s_{2^n}$ la séquence des transitions où
+$s_i$, $1 \le i \le 2^n$ est l'indice du seul bit qui varie entre les mots
+$w_i$ et $w_{i+1}$. Enfin, soit $\textit{TC}_n : \{1,\dots, n\} \rightarrow
+\{0, \ldots, 2^n\}$ la fonction qui au paramètre $i$ associe le \emph{nombre
+ de transitions} présentes dans la séquence $L$ pour le bit $i$, c'est-à-dire
+le nombre d'occurrences de $i$ dans $S$.
- Le code $L$ est \textbf{équilibré} si $\forall
- i,j\in\{1,...,n\},~|\textit{NT}_n(i) - \textit{NT}_n(j)| \le 2$. Il est
- \textbf{totalement équilibré} si $\forall
- i\in\{1,...,n\},~\textit{NT}_n(i)=\frac{2^n}{n}$.
-\end{Def}
+Le code $L$ est \textbf{équilibré} si $\forall
+i,j\in\{1,...,n\},~|\textit{TC}_n(i) - \textit{TC}_n(j)| \le 2$. Il est
+\textbf{totalement équilibré} si $\forall
+i\in\{1,...,n\},~\textit{TC}_n(i)=\frac{2^n}{n}$.
+
On peut donc déjà déduire qu'il ne peut exister des codes de Gray totalement
équilibrés que pour les systèmes ayant un nombre d'éléments $n=2^k, k>0$. De
-plus, comme dans tout code de Gray cyclique, $\textit{NT}_n(i)$ est pair
+plus, comme dans tout code de Gray cyclique, $\textit{TC}_n(i)$ est pair
$\forall i\in\{1,...,n\}$, alors les systèmes ayant un nombre d'éléments
différent de $2^k$, ne peuvent avoir que des codes de Gray équilibrés avec
-$\textit{NT}_n(i)=\lfloor\frac{2^n}{n}\rfloor$ ou
+$\textit{TC}_n(i)=\lfloor\frac{2^n}{n}\rfloor$ ou
$\textit{NT}_n(i)=\lceil\frac{2^n}{n}\rceil, \forall i\in\{1,...,n\}$ et
-vérifiant $\sum_{i=1}^nNT_n(i) = 2^n$.
+vérifiant $\sum_{i=1}^n\textit{TC}_n(i) = 2^n$.
\begin{xpl}
Soit $L^*=000,100,101,001,011,111,110,010$ le code de Gray correspondant au
\section{Génération de codes de Gray équilibrés par induction}
\label{sec:induction}
-De nombreuses approches ont été developpées pour résoudre le problème de construire
+De nombreuses approches ont été développées pour résoudre le problème de construire
un code de Gray dans un $\mathsf{N}$-cube~\cite{Robinson:1981:CS,DBLP:journals/combinatorics/BhatS96,ZanSup04},
selon les propriétés que doit vérifier ce code.
propriétés à chaque pas inductif.
Ce travail a été renforcé dans ~\cite{DBLP:journals/combinatorics/BhatS96}
où les auteurs donnent une manière explicite de construire une telle sous-séquence.
-Enfin, les autheurs de~\cite{ZanSup04} présentent une extension de l'algorithme de
+Enfin, les auteurs de~\cite{ZanSup04} présentent une extension de l'algorithme de
\emph{Robinson-Cohn}. La présentation rigoureuse de cette extension leur permet
principalement de prouver que si $\mathsf{N}$ est une puissance de 2,
le code de Gray équilibré engendré par l'extension est toujours totalement équilibré et
un code de Gray (totalement) équilibré.
Cette section montre que ceci est vrai en rappelant tout d'abord
l'extension de l'algorithme de \emph{Robinson-Cohn} pour un
-code de Gray avec $\mathsf{N}-2$ bits.
+code de Gray avec $\mathsf{N}-2$ bits
+défini à partir de la séquence $S_{\mathsf{N}-2}$.
\begin{enumerate}
-\item \label{item:nondet}Soit $l$ un entier positif pair. Trouver des sous-sequences
+\item \label{item:nondet}Soit $l$ un entier positif pair. Trouver des sous-séquences
$u_1, u_2, \dots , u_{l-2}, v$ (possiblement vides) de $S_{\mathsf{N}-2}$
telles que $S_{\mathsf{N}-2}$ est la concaténation de
$$
s_{i_1}, u_0, s_{i_2}, u_1, s_{i_3}, u_2, \dots , s_{i_l-1}, u_{l-2}, s_{i_l}, v
$$
où $i_1 = 1$, $i_2 = 2$, et $u_0 = \emptyset$ (la séquence vide).
-\item\label{item:u'} Remplacer dans $S_{\mathsf{N}-2}$ les sequences $u_0, u_1, u_2, \ldots, u_{l-2}$
+\item\label{item:u'} Remplacer dans $S_{\mathsf{N}-2}$ les séquences $u_0, u_1, u_2, \ldots, u_{l-2}$
par
$\mathsf{N} - 1, u'(u_1,\mathsf{N} - 1, \mathsf{N}) , u'(u_2,\mathsf{N}, \mathsf{N} - 1), u'(u_3,\mathsf{N} - 1,\mathsf{N}), \dots, u'(u_{l-2},\mathsf{N}, \mathsf{N} - 1)$
respectivement, où $u'(u,x,y)$ est la séquence $u,x,u^R,y,u$ telle que
$u^R$ est $u$, mais dans l'ordre inverse. La séquence obtenue est ensuite notée $U$.
-\item\label{item:VW} Contruire les séquences $V=v^R,\mathsf{N},v$, $W=\mathsf{N}-1,S_{\mathsf{N}-2},\mathsf{N}$. Soit alors $W'$ définie commé étant égale à $W$ sauf pour les
+\item\label{item:VW} Construire les séquences $V=v^R,\mathsf{N},v$, $W=\mathsf{N}-1,S_{\mathsf{N}-2},\mathsf{N}$. Soit alors $W'$ définie comme étant égale à $W$ sauf pour les
deux premiers éléments qui ont été intervertis.
-\item La séquence de transition $S_{\mathsf{N}}$ est la concatenation $U^R, V, W'$.
+\item La séquence de transition $S_{\mathsf{N}}$ est la concaténation $U^R, V, W'$.
\end{enumerate}
L'étape~(\ref{item:nondet}) n'est pas constructive: il n'est pas précisé
comment sélectionner des sous-séquences qui assurent que le code obtenu est équilibré.
-La théoreme suivante montre que c'est possible et sa preuve explique comment le faire.
+La théorème suivante montre que c'est possible et sa preuve,
+donnée en annexes~\ref{anx:generateur}, explique comment le faire.
\begin{theorem}\label{prop:balanced}
Soit $\mathsf{N}$ dans $\Nats^*$, et $a_{\mathsf{N}}$ défini par
$a_{\mathsf{N}}= 2 \left\lfloor \dfrac{2^{\mathsf{N}}}{2\mathsf{N}} \right\rfloor$.
il existe une séquence $l$ dans l'étape~(\ref{item:nondet}) de l'extension
-de l'algorithme de \emph{Robinson-Cohn} extension telle que
+de l'algorithme de \emph{Robinson-Cohn} telle que
le nombres de transitions $\textit{TC}_{\mathsf{N}}(i)$
sont tous $a_{\mathsf{N}}$ ou $a_{\mathsf{N}}+2$
pour chaque $i$, $1 \le i \le \mathsf{N}$.
\end{theorem}
-La preuve de ce théorème est donnée en annexes~\ref{anx:generateur}.
-
Ces fonctions étant générées, on s'intéresse à étudier à quelle vitesse
un générateur les embarquant converge vers la distribution uniforme.
C'est l'objectif de la section suivante.
\begin{theorem} \label{prop:stop}
-Si $\ov{h}$ is bijective et anti involutive
+Si $\ov{h}$ est bijective et anti involutive
$\ov{h}(\ov{h}(X))\neq X$, alors
$E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$.
\end{theorem}
On remarque tout d'abord que la chaîne de Markov proposée ne suit pas exactement
l'algorithme~\ref{CI Algorithm}. En effet dans la section présente,
la probabilité de rester dans une configuration donnée
-est fixée à $frac{1}{2}+\frac{1}{2n}$.
-Dans l'algorithme initial, celle-ci est de ${1}{n}$.
+est fixée à $\frac{1}{2}+\frac{1}{2n}$.
+Dans l'algorithme initial, celle-ci est de $\frac{1}{n}$.
Cette version, qui reste davantage sur place que l'algorithme original,
a été introduite pour simplifier le calcul de la borne sup
du temps d'arrêt.
On peut évaluer ceci pratiquement: pour une fonction
$f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ et une graine initiale
-$x^0$, le code donné à l'algorithme algorithm~\ref{algo:stop} retourne le
+$x^0$, le code donné à l'algorithme ~\ref{algo:stop} retourne le
nombre d'itérations suffisant tel que tous les éléments $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ sont équitables. Il permet de déduire une approximation de $E[\ts]$
en l'instanciant un grand nombre de fois: pour chaque nombre $\mathsf{N}$,
-$ 3 \le \mathsf{N} \le 16$, 10 fonctionss ont été générées comme dans
+$ 3 \le \mathsf{N} \le 16$, 10 fonctions ont été générées comme dans
ce chapitre. Pour chacune d'elle, le calcul d'une approximation de $E[\ts]$
-est exécuté 10000 fois avec une graine aléatoire.La Figure~\ref{fig:stopping:moy}
-résume ces resultats. Dans celle-ci, un cercle représente une approximation de
+est exécuté 10000 fois avec une graine aléatoire. La Figure~\ref{fig:stopping:moy}
+résume ces résultats. Dans celle-ci, un cercle représente une approximation de
$E[\ts]$ pour un $\mathsf{N}$ donné tandis que la courbe est une représentation de
la fonction $x \mapsto 2x\ln(2x+8)$.
-On cosntate que l'approximation de $E[\ts]$ est largement inférieure
-à la borne quadratique donnée au thérème~\ref{prop:stop} et que la conjecture
+On constate que l'approximation de $E[\ts]$ est largement inférieure
+à la borne quadratique donnée au théorème~\ref{prop:stop} et que la conjecture
donnée au paragraphe précédent est sensée.
}
\Return{$\textit{nbit}$}\;
%\end{scriptsize}
-\caption{Pseudo Code of stoping time calculus }
+\caption{Pseudo Code pour évaluer le temps d'arrêt}
\label{algo:stop}
\end{algorithm}
\begin{figure}
\centering
\includegraphics[width=0.49\textwidth]{images/complexityET}
-\caption{Average Stopping Time Approximation}\label{fig:stopping:moy}
+\caption{Interpolation du temps d'arrêt}\label{fig:stopping:moy}
\end{figure}
\section{Et les itérations généralisées?}\label{sec:prng:gray:general}
-Le chaptire précédent a présenté un algorithme de
+Le chapitre précédent a présenté un algorithme de
PRNG construit à partir d'itérations unaires.
On pourrait penser que cet algorithme est peu efficace puisqu'il
dispose d'une fonction $f$ de $\Bool^n$ dans lui même mais il ne modifie à
Dans celle-ci la fonction $\textit{Set} : \{1,\ldots,2^n\} \rightarrow
\mathcal{P}(\{1,\ldots n\})$ retourne l'ensemble dont la fonction
caractéristique serait représentée par le nombre donné en argument.
-Par exemple, pour $n=3$, l'ensemble $\textit{Set}(6)$ vaudraitt $\{3,2\}$.
+Par exemple, pour $n=3$, l'ensemble $\textit{Set}(6)$ vaudrait $\{3,2\}$.
On remarque aussi que l'argument de la fonction $\textit{Random}$
passe de $n$ à $2^n$.
Un second résultat est que ce nouvel algorithme réduit grandement le nombre
d'itérations suffisant pour obtenir une faible déviation par rapport à une
-distribution uniforme. On constate de plus que ce nombre décroit avec
+distribution uniforme. On constate de plus que ce nombre décroît avec
le nombre d'éléments alors qu'il augmente dans l'approche initiale où
l'on marche.
Le tableau~\ref{table:marchevssaute} donne des instances de
ces valeurs pour $n \in\{4,5,6,7,8\}$ et les fonctions
données au tableau~\ref{table:functions}.
-On constate que le nombre d'appels par bit généré décroit avec $n$ dans le
+On constate que le nombre d'appels par bit généré décroît avec $n$ dans le
cas des itérations généralisées et est toujours plus faible
que celui des itérations unaires.
Les tableau~\ref{fig:TEST:generalise} donnent
une vision synthétique de ces expérimentations.
Nous avons évalué les fonctions préfixées par
-$f$ (respecitvement $g$) avec les générateurs issus des itérations
+$f$ (respectivement $g$) avec les générateurs issus des itérations
généralisées (resp. unaires).
Quelle que soit la méthode utilisée, on constate que chacun des
générateurs passe
-avec succes le test de NIST.
+avec succès le test de NIST.
-Interpréter ces resultats en concluant que ces générateurs sont
+Interpréter ces résultats en concluant que ces générateurs sont
tous équivalents serait erroné: la meilleur des
méthodes basées sur le mode des itérations
généralisées (pour $n=8$ par exemple)
\section{Conclusion}
Ce chaptitre a montré comment construire un PRNG chaotique, notamment à partir
-de codes de Gray équilibrés. Une méthode completement automatique de
+de codes de Gray équilibrés. Une méthode complètement automatique de
construction de ce type de codes a été présentée étendant les méthodes
existantes.
Dans le cas des itérations unaires,
On peut penser à exploiter une de ces fonctions $G_f$
comme un générateur aléatoire.
-Ce chapitre présente une application directe
+Ce chapitre présente donc une application directe
de la théorie développée ci-avant
à la génération de nombres pseudo aléatoires.
+La section~\ref{sub:prng:algo}
+présente tout d'abord l'algorithme de PRNG. La contrainte de
+distribution uniforme de la sortie est discutée dans cette section.
+La chaoticité du générateur est ensuite étudiée en
+section~\ref{prng:unaire:chaos}.
+La section~\ref{sub:prng:algo} a été publiéeà~\cite{bcgw11:ip,bcgr11:ip}.
-La suite de ce document donnera
-une condition nécessaire est suffisante pour que
-cette propriété soit satisfaite.
-
-
-On présente tout d'abord le générateur
-basé sur des fonctions chaotiques (section~\ref{sub:prng:algo}),
-puis comment intégrer la contrainte de distribution uniforme
-de la sortie
-dans le choix de la fonction à itérer (section~\ref{sub:prng:unif}).
-L'approche est évaluée dans la dernière section.
-\JFC{plan à revoir}
-
-
\section{ Nombres pseudo aléatoires construits par itérations unaires}\label{sub:prng:algo}
On énonce directement le théorème suivant dont la preuve est donnée en annexes~\ref{anx:generateur}.
-\begin{theorem}\label{thm:prng:u}
+\begin{restatable}[Uniformité de la sortie de l'algorithme~\ref{CI Algorithm}]{theorem}{PrngCIUniforme}\label{thm:prng:u}
Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{giu}(f)$ son
graphe d'itérations , $\check{M}$ sa matrice d'adjacence
et $M$ une matrice $2^n\times 2^n$
l'algorithme~\ref{CI Algorithm} suit une loi qui
tend vers la distribution uniforme si
et seulement si $M$ est une matrice doublement stochastique.
-\end{theorem}
+\end{restatable}
\subsection{Quelques exemples}
est l'objectif de la section suivante.
-\section{Un PRNG basé sur des itérations unaires qui est chaotique }
+\section{Un PRNG basé sur des itérations unaires qui est chaotique }\label{prng:unaire:chaos}
Cette section présente un espace métrique adapté au générateur de nombres pseudo-aléatoires
présenté à l'algorithme~\ref{CI Algorithm} et prouve ensuite que la fonction qu'il représente
On a la proposition suivante, qui est démontrée en annexes~\ref{anx:generateur}.
-\begin{lemma}
+
+
+\begin{restatable}[Une distance dans $\mathcal{X}_{\mathsf{N},\mathcal{P}}$]{theorem}{distancedsxnp}
$d$ est une distance sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
-\end{lemma}
+\end{restatable}
\subsection{Le graphe $\textsc{giu}_{\mathcal{P}}(f)$ étendant $\textsc{giu}(f)$}
Le théorème suivant, similaire à ceux dans $\mathcal{X}_u$ et dans $\mathcal{X}_g$
est prouvé en annexes~\ref{anx:generateur}.
-\begin{theorem}
+\begin{restatable}[Conditions pour la choticité de $G_{f_u,\mathcal{P}}$]{theorem}{thmchoticitgfp}
La fonction $G_{f_u,\mathcal{P}}$ est chaotique sur
$(\mathcal{X}_{\mathsf{N},\mathcal{P}},d)$ si et seulement si
-graphe d'itération $\textsc{giu}_{\mathcal{P}}(f)$
+le graphe d'itération $\textsc{giu}_{\mathcal{P}}(f)$
est fortement connexe.
-\end{theorem}
-On alors corollaire suivant
-
-\begin{corollary}
- Le générateur de nombre pseudo aléatoire détaillé
- à l'algorithme~\ref{CI Algorithm}
- n'est pas chaotique
- sur $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ pour la fonction négation.
-\end{corollary}
-\begin{proof}
- Dans cet algorithme, $\mathcal{P}$ est le singleton $\{b\}$.
- Que $b$ soit pair ou impair, $\textsc{giu}_{\{b\}}(f)$
- n'est pas fortement connexe.
-\end{proof}
-
+\end{restatable}
+% On alors corollaire suivant
+
+% \begin{corollary}
+% Le générateur de nombre pseudo aléatoire détaillé
+% à l'algorithme~\ref{CI Algorithm}
+% n'est pas chaotique
+% sur $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ pour la fonction négation.
+% \end{corollary}
+% \begin{proof}
+% Dans cet algorithme, $\mathcal{P}$ est le singleton $\{b\}$.
+% Que $b$ soit pair ou impair, $\textsc{giu}_{\{b\}}(f)$
+% n'est pas fortement connexe.
+% \end{proof}
+
+
+\section{Conclusion}
+Ce chapitre a proposé un algorithme permettant de construire un
+PRNG chaotique à partir d'un PRNG existant. Pour ce faire, il est nécessaire
+et suffisant que la fonction $f$ qui est itérée un nombre $b$ de fois
+possède un $\textsc{giu}_{\{b\}}(f)$ fortement connexe et que sa matrice de Markov assosiée soit doublement stochastique.
+Le chapitre suivant montre comment construire une telle fonction.
+
+