]> AND Private Git Repository - hpcc2014.git/blob - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ajout des figues (à améliorer par la suite)
[hpcc2014.git] / hpcc.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage{amsfonts,amssymb}
6 \usepackage{amsmath}
7 \usepackage{algorithm}
8 \usepackage{algpseudocode}
9 %\usepackage{amsthm}
10 \usepackage{graphicx}
11 \usepackage[american]{babel}
12 % Extension pour les liens intra-documents (tagged PDF)
13 % et l'affichage correct des URL (commande \url{http://example.com})
14 %\usepackage{hyperref}
15
16 \usepackage{url}
17 \DeclareUrlCommand\email{\urlstyle{same}}
18
19 \usepackage[autolanguage,np]{numprint}
20 \AtBeginDocument{%
21   \renewcommand*\npunitcommand[1]{\text{#1}}
22   \npthousandthpartsep{}}
23
24 \usepackage{xspace}
25 \usepackage[textsize=footnotesize]{todonotes}
26 \newcommand{\AG}[2][inline]{%
27   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
28 \newcommand{\RC}[2][inline]{%
29   \todo[color=red!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
30
31 \algnewcommand\algorithmicinput{\textbf{Input:}}
32 \algnewcommand\Input{\item[\algorithmicinput]}
33
34 \algnewcommand\algorithmicoutput{\textbf{Output:}}
35 \algnewcommand\Output{\item[\algorithmicoutput]}
36
37 \newcommand{\MI}{\mathit{MaxIter}}
38
39
40 \begin{document}
41
42 \title{Simulation of Asynchronous Iterative Numerical Algorithms Using SimGrid}
43
44 \author{%
45   \IEEEauthorblockN{%
46     Charles Emile Ramamonjisoa and
47     David Laiymani and
48     Arnaud Giersch and
49     Lilia Ziane Khodja and
50     Raphaël Couturier
51   }
52   \IEEEauthorblockA{%
53     Femto-ST Institute - DISC Department\\
54     Université de Franche-Comté\\
55     Belfort\\
56     Email: \email{{raphael.couturier,arnaud.giersch,david.laiymani,charles.ramamonjisoa}@univ-fcomte.fr}
57   }
58 }
59
60 \maketitle
61
62 \RC{Ordre des autheurs pas définitif}
63 \begin{abstract}
64 The abstract goes here.
65 \end{abstract}
66
67 \section{Introduction}
68
69 Parallel computing and high performance computing (HPC) are becoming 
70 more and more imperative for solving various problems raised by 
71 researchers on various scientific disciplines but also by industrial in 
72 the field. Indeed, the increasing complexity of these requested 
73 applications combined with a continuous increase of their sizes lead to 
74 write distributed and parallel algorithms requiring significant hardware 
75 resources (grid computing, clusters, broadband network, etc\dots{}) but
76 also a non-negligible CPU execution time. We consider in this paper a
77 class of highly efficient parallel algorithms called iterative executed 
78 in a distributed environment. As their name suggests, these algorithm 
79 solves a given problem that might be NP- complete complex by successive 
80 iterations ($X_{n +1} = f(X_{n})$) from an initial value $X_{0}$ to find
81 an approximate value $X^*$ of the solution with a very low
82 residual error. Several well-known methods demonstrate the convergence 
83 of these algorithms. Generally, to reduce the complexity and the 
84 execution time, the problem is divided into several \emph{pieces} that will
85 be solved in parallel on multiple processing units. The latter will 
86 communicate each intermediate results before a new iteration starts 
87 until the approximate solution is reached. These distributed parallel 
88 computations can be performed either in \emph{synchronous} communication mode
89 where a new iteration begin only when all nodes communications are 
90 completed, either \emph{asynchronous} mode where processors can continue
91 independently without or few synchronization points. Despite the 
92 effectiveness of iterative approach, a major drawback of the method is 
93 the requirement of huge resources in terms of computing capacity, 
94 storage and high speed communication network. Indeed, limited physical 
95 resources are blocking factors for large-scale deployment of parallel 
96 algorithms. 
97
98 In recent years, the use of a simulation environment to execute parallel 
99 iterative algorithms found some interests in reducing the highly cost of 
100 access to computing resources: (1) for the applications development life 
101 cycle and in code debugging (2) and in production to get results in a 
102 reasonable execution time with a simulated infrastructure not accessible 
103 with physical resources. Indeed, the launch of distributed iterative 
104 asynchronous algorithms to solve a given problem on a large-scale 
105 simulated environment challenges to find optimal configurations giving 
106 the best results with a lowest residual error and in the best of 
107 execution time. According our knowledge, no testing of large-scale 
108 simulation of the class of algorithm solving to achieve real results has 
109 been undertaken to date. We had in the scope of this work implemented a 
110 program for solving large non-symmetric linear system of equations by 
111 numerical method GMRES (Generalized Minimal Residual) in the simulation
112 environment SimGrid. The simulated platform had allowed us to launch
113 the application from a modest computing infrastructure by simulating 
114 different distributed architectures composed by clusters nodes 
115 interconnected by variable speed networks. In addition, it has been 
116 permitted to show the effectiveness of asynchronous mode algorithm by 
117 comparing its performance with the synchronous mode time. With selected 
118 parameters on the network platforms (bandwidth, latency of inter cluster 
119 network) and on the clusters architecture (number, capacity calculation 
120 power) in the simulated environment, the experimental results have
121 demonstrated not only the algorithm convergence within a reasonable time 
122 compared with the physical environment performance, but also a time 
123 saving of up to \np[\%]{40} in asynchronous mode.
124
125 This article is structured as follows: after this introduction, the next 
126 section will give a brief description of iterative asynchronous model. 
127 Then, the simulation framework SimGrid will be presented with the
128 settings to create various distributed architectures. The algorithm of 
129 the multi -splitting method used by GMRES written with MPI primitives 
130 and its adaptation to SimGrid with SMPI (Simulated MPI) will be in the
131 next section. At last, the experiments results carried out will be
132 presented before the conclusion which we will announce the opening of 
133 our future work after the results.
134  
135 \section{The asynchronous iteration model}
136
137 Décrire le modèle asynchrone. Je m'en charge (DL)
138
139 \section{SimGrid}
140
141 Décrire SimGrid~\cite{casanova+legrand+quinson.2008.simgrid} (Arnaud)
142
143
144
145
146
147
148
149 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
150 \section{Simulation of the multisplitting method}
151 %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid.
152 Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $b$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi partitioning to solve this linear system on a large scale platform composed of $L$ clusters of processors. In this case, we apply a row-by-row splitting without overlapping  
153 \[
154 \left(\begin{array}{ccc}
155 A_{11} & \cdots & A_{1L} \\
156 \vdots & \ddots & \vdots\\
157 A_{L1} & \cdots & A_{LL}
158 \end{array} \right)
159 \times 
160 \left(\begin{array}{c}
161 X_1 \\
162 \vdots\\
163 X_L
164 \end{array} \right)
165 =
166 \left(\begin{array}{c}
167 B_1 \\
168 \vdots\\
169 B_L
170 \end{array} \right)\] 
171 in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster, where for all $l,m\in\{1,\ldots,L\}$ $A_{lm}$ is a rectangular block of $A$ of size $n_l\times n_m$, $X_l$ and $B_l$ are sub-vectors of $x$ and $b$, respectively, each of size $n_l$ and $\sum_{l} n_l=\sum_{m} n_m=n$.
172
173 The multisplitting method proceeds by iteration to solve in parallel the linear system on $L$ clusters of processors, in such a way each sub-system
174 \begin{equation}
175 \left\{
176 \begin{array}{l}
177 A_{ll}X_l = Y_l \mbox{,~such that}\\
178 Y_l = B_l - \displaystyle\sum_{\substack{m=1\\ m\neq l}}^{L}A_{lm}X_m
179 \end{array}
180 \right.
181 \label{eq:4.1}
182 \end{equation}
183 is solved independently by a cluster and communication are required to update the right-hand side sub-vector $Y_l$, such that the sub-vectors $X_m$ represent the data dependencies between the clusters. As each sub-system (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our multisplitting method uses an iterative method as an inner solver which is easier to parallelize and more scalable than a direct method. In this work, we use the parallel algorithm of GMRES method~\cite{ref1} which is one of the most used iterative method by many researchers. 
184
185 \begin{algorithm}
186 \caption{A multisplitting solver with GMRES method}
187 \begin{algorithmic}[1]
188 \Input $A_l$ (sparse sub-matrix), $B_l$ (right-hand side sub-vector)
189 \Output $X_l$ (solution sub-vector)\vspace{0.2cm}
190 \State Load $A_l$, $B_l$
191 \State Initialize the solution vector $x^0$
192 \For {$k=0,1,2,\ldots$ until the global convergence}
193 \State Restart outer iteration with $x^0=x^k$
194 \State Inner iteration: \Call{InnerSolver}{$x^0$, $k+1$}
195 \State Send shared elements of $X_l^{k+1}$ to neighboring clusters
196 \State Receive shared elements in $\{X_m^{k+1}\}_{m\neq l}$
197 \EndFor
198
199 \Statex
200
201 \Function {InnerSolver}{$x^0$, $k$}
202 \State Compute local right-hand side $Y_l$: \[Y_l = B_l - \sum\nolimits^L_{\substack{m=1 \\m\neq l}}A_{lm}X_m^0\]
203 \State Solving sub-system $A_{ll}X_l^k=Y_l$ with the parallel GMRES method
204 \State \Return $X_l^k$
205 \EndFunction
206 \end{algorithmic}
207 \label{algo:01}
208 \end{algorithm}
209
210 Algorithm~\ref{algo:01} shows the main key points of the multisplitting method to solve a large sparse linear system. This algorithm is based on an outer-inner iteration method such that the parallel GMRES method is used to solve the inner iteration. It is executed in parallel by each cluster of processors. For all $l,m\in\{1,\ldots,L\}$, the matrices and vectors with the subscript $l$ represent the local data for cluster $l$, while $\{A_{lm}\}_{m\neq l}$ are off-diagonal matrices of sparse matrix $A$ and $\{X_m\}_{m\neq l}$ contain vector elements of solution $x$ shared with neighboring clusters. At every outer iteration $k$, asynchronous communications are performed between processors of the local cluster and those of distant clusters (lines $6$ and $7$ in Algorithm~\ref{algo:01}). The shared vector elements of the solution $x$ are exchanged by message passing using MPI non-blocking communication routines. 
211
212 \begin{figure}
213 \centering
214   \includegraphics[width=60mm,keepaspectratio]{clustering}
215 \caption{Example of three clusters of processors interconnected by a virtual unidirectional ring network.}
216 \label{fig:4.1}
217 \end{figure}
218
219 The global convergence of the asynchronous multisplitting solver is detected when the clusters of processors have all converged locally. We implemented the global convergence detection process as follows. On each cluster a master processor is designated (for example the processor with rank $1$) and masters of all clusters are interconnected by a virtual unidirectional ring network (see Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around the virtual ring from a master processor to another until the global convergence is achieved. So starting from the cluster with rank $1$, each master processor $i$ sets the token to {\it True} if the local convergence is achieved or to {\it False} otherwise, and sends it to master processor $i+1$. Finally, the global convergence is detected when the master of cluster $1$ receive from the master of cluster $L$ a token set to {\it True}. In this case, the master of cluster $1$ sends a stop message to masters of other clusters. In this work, the local convergence on each cluster $l$ is detected when the following condition is satisfied
220 \[(k\leq \MI) \mbox{~or~} \|X_l^k - X_l^{k+1}\|_{\infty}\leq\epsilon\]
221 where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the tolerance threshold of the error computed between two successive local solution $X_l^k$ and $X_l^{k+1}$. 
222 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
223
224
225
226
227
228
229
230
231 \section{Experimental results}
232
233 When the ``real'' application runs in the simulation environment and produces
234 the expected results, varying the input parameters and the program arguments
235 allows us to compare outputs from the code execution. We have noticed from this
236 study that the results depend on the following parameters: (1) at the network
237 level, we found that the most critical values are the bandwidth (bw) and the
238 network latency (lat). (2) Hosts power (GFlops) can also influence on the
239 results. And finally, (3) when submitting job batches for execution, the
240 arguments values passed to the program like the maximum number of iterations or
241 the ``external'' precision are critical to ensure not only the convergence of the
242 algorithm but also to get the main objective of the experimentation of the
243 simulation in having an execution time in asynchronous less than in synchronous
244 mode, in others words, in having a ``speedup'' less than 1 (Speedup = Execution
245 time in synchronous mode / Execution time in asynchronous mode).
246
247 A priori, obtaining a speedup less than 1 would be difficult in a local area
248 network configuration where the synchronous mode will take advantage on the rapid
249 exchange of information on such high-speed links. Thus, the methodology adopted
250 was to launch the application on clustered network. In this last configuration,
251 degrading the inter-cluster network performance will \emph{penalize} the synchronous
252 mode allowing to get a speedup lower than 1. This action simulates the case of
253 clusters linked with long distance network like Internet.
254
255 As a first step, the algorithm was run on a network consisting of two clusters
256 containing fifty hosts each, totaling one hundred hosts. Various combinations of
257 the above factors have providing the results shown in Table~\ref{tab.cluster.2x50} with a matrix size
258 ranging from Nx = Ny = Nz = 62 to 171 elements or from $62^{3} = \np{238328}$ to
259 $171^{3} = \np{5211000}$ entries.
260
261 Then we have changed the network configuration using three clusters containing
262 respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
263 clusters. In the same way as above, a judicious choice of key parameters has
264 permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the speedups less than 1 with
265 a matrix size from 62 to 100 elements.
266
267 In a final step, results of an execution attempt to scale up the three clustered
268 configuration but increasing by two hundreds hosts has been recorded in Table~\ref{tab.cluster.3x67}.
269
270 Note that the program was run with the following parameters:
271
272 \paragraph*{SMPI parameters}
273
274 \begin{itemize}
275         \item HOSTFILE: Hosts file description.
276         \item PLATFORM: file description of the platform architecture : clusters (CPU power,
277 \dots{}), intra cluster network description, inter cluster network (bandwidth bw,
278 lat latency, \dots{}).
279 \end{itemize}
280
281
282 \paragraph*{Arguments of the program}
283
284 \begin{itemize}
285         \item Description of the cluster architecture;
286         \item Maximum number of internal and external iterations;
287         \item Internal and external precisions;
288         \item Matrix size NX, NY and NZ;
289         \item Matrix diagonal value = 6.0;
290         \item Execution Mode: synchronous or asynchronous.
291 \end{itemize}
292
293 \begin{table}
294   \centering
295   \caption{2 clusters X 50 nodes}
296   \label{tab.cluster.2x50}
297   \AG{Les images manquent dans le dépôt Git. Si ce sont vraiment des tableaux, utiliser un format vectoriel (eps ou pdf), et surtout pas de jpeg!}
298   \includegraphics[width=209pt]{img1.jpg}
299 \end{table}
300
301 \begin{table}
302   \centering
303   \caption{3 clusters X 33 nodes}
304   \label{tab.cluster.3x33}
305   \AG{Le fichier manque.}
306   \includegraphics[width=209pt]{img2.jpg}
307 \end{table}
308
309 \begin{table}
310   \centering
311   \caption{3 clusters X 67 nodes}
312   \label{tab.cluster.3x67}
313   \AG{Le fichier manque.}
314 %  \includegraphics[width=160pt]{img3.jpg}
315   \includegraphics[scale=0.5]{img3.jpg}
316 \end{table}
317
318 \paragraph*{Interpretations and comments}
319
320 After analyzing the outputs, generally, for the configuration with two or three
321 clusters including one hundred hosts (Tables~\ref{tab.cluster.2x50} and~\ref{tab.cluster.3x33}), some combinations of the
322 used parameters affecting the results have given a speedup less than 1, showing
323 the effectiveness of the asynchronous performance compared to the synchronous
324 mode.
325
326 In the case of a two clusters configuration, Table~\ref{tab.cluster.2x50} shows that with a
327 deterioration of inter cluster network set with \np[Mbits/s]{5} of bandwidth, a latency
328 in order of a hundredth of a millisecond and a system power of one GFlops, an
329 efficiency of about \np[\%]{40} in asynchronous mode is obtained for a matrix size of 62
330 elements. It is noticed that the result remains stable even if we vary the
331 external precision from \np{E-5} to \np{E-9}. By increasing the problem size up to 100
332 elements, it was necessary to increase the CPU power of \np[\%]{50} to \np[GFlops]{1.5} for a
333 convergence of the algorithm with the same order of asynchronous mode efficiency.
334 Maintaining such a system power but this time, increasing network throughput
335 inter cluster up to \np[Mbits/s]{50}, the result of efficiency of about \np[\%]{40} is
336 obtained with high external  precision of \np{E-11} for a matrix size from 110 to 150
337 side elements.
338
339 For the 3 clusters architecture including a total of 100 hosts, Table~\ref{tab.cluster.3x33} shows
340 that it was difficult to have a combination which gives an efficiency of
341 asynchronous below \np[\%]{80}. Indeed, for a matrix size of 62 elements, equality
342 between the performance of the two modes (synchronous and asynchronous) is
343 achieved with an inter cluster of \np[Mbits/s]{10} and a latency of \np{E-1} ms. To
344 challenge an efficiency by \np[\%]{78} with a matrix size of 100 points, it was
345 necessary to degrade the inter cluster network bandwidth from 5 to 2 Mbit/s.
346
347 A last attempt was made for a configuration of three clusters but more power
348 with 200 nodes in total. The convergence with a speedup of \np[\%]{90} was obtained
349 with a bandwidth of \np[Mbits/s]{1} as shown in Table~\ref{tab.cluster.3x67}.
350
351 \section{Conclusion}
352
353 \section*{Acknowledgment}
354
355
356 The authors would like to thank\dots{}
357
358
359 % trigger a \newpage just before the given reference
360 % number - used to balance the columns on the last page
361 % adjust value as needed - may need to be readjusted if
362 % the document is modified later
363 \bibliographystyle{IEEEtran}
364 \bibliography{hpccBib}
365
366 \end{document}
367
368 %%% Local Variables:
369 %%% mode: latex
370 %%% TeX-master: t
371 %%% fill-column: 80
372 %%% ispell-local-dictionary: "american"
373 %%% End: