]> AND Private Git Repository - hpcc2014.git/blob - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
2c7d65d7a6822eb285a1eab87f3fc93d882b4df9
[hpcc2014.git] / hpcc.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage{amsfonts,amssymb}
6 \usepackage{amsmath}
7 %\usepackage{algorithm}
8 \usepackage{algpseudocode}
9 %\usepackage{amsthm}
10 \usepackage{graphicx}
11 \usepackage[american]{babel}
12 % Extension pour les liens intra-documents (tagged PDF)
13 % et l'affichage correct des URL (commande \url{http://example.com})
14 %\usepackage{hyperref}
15
16 \usepackage{url}
17 \DeclareUrlCommand\email{\urlstyle{same}}
18
19 \usepackage[autolanguage,np]{numprint}
20 \AtBeginDocument{%
21   \renewcommand*\npunitcommand[1]{\text{#1}}
22   \npthousandthpartsep{}}
23
24 \usepackage{xspace}
25 \usepackage[textsize=footnotesize]{todonotes}
26 \newcommand{\AG}[2][inline]{%
27   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
28 \newcommand{\DL}[2][inline]{%
29   \todo[color=yellow!50,#1]{\sffamily\textbf{DL:} #2}\xspace}
30 \newcommand{\LZK}[2][inline]{%
31   \todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
32 \newcommand{\RC}[2][inline]{%
33   \todo[color=red!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
34
35 \algnewcommand\algorithmicinput{\textbf{Input:}}
36 \algnewcommand\Input{\item[\algorithmicinput]}
37
38 \algnewcommand\algorithmicoutput{\textbf{Output:}}
39 \algnewcommand\Output{\item[\algorithmicoutput]}
40
41 \newcommand{\MI}{\mathit{MaxIter}}
42
43 \usepackage{array}
44 \usepackage{color, colortbl}
45 \newcolumntype{M}[1]{>{\centering\arraybackslash}m{#1}}
46 \newcolumntype{Z}[1]{>{\raggedleft}m{#1}}
47
48 \begin{document}
49
50 \title{Simulation of Asynchronous Iterative Numerical Algorithms Using SimGrid}
51
52 \author{%
53   \IEEEauthorblockN{%
54     Charles Emile Ramamonjisoa\IEEEauthorrefmark{1},
55     David Laiymani\IEEEauthorrefmark{1},
56     Arnaud Giersch\IEEEauthorrefmark{1},
57     Lilia Ziane Khodja\IEEEauthorrefmark{2} and
58     Raphaël Couturier\IEEEauthorrefmark{1}
59   }
60   \IEEEauthorblockA{\IEEEauthorrefmark{1}%
61     Femto-ST Institute -- DISC Department\\
62     Université de Franche-Comté,
63     IUT de Belfort-Montbéliard\\
64     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
65     Email: \email{{charles.ramamonjisoa,david.laiymani,arnaud.giersch,raphael.couturier}@univ-fcomte.fr}
66   }
67   \IEEEauthorblockA{\IEEEauthorrefmark{2}%
68     Inria Bordeaux Sud-Ouest\\
69     200 avenue de la Vieille Tour, 33405 Talence cedex, France \\
70     Email: \email{lilia.ziane@inria.fr}
71   }
72 }
73
74 \maketitle
75
76 \RC{Ordre des autheurs pas définitif.}
77 \begin{abstract}
78 In recent years, the scalability of large-scale implementation in a 
79 distributed environment of algorithms becoming more and more complex has 
80 always been hampered by the limits of physical computing resources 
81 capacity. One solution is to run the program in a virtual environment 
82 simulating a real interconnected computers architecture. The results are 
83 convincing and useful solutions are obtained with far fewer resources 
84 than in a real platform. However, challenges remain for the convergence 
85 and efficiency of a class of algorithms that concern us here, namely 
86 numerical parallel iterative algorithms executed in asynchronous mode, 
87 especially in a large scale level. Actually, such algorithm requires a 
88 balance and a compromise between computation and communication time 
89 during the execution. Two important factors determine the success of the 
90 experimentation: the convergence of the iterative algorithm on a large 
91 scale and the execution time reduction in asynchronous mode. Once again, 
92 from the current work, a simulated environment like SimGrid provides
93 accurate results which are difficult or even impossible to obtain in a 
94 physical platform by exploiting the flexibility of the simulator on the 
95 computing units clusters and the network structure design. Our 
96 experimental outputs showed a saving of up to \np[\%]{40} for the algorithm
97 execution time in asynchronous mode compared to the synchronous one with 
98 a residual precision up to \np{E-11}. Such successful results open
99 perspectives on experimentations for running the algorithm on a 
100 simulated large scale growing environment and with larger problem size. 
101
102 % no keywords for IEEE conferences
103 % Keywords: Algorithm distributed iterative asynchronous simulation SimGrid
104 \end{abstract}
105
106 \section{Introduction}
107
108 Parallel computing and high performance computing (HPC) are becoming  more and more imperative for solving various
109 problems raised by  researchers on various scientific disciplines but also by industrial in  the field. Indeed, the
110 increasing complexity of these requested  applications combined with a continuous increase of their sizes lead to  write
111 distributed and parallel algorithms requiring significant hardware  resources (grid computing, clusters, broadband
112 network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient
113 parallel algorithms called \texttt{numerical iterative algorithms} executed in a distributed environment. As their name
114 suggests, these algorithm solves a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value
115 $X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods
116 demonstrate the convergence of these algorithms \cite{}. 
117
118 Parallelization of such algorithms generally involved the division of the problem into several \emph{pieces} that will
119 be solved in parallel on multiple processing units. The latter will communicate each intermediate results before a new
120 iteration starts  until the approximate solution is reached. These parallel  computations can be performed either in
121 \emph{synchronous} communication mode where a new iteration begin only when all nodes communications are completed,
122 either \emph{asynchronous} mode where processors can continue independently without or few synchronization points. For
123 instance in the \textit{Asynchronous Iterations - Asynchronous   Communications (AIAC)} model \cite{bcvc06:ij}, local
124 computations do not need to wait for required data. Processors can then perform their iterations with the data present
125 at that time. Even if the number of iterations required before the convergence is generally greater than for the
126 synchronous case, AIAC algorithms can significantly reduce overall execution times by suppressing idle times due to
127 synchronizations especially in a grid computing context (see \cite{bcvc06:ij} for more details).
128
129 Parallel numerical applications (synchronous or asynchronous) may have different configuration and deployment
130 requirements.  Quantifying their performance of resource allocation policies and application scheduling algorithms in
131 grid computing environments under varying load, CPU power and network speeds is very costly, labor intensive and time
132 consuming \cite{BuRaCa}. The case of AIAC algorithms is even more problematic since they are very sensible to the
133 execution environment context. For instance, variations in the network bandwith (intra and inter- clusters), in the
134 number and the power of nodes, in the number of clusters... can lead to very different number of iterations and so to
135 very different execution times. In this context, it appears that the use of simulation tools to explore various platform
136 scenarios and to run enormous numbers of experiments quickly can be very promising. In this way, the use of a simulation
137 environment to execute parallel  iterative algorithms found some interests in reducing the highly cost of  access to
138 computing resources: (1) for the applications development life  cycle and in code debugging (2) and in production to get
139 results in a reasonable execution time with a simulated infrastructure not accessible  with physical resources. Indeed,
140 the launch of distributed iterative  asynchronous algorithms to solve a given problem on a large-scale  simulated
141 environment challenges to find optimal configurations giving the best results with a lowest residual error and in the
142 best of execution time. 
143
144 To our knowledge, there is no existing work on the large-scale simulation of a real AIAC application. The aim of this
145 paper is to give a first approach of the simulation of AIAC algorithms using the SimGrid toolkit \cite{SimGrid}. We had
146 in the scope of this work implemented a  program for solving large non-symmetric linear system of equations by numerical
147 method GMRES (Generalized Minimal Residual). SimGrid had allowed us to launch the application from a modest computing
148 infrastructure by simulating  different distributed architectures composed by clusters nodes interconnected by variable
149 speed networks. The simulated results we obtained are in line with real results exposed in ?? In addition, it has been
150 permitted to show the effectiveness of asynchronous mode algorithm by comparing its performance with the synchronous
151 mode time. With selected parameters on the network platforms (bandwidth, latency of inter  cluster  network) and on the
152 clusters architecture (number, capacity calculation power) in the simulated environment, the experimental results have
153 demonstrated not only the algorithm convergence within a reasonable time compared with the physical environment
154 performance, but also a time saving of up to \np[\%]{40} in asynchronous mode.
155
156 This article is structured as follows: after this introduction, the next  section will give a brief description of
157 iterative asynchronous model.  Then, the simulation framework SimGrid is presented with the settings to create various
158 distributed architectures. The algorithm of  the multi-splitting method used by GMRES written with MPI primitives and
159 its adaptation to SimGrid with SMPI (Simulated MPI) is detailed in the next section. At last, the experiments results
160 carried out will be presented before some concluding remarks and future works.
161  
162 \section{Motivations and scientific context}
163
164 As exposed in the introduction, parallel iterative methods are now widely used in many scientific domains. They can be
165 classified in three main classes depending on how iterations and communications are managed (for more details readers
166 can refer to \cite{bcvc02:ip}). In the \textit{Synchronous Iterations - Synchronous Communications (SISC)} model data
167 are exchanged at the end of each iteration. All the processors must begin the same iteration at the same time and
168 important idle times on processors are generated. The \textit{Synchronous Iterations - Asynchronous Communications
169 (SIAC)} model can be compared to the previous one except that data required on another processor are sent asynchronously
170 i.e.  without stopping current computations. This technique allows to partially overlap communications by computations
171 but unfortunately, the overlapping is only partial and important idle times remain.  It is clear that, in a grid
172 computing context, where the number of computational nodes is large, heterogeneous and widely distributed, the idle
173 times generated by synchronizations are very penalizing. One way to overcome this problem is to use the
174 \textit{Asynchronous Iterations - Asynchronous   Communications (AIAC)} model. Here, local computations do not need to
175 wait for required data. Processors can then perform their iterations with the data present at that time. Figure
176 \ref{fig:aiac} illustrates this model where the grey blocks represent the computation phases, the white spaces the idle
177 times and the arrows the communications. With this algorithmic model, the number of iterations required before the
178 convergence is generally greater than for the two former classes. But, and as detailed in \cite{bcvc06:ij}, AIAC
179 algorithms can significantly reduce overall execution times by suppressing idle times due to synchronizations especially
180 in a grid computing context.
181
182 \begin{figure}[!t]
183   \centering
184     \includegraphics[width=8cm]{AIAC.pdf}
185   \caption{The Asynchronous Iterations - Asynchronous Communications model } 
186   \label{fig:aiac}
187 \end{figure}
188
189
190 It is very challenging to develop efficient applications for large scale, heterogeneous and distributed platforms such
191 as computing grids. Researchers and engineers have to develop techniques for maximizing application performance of these
192 multi-cluster platforms, by redesigning the applications and/or by using novel algorithms that can account for the
193 composite and heterogeneous nature of the platform. Unfortunately, the deployment of such applications on these very
194 large scale systems is very costly, labor intensive and time consuming. In this context, it appears that the use of
195 simulation tools to explore various platform scenarios at will and to run enormous numbers of experiments quickly can be
196 very promising. Several works...
197
198 In the context of AIAC algorithms, the use of simulation tools is even more relevant. Indeed, this class of applications
199 is very sensible to the execution environment context. For instance, variations in the network bandwith (intra and
200 inter-clusters), in the number and the power of nodes, in the number of clusters... can lead to very different number of
201 iterations and so to very different execution times.
202
203
204
205
206 \section{SimGrid}
207
208 SimGrid~\cite{casanova+legrand+quinson.2008.simgrid,SimGrid} is a simulation
209 framework to sudy the behavior of large-scale distributed systems.  As its name
210 says, it emanates from the grid computing community, but is nowadays used to
211 study grids, clouds, HPC or peer-to-peer systems.
212 %- open source, developped since 1999, one of the major solution in the field
213 %
214 SimGrid provides several programming interfaces: MSG to simulate Concurrent
215 Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to
216 run real applications written in MPI~\cite{MPI}.  Apart from the native C
217 interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming
218 languages.  The SMPI interface supports applications written in C or Fortran,
219 with little or no modifications.
220 %- implements most of MPI-2 \cite{ref} standard [CHECK]
221
222 %%% explain simulation
223 %- simulated processes folded in one real process
224 %- simulates interactions on the network, fluid model
225 %- able to skip long-lasting computations
226 %- traces + visu?
227
228 %%% platforms
229 %- describe resources and their interconnection, with their properties
230 %- XML files
231
232 %%% validation + refs
233
234 \AG{Décrire SimGrid~\cite{casanova+legrand+quinson.2008.simgrid,SimGrid} (Arnaud)}
235
236 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
237 \section{Simulation of the multisplitting method}
238 %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid.
239 Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $b$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi splitting to solve this linear system on a large scale platform composed of $L$ clusters of processors. In this case, we apply a row-by-row splitting without overlapping  
240 \[
241 \left(\begin{array}{ccc}
242 A_{11} & \cdots & A_{1L} \\
243 \vdots & \ddots & \vdots\\
244 A_{L1} & \cdots & A_{LL}
245 \end{array} \right)
246 \times 
247 \left(\begin{array}{c}
248 X_1 \\
249 \vdots\\
250 X_L
251 \end{array} \right)
252 =
253 \left(\begin{array}{c}
254 B_1 \\
255 \vdots\\
256 B_L
257 \end{array} \right)\] 
258 in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster, where for all $l,m\in\{1,\ldots,L\}$ $A_{lm}$ is a rectangular block of $A$ of size $n_l\times n_m$, $X_l$ and $B_l$ are sub-vectors of $x$ and $b$, respectively, of size $n_l$ each and $\sum_{l} n_l=\sum_{m} n_m=n$.
259
260 The multisplitting method proceeds by iteration to solve in parallel the linear system on $L$ clusters of processors, in such a way each sub-system
261 \begin{equation}
262 \left\{
263 \begin{array}{l}
264 A_{ll}X_l = Y_l \mbox{,~such that}\\
265 Y_l = B_l - \displaystyle\sum_{\substack{m=1\\ m\neq l}}^{L}A_{lm}X_m
266 \end{array}
267 \right.
268 \label{eq:4.1}
269 \end{equation}
270 is solved independently by a cluster and communications are required to update the right-hand side sub-vector $Y_l$, such that the sub-vectors $X_m$ represent the data dependencies between the clusters. As each sub-system (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our multisplitting method uses an iterative method as an inner solver which is easier to parallelize and more scalable than a direct method. In this work, we use the parallel algorithm of GMRES method~\cite{ref1} which is one of the most used iterative method by many researchers. 
271
272 \begin{figure}[!t]
273   %%% IEEE instructions forbid to use an algorithm environment here, use figure
274   %%% instead
275 \begin{algorithmic}[1]
276 \Input $A_l$ (sparse sub-matrix), $B_l$ (right-hand side sub-vector)
277 \Output $X_l$ (solution sub-vector)\vspace{0.2cm}
278 \State Load $A_l$, $B_l$
279 \State Set the initial guess $x^0$
280 \For {$k=0,1,2,\ldots$ until the global convergence}
281 \State Restart outer iteration with $x^0=x^k$
282 \State Inner iteration: \Call{InnerSolver}{$x^0$, $k+1$}
283 \State Send shared elements of $X_l^{k+1}$ to neighboring clusters
284 \State Receive shared elements in $\{X_m^{k+1}\}_{m\neq l}$
285 \EndFor
286
287 \Statex
288
289 \Function {InnerSolver}{$x^0$, $k$}
290 \State Compute local right-hand side $Y_l$: \[Y_l = B_l - \sum\nolimits^L_{\substack{m=1 \\m\neq l}}A_{lm}X_m^0\]
291 \State Solving sub-system $A_{ll}X_l^k=Y_l$ with the parallel GMRES method
292 \State \Return $X_l^k$
293 \EndFunction
294 \end{algorithmic}
295 \caption{A multisplitting solver with GMRES method}
296 \label{algo:01}
297 \end{figure}
298
299 Algorithm on Figure~\ref{algo:01} shows the main key points of the
300 multisplitting method to solve a large sparse linear system. This algorithm is
301 based on an outer-inner iteration method where the parallel synchronous GMRES
302 method is used to solve the inner iteration. It is executed in parallel by each
303 cluster of processors. For all $l,m\in\{1,\ldots,L\}$, the matrices and vectors
304 with the subscript $l$ represent the local data for cluster $l$, while
305 $\{A_{lm}\}_{m\neq l}$ are off-diagonal matrices of sparse matrix $A$ and
306 $\{X_m\}_{m\neq l}$ contain vector elements of solution $x$ shared with
307 neighboring clusters. At every outer iteration $k$, asynchronous communications
308 are performed between processors of the local cluster and those of distant
309 clusters (lines $6$ and $7$ in Figure~\ref{algo:01}). The shared vector
310 elements of the solution $x$ are exchanged by message passing using MPI
311 non-blocking communication routines.
312
313 \begin{figure}[!t]
314 \centering
315   \includegraphics[width=60mm,keepaspectratio]{clustering}
316 \caption{Example of three clusters of processors interconnected by a virtual unidirectional ring network.}
317 \label{fig:4.1}
318 \end{figure}
319
320 The global convergence of the asynchronous multisplitting solver is detected when the clusters of processors have all converged locally. We implemented the global convergence detection process as follows. On each cluster a master processor is designated (for example the processor with rank $1$) and masters of all clusters are interconnected by a virtual unidirectional ring network (see Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around the virtual ring from a master processor to another until the global convergence is achieved. So starting from the cluster with rank $1$, each master processor $i$ sets the token to {\it True} if the local convergence is achieved or to {\it False} otherwise, and sends it to master processor $i+1$. Finally, the global convergence is detected when the master of cluster $1$ receives from the master of cluster $L$ a token set to {\it True}. In this case, the master of cluster $1$ broadcasts a stop message to masters of other clusters. In this work, the local convergence on each cluster $l$ is detected when the following condition is satisfied
321 \[(k\leq \MI) \mbox{~or~} (\|X_l^k - X_l^{k+1}\|_{\infty}\leq\epsilon)\]
322 where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the tolerance threshold of the error computed between two successive local solution $X_l^k$ and $X_l^{k+1}$. 
323
324 \LZK{Description du processus d'adaptation de l'algo multisplitting à SimGrid}
325 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
326
327
328
329
330
331
332
333
334 \section{Experimental results}
335
336 When the \emph{real} application runs in the simulation environment and produces
337 the expected results, varying the input parameters and the program arguments
338 allows us to compare outputs from the code execution. We have noticed from this
339 study that the results depend on the following parameters: (1) at the network
340 level, we found that the most critical values are the bandwidth (bw) and the
341 network latency (lat). (2) Hosts power (GFlops) can also influence on the
342 results. And finally, (3) when submitting job batches for execution, the
343 arguments values passed to the program like the maximum number of iterations or
344 the \emph{external} precision are critical to ensure not only the convergence of the
345 algorithm but also to get the main objective of the experimentation of the
346 simulation in having an execution time in asynchronous less than in synchronous
347 mode, in others words, in having a \emph{speedup} less than 1
348 ({speedup}${}={}${execution time in synchronous mode}${}/{}${execution time in
349 asynchronous mode}).
350
351 A priori, obtaining a speedup less than 1 would be difficult in a local area
352 network configuration where the synchronous mode will take advantage on the rapid
353 exchange of information on such high-speed links. Thus, the methodology adopted
354 was to launch the application on clustered network. In this last configuration,
355 degrading the inter-cluster network performance will \emph{penalize} the synchronous
356 mode allowing to get a speedup lower than 1. This action simulates the case of
357 clusters linked with long distance network like Internet.
358
359 As a first step, the algorithm was run on a network consisting of two clusters
360 containing fifty hosts each, totaling one hundred hosts. Various combinations of
361 the above factors have providing the results shown in
362 Table~\ref{tab.cluster.2x50} with a matrix size ranging from $N_x = N_y = N_z =
363 62 \text{ to } 171$ elements or from $62^{3} = \np{238328}$ to $171^{3} =
364 \np{5211000}$ entries.
365
366 \begin{table}[!t]
367   \centering
368   \caption{2 clusters, each with 50 nodes}
369   \label{tab.cluster.2x50}
370
371  \tiny
372  
373 \begin{tabular}{|Z{0.55cm}|Z{0.25cm}|Z{0.25cm}|M{0.25cm}|Z{0.25cm}|M{0.25cm}|M{0.25cm}|M{0.25cm}|M{0.25cm}|M{0.25cm}|M{0.25cm}|M{0.25cm}|M{0.25cm}|M{0.25cm}|} 
374  \hline 
375  \bf bw & 5 &5 & 5 & 5 & 5 & 50 & 50 & 50 & 50 & 50 & 10 & 10\\ 
376  \hline
377  \bf lat & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.03 & 0.01\\ 
378  \hline 
379  \bf power & 1 & 1 & 1 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1 & 1.5\\ \hline    \bf size & 62 & 62 & 62 & 100 & 100 & 110 & 120& 130 & 140 & 150 & 171 & 171\\ \hline
380  \bf Prec/Eprec & 10$^{-5}$ & 10$^{-8}$ & 10$^{-9}$ & 10$^{-11}$ & 10$^{-11}$ & 10$^{-11}$ & 10$^{-11}$ & 10$^{-11}$ & 10$^{-11}$ & 10$^{-11}$ & 10$^{-5}$ & 10$^{-5}$\\ \hline 
381  \bf speedup & 0.396 & 0.392 & 0.396 & 0.391 & 0.393 & 0.395 & 0.398 & 0.388 & 0.393 & 0.394 & 0.63 & 0.778\\ \hline 
382  \end{tabular}
383 \end{table} 
384   
385 Then we have changed the network configuration using three clusters containing
386 respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
387 clusters. In the same way as above, a judicious choice of key parameters has
388 permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the
389 speedups less than 1 with a matrix size from 62 to 100 elements.
390
391 \begin{table}[!t]
392   \centering
393   \caption{3 clusters, each with 33 nodes}
394   \label{tab.cluster.3x33}
395
396  \tiny
397  
398 \begin{tabular}{|Z{0.55cm}|Z{0.25cm}|Z{0.25cm}|M{0.25cm}|Z{0.25cm}|M{0.25cm}|M{0.25cm}|} 
399  \hline 
400  \bf bw & 10 &5 & 4 & 3 & 2 & 6\\ \hline
401  \bf lat & 0.01 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02\\ 
402  \hline 
403  \bf power & 1 & 1 & 1 & 1 & 1 & 1\\ \hline    
404  \bf size & 62 & 100 & 100 & 100 & 100 & 171\\ \hline
405  \bf Prec/Eprec & 10$^{-5}$ & 10$^{-5}$ & 10$^{-5}$ & 10$^{-5}$ & 10$^{-5}$ & 10$^{-5}$\\ \hline 
406  \bf speedup & 0.997 & 0.99 & 0.93 & 0.84 & 0.78 & 0.99\\ 
407  \hline 
408  \end{tabular}
409 \end{table} 
410
411
412 In a final step, results of an execution attempt to scale up the three clustered
413 configuration but increasing by two hundreds hosts has been recorded in
414 Table~\ref{tab.cluster.3x67}.
415
416 \begin{table}[!t]
417   \centering
418   \caption{3 clusters, each with 66 nodes}
419   \label{tab.cluster.3x67}
420
421  \tiny
422 \begin{tabular}{|M{0.55cm}|M{0.25cm}|} 
423  \hline 
424  \bf bw & 1\\ \hline
425  \bf lat & 0.02\\ 
426  \hline 
427  \bf power & 1\\ 
428  \hline    
429  \bf size & 62\\ 
430  \hline
431  \bf Prec/Eprec & 10$^{-5}$\\ 
432  \hline 
433  \bf speedup & 0.9\\ 
434  \hline 
435  \end{tabular}
436 \end{table} 
437
438 Note that the program was run with the following parameters:
439
440 \paragraph*{SMPI parameters}
441
442 \begin{itemize}
443         \item HOSTFILE: Hosts file description.
444         \item PLATFORM: file description of the platform architecture : clusters (CPU power,
445 \dots{}), intra cluster network description, inter cluster network (bandwidth bw,
446 lat latency, \dots{}).
447 \end{itemize}
448
449
450 \paragraph*{Arguments of the program}
451
452 \begin{itemize}
453         \item Description of the cluster architecture;
454         \item Maximum number of internal and external iterations;
455         \item Internal and external precisions;
456         \item Matrix size $N_x$, $N_y$ and $N_z$;
457         \item Matrix diagonal value: \np{6.0};
458         \item Execution Mode: synchronous or asynchronous.
459 \end{itemize}
460
461 \paragraph*{Interpretations and comments}
462
463 After analyzing the outputs, generally, for the configuration with two or three
464 clusters including one hundred hosts (Tables~\ref{tab.cluster.2x50}
465 and~\ref{tab.cluster.3x33}), some combinations of the used parameters affecting
466 the results have given a speedup less than 1, showing the effectiveness of the
467 asynchronous performance compared to the synchronous mode.
468
469 In the case of a two clusters configuration, Table~\ref{tab.cluster.2x50} shows
470 that with a deterioration of inter cluster network set with \np[Mbits/s]{5} of
471 bandwidth, a latency in order of a hundredth of a millisecond and a system power
472 of one GFlops, an efficiency of about \np[\%]{40} in asynchronous mode is
473 obtained for a matrix size of 62 elements. It is noticed that the result remains
474 stable even if we vary the external precision from \np{E-5} to \np{E-9}. By
475 increasing the problem size up to 100 elements, it was necessary to increase the
476 CPU power of \np[\%]{50} to \np[GFlops]{1.5} for a convergence of the algorithm
477 with the same order of asynchronous mode efficiency.  Maintaining such a system
478 power but this time, increasing network throughput inter cluster up to
479 \np[Mbits/s]{50}, the result of efficiency of about \np[\%]{40} is obtained with
480 high external precision of \np{E-11} for a matrix size from 110 to 150 side
481 elements.
482
483 For the 3 clusters architecture including a total of 100 hosts,
484 Table~\ref{tab.cluster.3x33} shows that it was difficult to have a combination
485 which gives an efficiency of asynchronous below \np[\%]{80}. Indeed, for a
486 matrix size of 62 elements, equality between the performance of the two modes
487 (synchronous and asynchronous) is achieved with an inter cluster of
488 \np[Mbits/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency by
489 \np[\%]{78} with a matrix size of 100 points, it was necessary to degrade the
490 inter cluster network bandwidth from 5 to 2 Mbit/s.
491
492 A last attempt was made for a configuration of three clusters but more powerful
493 with 200 nodes in total. The convergence with a speedup of \np[\%]{90} was
494 obtained with a bandwidth of \np[Mbits/s]{1} as shown in
495 Table~\ref{tab.cluster.3x67}.
496
497 \section{Conclusion}
498 The experimental results on executing a parallel iterative algorithm in 
499 asynchronous mode on an environment simulating a large scale of virtual 
500 computers organized with interconnected clusters have been presented. 
501 Our work has demonstrated that using such a simulation tool allow us to 
502 reach the following three objectives: 
503
504 \newcounter{numberedCntD}
505 \begin{enumerate}
506 \item To have a flexible configurable execution platform resolving the 
507 hard exercise to access to very limited but so solicited physical 
508 resources;
509 \item to ensure the algorithm convergence with a raisonnable time and 
510 iteration number ;
511 \item and finally and more importantly, to find the correct combination 
512 of the cluster and network specifications permitting to save time in 
513 executing the algorithm in asynchronous mode.
514 \setcounter{numberedCntD}{\theenumi}
515 \end{enumerate}
516 Our results have shown that in certain conditions, asynchronous mode is 
517 speeder up to \np[\%]{40} than executing the algorithm in synchronous mode
518 which is not negligible for solving complex practical problems with more 
519 and more increasing size.
520
521  Several studies have already addressed the performance execution time of 
522 this class of algorithm. The work presented in this paper has 
523 demonstrated an original solution to optimize the use of a simulation 
524 tool to run efficiently an iterative parallel algorithm in asynchronous 
525 mode in a grid architecture. 
526
527 \section*{Acknowledgment}
528
529
530 The authors would like to thank\dots{}
531
532
533 % trigger a \newpage just before the given reference
534 % number - used to balance the columns on the last page
535 % adjust value as needed - may need to be readjusted if
536 % the document is modified later
537 \bibliographystyle{IEEEtran}
538 \bibliography{IEEEabrv,hpccBib}
539
540 \end{document}
541
542 %%% Local Variables:
543 %%% mode: latex
544 %%% TeX-master: t
545 %%% fill-column: 80
546 %%% ispell-local-dictionary: "american"
547 %%% End: