]> AND Private Git Repository - hpcc2014.git/blob - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
93972da7af155cb6ea41a05f6b138aa4c14eacfb
[hpcc2014.git] / hpcc.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage{amsfonts,amssymb}
6 \usepackage{amsmath}
7 \usepackage{algorithm}
8 \usepackage{algpseudocode}
9 %\usepackage{amsthm}
10 \usepackage{graphicx}
11 \usepackage[american]{babel}
12 % Extension pour les liens intra-documents (tagged PDF)
13 % et l'affichage correct des URL (commande \url{http://example.com})
14 %\usepackage{hyperref}
15
16 \usepackage{url}
17 \DeclareUrlCommand\email{\urlstyle{same}}
18
19 \usepackage[autolanguage,np]{numprint}
20 \AtBeginDocument{%
21   \renewcommand*\npunitcommand[1]{\text{#1}}
22   \npthousandthpartsep{}}
23
24 \usepackage{xspace}
25 \usepackage[textsize=footnotesize]{todonotes}
26 \newcommand{\AG}[2][inline]{%
27   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
28
29 \algnewcommand\algorithmicinput{\textbf{Input:}}
30 \algnewcommand\Input{\item[\algorithmicinput]}
31
32 \algnewcommand\algorithmicoutput{\textbf{Output:}}
33 \algnewcommand\Output{\item[\algorithmicoutput]}
34
35
36 \begin{document}
37
38 \title{Simulation of Asynchronous Iterative Numerical Algorithms Using SimGrid}
39
40 \author{%
41   \IEEEauthorblockN{%
42     Raphaël Couturier,
43     Arnaud Giersch,
44     David Laiymani and
45     Charles Emile Ramamonjisoa
46   }
47   \IEEEauthorblockA{%
48     Femto-ST Institute - DISC Department\\
49     Université de Franche-Comté\\
50     Belfort\\
51     Email: \email{raphael.couturier@univ-fcomte.fr}
52   }
53 }
54
55 \maketitle
56
57 \begin{abstract}
58 The abstract goes here.
59 \end{abstract}
60
61 \section{Introduction}
62
63 Parallel computing and high performance computing (HPC) are becoming 
64 more and more imperative for solving various problems raised by 
65 researchers on various scientific disciplines but also by industrial in 
66 the field. Indeed, the increasing complexity of these requested 
67 applications combined with a continuous increase of their sizes lead to 
68 write distributed and parallel algorithms requiring significant hardware 
69 resources (grid computing, clusters, broadband network, etc\dots{}) but
70 also a non-negligible CPU execution time. We consider in this paper a
71 class of highly efficient parallel algorithms called iterative executed 
72 in a distributed environment. As their name suggests, these algorithm 
73 solves a given problem that might be NP- complete complex by successive 
74 iterations ($X_{n +1} = f(X_{n})$) from an initial value $X_{0}$ to find
75 an approximate value $X^*$ of the solution with a very low
76 residual error. Several well-known methods demonstrate the convergence 
77 of these algorithms. Generally, to reduce the complexity and the 
78 execution time, the problem is divided into several \emph{pieces} that will
79 be solved in parallel on multiple processing units. The latter will 
80 communicate each intermediate results before a new iteration starts 
81 until the approximate solution is reached. These distributed parallel 
82 computations can be performed either in \emph{synchronous} communication mode
83 where a new iteration begin only when all nodes communications are 
84 completed, either \emph{asynchronous} mode where processors can continue
85 independently without or few synchronization points. Despite the 
86 effectiveness of iterative approach, a major drawback of the method is 
87 the requirement of huge resources in terms of computing capacity, 
88 storage and high speed communication network. Indeed, limited physical 
89 resources are blocking factors for large-scale deployment of parallel 
90 algorithms. 
91
92 In recent years, the use of a simulation environment to execute parallel 
93 iterative algorithms found some interests in reducing the highly cost of 
94 access to computing resources: (1) for the applications development life 
95 cycle and in code debugging (2) and in production to get results in a 
96 reasonable execution time with a simulated infrastructure not accessible 
97 with physical resources. Indeed, the launch of distributed iterative 
98 asynchronous algorithms to solve a given problem on a large-scale 
99 simulated environment challenges to find optimal configurations giving 
100 the best results with a lowest residual error and in the best of 
101 execution time. According our knowledge, no testing of large-scale 
102 simulation of the class of algorithm solving to achieve real results has 
103 been undertaken to date. We had in the scope of this work implemented a 
104 program for solving large non-symmetric linear system of equations by 
105 numerical method GMRES (Generalized Minimal Residual) in the simulation
106 environment SimGrid. The simulated platform had allowed us to launch
107 the application from a modest computing infrastructure by simulating 
108 different distributed architectures composed by clusters nodes 
109 interconnected by variable speed networks. In addition, it has been 
110 permitted to show the effectiveness of asynchronous mode algorithm by 
111 comparing its performance with the synchronous mode time. With selected 
112 parameters on the network platforms (bandwidth, latency of inter cluster 
113 network) and on the clusters architecture (number, capacity calculation 
114 power) in the simulated environment, the experimental results have
115 demonstrated not only the algorithm convergence within a reasonable time 
116 compared with the physical environment performance, but also a time 
117 saving of up to \np[\%]{40} in asynchronous mode.
118
119 This article is structured as follows: after this introduction, the next 
120 section will give a brief description of iterative asynchronous model. 
121 Then, the simulation framework SimGrid will be presented with the
122 settings to create various distributed architectures. The algorithm of 
123 the multi -splitting method used by GMRES written with MPI primitives 
124 and its adaptation to SimGrid with SMPI (Simulated MPI) will be in the
125 next section. At last, the experiments results carried out will be
126 presented before the conclusion which we will announce the opening of 
127 our future work after the results.
128  
129 \section{The asynchronous iteration model}
130
131 Décrire le modèle asynchrone. Je m'en charge (DL)
132
133 \section{SimGrid}
134
135 Décrire SimGrid (Arnaud)
136
137
138
139
140
141
142
143 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
144 \section{Simulation of the multisplitting method}
145 %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid.
146 Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $y$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi partitioning to solve this linear system on a large scale platform composed of $L$ clusters of processors. In this case, we apply a row-by-row splitting without overlapping  
147 \[
148 \left(\begin{array}{ccc}
149 A_{11} & \cdots & A_{1L} \\
150 \vdots & \ddots & \vdots\\
151 A_{L1} & \cdots & A_{LL}
152 \end{array} \right)
153 \times 
154 \left(\begin{array}{c}
155 X_1 \\
156 \vdots\\
157 X_L
158 \end{array} \right)
159 =
160 \left(\begin{array}{c}
161 Y_1 \\
162 \vdots\\
163 Y_L
164 \end{array} \right)\] 
165 in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster, where for all $l,i\in\{1,\ldots,L\}$ $A_{li}$ is a rectangular block of $A$ of size $n_l\times n_i$, $X_l$ and $Y_l$ are sub-vectors of $x$ and $y$, respectively, each of size $n_l$ and $\sum_{l} n_l=\sum_{i} n_i=n$.
166
167 The multisplitting method proceeds by iteration to solve in parallel the linear system by $L$ clusters of processors, in such a way each sub-system
168 \begin{equation}
169 \left\{
170 \begin{array}{l}
171 A_{ll}X_l = Y_l \mbox{,~such that}\\
172 Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i,
173 \end{array}
174 \right.
175 \label{eq:4.1}
176 \end{equation}
177 is solved independently by a cluster and communication are required to update the right-hand side sub-vectors $Y_l$, such that the sub-vectors $X_i$ represent the data dependencies between the clusters. As each sub-system (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our multisplitting method uses an iterative method as an inner solver which is easier to parallelize and more scalable than a direct method. In this work, we use the parallel GMRES method~\cite{ref1} which is one of the most used iterative method by many researchers. 
178
179 \begin{algorithm}
180 \caption{A multisplitting solver with inner iteration GMRES method}
181 \begin{algorithmic}[1]
182 \Input $A_l$ (local sparse matrix), $B_l$ (local right-hand side), $x^0$ (initial guess)
183 \Output $X_l$ (local solution vector)\vspace{0.2cm}
184 \State Load $A_l$, $B_l$, $x^0$
185 \State Initialize the shared vector $\hat{x}=x^0$
186 \For {$k=1,2,3,\ldots$ until the global convergence}
187 \State $x^0=\hat{x}$
188 \State Inner iteration solver: \Call{InnerSolver}{$x^0$, $k$}
189 \State Exchange the local solution ${X}_l^k$ with the neighboring clusters and copy the shared vector elements in $\hat{x}$
190 \EndFor
191
192 \Statex
193
194 \Function {InnerSolver}{$x^0$, $k$}
195 \State Compute the local right-hand side: $Y_l = B_l - \sum^L_{i=1,i\neq l}A_{li}X_i^0$
196 \State Solving the local splitting $A_{ll}X_l^k=Y_l$ using the parallel GMRES method, such that $X_l^0$ is the local initial guess
197 \State \Return $X_l^k$
198 \EndFunction
199 \end{algorithmic}
200 \label{algo:01}
201 \end{algorithm}
202 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
203
204
205
206
207
208
209
210
211 \section{Experimental results}
212
213 When the ``real'' application runs in the simulation environment and produces
214 the expected results, varying the input parameters and the program arguments
215 allows us to compare outputs from the code execution. We have noticed from this
216 study that the results depend on the following parameters: (1) at the network
217 level, we found that the most critical values are the bandwidth (bw) and the
218 network latency (lat). (2) Hosts power (GFlops) can also influence on the
219 results. And finally, (3) when submitting job batches for execution, the
220 arguments values passed to the program like the maximum number of iterations or
221 the ``external'' precision are critical to ensure not only the convergence of the
222 algorithm but also to get the main objective of the experimentation of the
223 simulation in having an execution time in asynchronous less than in synchronous
224 mode, in others words, in having a ``speedup'' less than 1 (Speedup = Execution
225 time in synchronous mode / Execution time in asynchronous mode).
226
227 A priori, obtaining a speedup less than 1 would be difficult in a local area
228 network configuration where the synchronous mode will take advantage on the rapid
229 exchange of information on such high-speed links. Thus, the methodology adopted
230 was to launch the application on clustered network. In this last configuration,
231 degrading the inter-cluster network performance will \emph{penalize} the synchronous
232 mode allowing to get a speedup lower than 1. This action simulates the case of
233 clusters linked with long distance network like Internet.
234
235 As a first step, the algorithm was run on a network consisting of two clusters
236 containing fifty hosts each, totaling one hundred hosts. Various combinations of
237 the above factors have providing the results shown in Table~\ref{tab.cluster.2x50} with a matrix size
238 ranging from Nx = Ny = Nz = 62 to 171 elements or from $62^{3} = \np{238328}$ to
239 $171^{3} = \np{5211000}$ entries.
240
241 Then we have changed the network configuration using three clusters containing
242 respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
243 clusters. In the same way as above, a judicious choice of key parameters has
244 permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the speedups less than 1 with
245 a matrix size from 62 to 100 elements.
246
247 In a final step, results of an execution attempt to scale up the three clustered
248 configuration but increasing by two hundreds hosts has been recorded in Table~\ref{tab.cluster.3x67}.
249
250 Note that the program was run with the following parameters:
251
252 \paragraph*{SMPI parameters}
253
254 \begin{itemize}
255         \item HOSTFILE: Hosts file description.
256         \item PLATFORM: file description of the platform architecture : clusters (CPU power,
257 \dots{}), intra cluster network description, inter cluster network (bandwidth bw,
258 lat latency, \dots{}).
259 \end{itemize}
260
261
262 \paragraph*{Arguments of the program}
263
264 \begin{itemize}
265         \item Description of the cluster architecture;
266         \item Maximum number of internal and external iterations;
267         \item Internal and external precisions;
268         \item Matrix size NX, NY and NZ;
269         \item Matrix diagonal value = 6.0;
270         \item Execution Mode: synchronous or asynchronous.
271 \end{itemize}
272
273 \begin{table}
274   \centering
275   \caption{2 clusters X 50 nodes}
276   \label{tab.cluster.2x50}
277   \AG{Les images manquent dans le dépôt Git. Si ce sont vraiment des tableaux, utiliser un format vectoriel (eps ou pdf), et surtout pas de jpeg!}
278   \includegraphics[width=209pt]{img1.jpg}
279 \end{table}
280
281 \begin{table}
282   \centering
283   \caption{3 clusters X 33 nodes}
284   \label{tab.cluster.3x33}
285   \AG{Le fichier manque.}
286   \includegraphics[width=209pt]{img2.jpg}
287 \end{table}
288
289 \begin{table}
290   \centering
291   \caption{3 clusters X 67 nodes}
292   \label{tab.cluster.3x67}
293   \AG{Le fichier manque.}
294 %  \includegraphics[width=160pt]{img3.jpg}
295   \includegraphics[scale=0.5]{img3.jpg}
296 \end{table}
297
298 \paragraph*{Interpretations and comments}
299
300 After analyzing the outputs, generally, for the configuration with two or three
301 clusters including one hundred hosts (Tables~\ref{tab.cluster.2x50} and~\ref{tab.cluster.3x33}), some combinations of the
302 used parameters affecting the results have given a speedup less than 1, showing
303 the effectiveness of the asynchronous performance compared to the synchronous
304 mode.
305
306 In the case of a two clusters configuration, Table~\ref{tab.cluster.2x50} shows that with a
307 deterioration of inter cluster network set with \np[Mbits/s]{5} of bandwidth, a latency
308 in order of a hundredth of a millisecond and a system power of one GFlops, an
309 efficiency of about \np[\%]{40} in asynchronous mode is obtained for a matrix size of 62
310 elements. It is noticed that the result remains stable even if we vary the
311 external precision from \np{E-5} to \np{E-9}. By increasing the problem size up to 100
312 elements, it was necessary to increase the CPU power of \np[\%]{50} to \np[GFlops]{1.5} for a
313 convergence of the algorithm with the same order of asynchronous mode efficiency.
314 Maintaining such a system power but this time, increasing network throughput
315 inter cluster up to \np[Mbits/s]{50}, the result of efficiency of about \np[\%]{40} is
316 obtained with high external  precision of \np{E-11} for a matrix size from 110 to 150
317 side elements.
318
319 For the 3 clusters architecture including a total of 100 hosts, Table~\ref{tab.cluster.3x33} shows
320 that it was difficult to have a combination which gives an efficiency of
321 asynchronous below \np[\%]{80}. Indeed, for a matrix size of 62 elements, equality
322 between the performance of the two modes (synchronous and asynchronous) is
323 achieved with an inter cluster of \np[Mbits/s]{10} and a latency of \np{E-1} ms. To
324 challenge an efficiency by \np[\%]{78} with a matrix size of 100 points, it was
325 necessary to degrade the inter cluster network bandwidth from 5 to 2 Mbit/s.
326
327 A last attempt was made for a configuration of three clusters but more power
328 with 200 nodes in total. The convergence with a speedup of \np[\%]{90} was obtained
329 with a bandwidth of \np[Mbits/s]{1} as shown in Table~\ref{tab.cluster.3x67}.
330
331 \section{Conclusion}
332
333 \section*{Acknowledgment}
334
335
336 The authors would like to thank\dots{}
337
338
339 % trigger a \newpage just before the given reference
340 % number - used to balance the columns on the last page
341 % adjust value as needed - may need to be readjusted if
342 % the document is modified later
343 \bibliographystyle{IEEEtran}
344 \bibliography{hpccBib}
345
346 \end{document}
347
348 %%% Local Variables:
349 %%% mode: latex
350 %%% TeX-master: t
351 %%% fill-column: 80
352 %%% ispell-local-dictionary: "american"
353 %%% End: