]> AND Private Git Repository - hpcc2014.git/blob - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
b847ea555450cf0cd464bad29089754e9b5d2f9e
[hpcc2014.git] / hpcc.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage{amsfonts,amssymb}
6 \usepackage{amsmath}
7 \usepackage{algorithm}
8 \usepackage{algpseudocode}
9 %\usepackage{amsthm}
10 \usepackage{graphicx}
11 \usepackage[american]{babel}
12 % Extension pour les liens intra-documents (tagged PDF)
13 % et l'affichage correct des URL (commande \url{http://example.com})
14 %\usepackage{hyperref}
15
16 \usepackage{url}
17 \DeclareUrlCommand\email{\urlstyle{same}}
18
19 \usepackage[autolanguage,np]{numprint}
20 \AtBeginDocument{%
21   \renewcommand*\npunitcommand[1]{\text{#1}}
22   \npthousandthpartsep{}}
23
24 \usepackage{xspace}
25 \usepackage[textsize=footnotesize]{todonotes}
26 \newcommand{\AG}[2][inline]{%
27   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
28
29 \algnewcommand\algorithmicinput{\textbf{Input:}}
30 \algnewcommand\Input{\item[\algorithmicinput]}
31
32 \algnewcommand\algorithmicoutput{\textbf{Output:}}
33 \algnewcommand\Output{\item[\algorithmicoutput]}
34
35
36 \begin{document}
37
38 \title{Simulation of Asynchronous Iterative Numerical Algorithms Using SimGrid}
39
40 \author{%
41   \IEEEauthorblockN{%
42     Raphaël Couturier,
43     Arnaud Giersch,
44     David Laiymani and
45     Charles Emile Ramamonjisoa
46   }
47   \IEEEauthorblockA{%
48     Femto-ST Institute - DISC Department\\
49     Université de Franche-Comté\\
50     Belfort\\
51     Email: \email{{raphael.couturier,arnaud.giersch,david.laiymani,charles.ramamonjisoa}@univ-fcomte.fr}
52   }
53 }
54
55 \maketitle
56
57 \AG{Ne faut-il pas ajouter Lilia en auteur?}
58 \begin{abstract}
59 The abstract goes here.
60 \end{abstract}
61
62 \section{Introduction}
63
64 Parallel computing and high performance computing (HPC) are becoming 
65 more and more imperative for solving various problems raised by 
66 researchers on various scientific disciplines but also by industrial in 
67 the field. Indeed, the increasing complexity of these requested 
68 applications combined with a continuous increase of their sizes lead to 
69 write distributed and parallel algorithms requiring significant hardware 
70 resources (grid computing, clusters, broadband network, etc\dots{}) but
71 also a non-negligible CPU execution time. We consider in this paper a
72 class of highly efficient parallel algorithms called iterative executed 
73 in a distributed environment. As their name suggests, these algorithm 
74 solves a given problem that might be NP- complete complex by successive 
75 iterations ($X_{n +1} = f(X_{n})$) from an initial value $X_{0}$ to find
76 an approximate value $X^*$ of the solution with a very low
77 residual error. Several well-known methods demonstrate the convergence 
78 of these algorithms. Generally, to reduce the complexity and the 
79 execution time, the problem is divided into several \emph{pieces} that will
80 be solved in parallel on multiple processing units. The latter will 
81 communicate each intermediate results before a new iteration starts 
82 until the approximate solution is reached. These distributed parallel 
83 computations can be performed either in \emph{synchronous} communication mode
84 where a new iteration begin only when all nodes communications are 
85 completed, either \emph{asynchronous} mode where processors can continue
86 independently without or few synchronization points. Despite the 
87 effectiveness of iterative approach, a major drawback of the method is 
88 the requirement of huge resources in terms of computing capacity, 
89 storage and high speed communication network. Indeed, limited physical 
90 resources are blocking factors for large-scale deployment of parallel 
91 algorithms. 
92
93 In recent years, the use of a simulation environment to execute parallel 
94 iterative algorithms found some interests in reducing the highly cost of 
95 access to computing resources: (1) for the applications development life 
96 cycle and in code debugging (2) and in production to get results in a 
97 reasonable execution time with a simulated infrastructure not accessible 
98 with physical resources. Indeed, the launch of distributed iterative 
99 asynchronous algorithms to solve a given problem on a large-scale 
100 simulated environment challenges to find optimal configurations giving 
101 the best results with a lowest residual error and in the best of 
102 execution time. According our knowledge, no testing of large-scale 
103 simulation of the class of algorithm solving to achieve real results has 
104 been undertaken to date. We had in the scope of this work implemented a 
105 program for solving large non-symmetric linear system of equations by 
106 numerical method GMRES (Generalized Minimal Residual) in the simulation
107 environment SimGrid. The simulated platform had allowed us to launch
108 the application from a modest computing infrastructure by simulating 
109 different distributed architectures composed by clusters nodes 
110 interconnected by variable speed networks. In addition, it has been 
111 permitted to show the effectiveness of asynchronous mode algorithm by 
112 comparing its performance with the synchronous mode time. With selected 
113 parameters on the network platforms (bandwidth, latency of inter cluster 
114 network) and on the clusters architecture (number, capacity calculation 
115 power) in the simulated environment, the experimental results have
116 demonstrated not only the algorithm convergence within a reasonable time 
117 compared with the physical environment performance, but also a time 
118 saving of up to \np[\%]{40} in asynchronous mode.
119
120 This article is structured as follows: after this introduction, the next 
121 section will give a brief description of iterative asynchronous model. 
122 Then, the simulation framework SimGrid will be presented with the
123 settings to create various distributed architectures. The algorithm of 
124 the multi -splitting method used by GMRES written with MPI primitives 
125 and its adaptation to SimGrid with SMPI (Simulated MPI) will be in the
126 next section. At last, the experiments results carried out will be
127 presented before the conclusion which we will announce the opening of 
128 our future work after the results.
129  
130 \section{The asynchronous iteration model}
131
132 Décrire le modèle asynchrone. Je m'en charge (DL)
133
134 \section{SimGrid}
135
136 Décrire SimGrid (Arnaud)
137
138
139
140
141
142
143
144 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
145 \section{Simulation of the multisplitting method}
146 %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid.
147 Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $y$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi partitioning to solve this linear system on a large scale platform composed of $L$ clusters of processors. In this case, we apply a row-by-row splitting without overlapping  
148 \[
149 \left(\begin{array}{ccc}
150 A_{11} & \cdots & A_{1L} \\
151 \vdots & \ddots & \vdots\\
152 A_{L1} & \cdots & A_{LL}
153 \end{array} \right)
154 \times 
155 \left(\begin{array}{c}
156 X_1 \\
157 \vdots\\
158 X_L
159 \end{array} \right)
160 =
161 \left(\begin{array}{c}
162 Y_1 \\
163 \vdots\\
164 Y_L
165 \end{array} \right)\] 
166 in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster, where for all $l,i\in\{1,\ldots,L\}$ $A_{li}$ is a rectangular block of $A$ of size $n_l\times n_i$, $X_l$ and $Y_l$ are sub-vectors of $x$ and $y$, respectively, each of size $n_l$ and $\sum_{l} n_l=\sum_{i} n_i=n$.
167
168 The multisplitting method proceeds by iteration to solve in parallel the linear system by $L$ clusters of processors, in such a way each sub-system
169 \begin{equation}
170 \left\{
171 \begin{array}{l}
172 A_{ll}X_l = Y_l \mbox{,~such that}\\
173 Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i,
174 \end{array}
175 \right.
176 \label{eq:4.1}
177 \end{equation}
178 is solved independently by a cluster and communication are required to update the right-hand side sub-vectors $Y_l$, such that the sub-vectors $X_i$ represent the data dependencies between the clusters. As each sub-system (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our multisplitting method uses an iterative method as an inner solver which is easier to parallelize and more scalable than a direct method. In this work, we use the parallel GMRES method~\cite{ref1} which is one of the most used iterative method by many researchers. 
179
180 \begin{algorithm}
181 \caption{A multisplitting solver with inner iteration GMRES method}
182 \begin{algorithmic}[1]
183 \Input $A_l$ (local sparse matrix), $B_l$ (local right-hand side), $x^0$ (initial guess)
184 \Output $X_l$ (local solution vector)\vspace{0.2cm}
185 \State Load $A_l$, $B_l$, $x^0$
186 \State Initialize the shared vector $\hat{x}=x^0$
187 \For {$k=1,2,3,\ldots$ until the global convergence}
188 \State $x^0=\hat{x}$
189 \State Inner iteration solver: \Call{InnerSolver}{$x^0$, $k$}
190 \State Exchange the local solution ${X}_l^k$ with the neighboring clusters and copy the shared vector elements in $\hat{x}$
191 \EndFor
192
193 \Statex
194
195 \Function {InnerSolver}{$x^0$, $k$}
196 \State Compute the local right-hand side: $Y_l = B_l - \sum^L_{i=1,i\neq l}A_{li}X_i^0$
197 \State Solving the local splitting $A_{ll}X_l^k=Y_l$ using the parallel GMRES method, such that $X_l^0$ is the local initial guess
198 \State \Return $X_l^k$
199 \EndFunction
200 \end{algorithmic}
201 \label{algo:01}
202 \end{algorithm}
203 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
204
205
206
207
208
209
210
211
212 \section{Experimental results}
213
214 When the ``real'' application runs in the simulation environment and produces
215 the expected results, varying the input parameters and the program arguments
216 allows us to compare outputs from the code execution. We have noticed from this
217 study that the results depend on the following parameters: (1) at the network
218 level, we found that the most critical values are the bandwidth (bw) and the
219 network latency (lat). (2) Hosts power (GFlops) can also influence on the
220 results. And finally, (3) when submitting job batches for execution, the
221 arguments values passed to the program like the maximum number of iterations or
222 the ``external'' precision are critical to ensure not only the convergence of the
223 algorithm but also to get the main objective of the experimentation of the
224 simulation in having an execution time in asynchronous less than in synchronous
225 mode, in others words, in having a ``speedup'' less than 1 (Speedup = Execution
226 time in synchronous mode / Execution time in asynchronous mode).
227
228 A priori, obtaining a speedup less than 1 would be difficult in a local area
229 network configuration where the synchronous mode will take advantage on the rapid
230 exchange of information on such high-speed links. Thus, the methodology adopted
231 was to launch the application on clustered network. In this last configuration,
232 degrading the inter-cluster network performance will \emph{penalize} the synchronous
233 mode allowing to get a speedup lower than 1. This action simulates the case of
234 clusters linked with long distance network like Internet.
235
236 As a first step, the algorithm was run on a network consisting of two clusters
237 containing fifty hosts each, totaling one hundred hosts. Various combinations of
238 the above factors have providing the results shown in Table~\ref{tab.cluster.2x50} with a matrix size
239 ranging from Nx = Ny = Nz = 62 to 171 elements or from $62^{3} = \np{238328}$ to
240 $171^{3} = \np{5211000}$ entries.
241
242 Then we have changed the network configuration using three clusters containing
243 respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
244 clusters. In the same way as above, a judicious choice of key parameters has
245 permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the speedups less than 1 with
246 a matrix size from 62 to 100 elements.
247
248 In a final step, results of an execution attempt to scale up the three clustered
249 configuration but increasing by two hundreds hosts has been recorded in Table~\ref{tab.cluster.3x67}.
250
251 Note that the program was run with the following parameters:
252
253 \paragraph*{SMPI parameters}
254
255 \begin{itemize}
256         \item HOSTFILE: Hosts file description.
257         \item PLATFORM: file description of the platform architecture : clusters (CPU power,
258 \dots{}), intra cluster network description, inter cluster network (bandwidth bw,
259 lat latency, \dots{}).
260 \end{itemize}
261
262
263 \paragraph*{Arguments of the program}
264
265 \begin{itemize}
266         \item Description of the cluster architecture;
267         \item Maximum number of internal and external iterations;
268         \item Internal and external precisions;
269         \item Matrix size NX, NY and NZ;
270         \item Matrix diagonal value = 6.0;
271         \item Execution Mode: synchronous or asynchronous.
272 \end{itemize}
273
274 \begin{table}
275   \centering
276   \caption{2 clusters X 50 nodes}
277   \label{tab.cluster.2x50}
278   \AG{Les images manquent dans le dépôt Git. Si ce sont vraiment des tableaux, utiliser un format vectoriel (eps ou pdf), et surtout pas de jpeg!}
279   \includegraphics[width=209pt]{img1.jpg}
280 \end{table}
281
282 \begin{table}
283   \centering
284   \caption{3 clusters X 33 nodes}
285   \label{tab.cluster.3x33}
286   \AG{Le fichier manque.}
287   \includegraphics[width=209pt]{img2.jpg}
288 \end{table}
289
290 \begin{table}
291   \centering
292   \caption{3 clusters X 67 nodes}
293   \label{tab.cluster.3x67}
294   \AG{Le fichier manque.}
295 %  \includegraphics[width=160pt]{img3.jpg}
296   \includegraphics[scale=0.5]{img3.jpg}
297 \end{table}
298
299 \paragraph*{Interpretations and comments}
300
301 After analyzing the outputs, generally, for the configuration with two or three
302 clusters including one hundred hosts (Tables~\ref{tab.cluster.2x50} and~\ref{tab.cluster.3x33}), some combinations of the
303 used parameters affecting the results have given a speedup less than 1, showing
304 the effectiveness of the asynchronous performance compared to the synchronous
305 mode.
306
307 In the case of a two clusters configuration, Table~\ref{tab.cluster.2x50} shows that with a
308 deterioration of inter cluster network set with \np[Mbits/s]{5} of bandwidth, a latency
309 in order of a hundredth of a millisecond and a system power of one GFlops, an
310 efficiency of about \np[\%]{40} in asynchronous mode is obtained for a matrix size of 62
311 elements. It is noticed that the result remains stable even if we vary the
312 external precision from \np{E-5} to \np{E-9}. By increasing the problem size up to 100
313 elements, it was necessary to increase the CPU power of \np[\%]{50} to \np[GFlops]{1.5} for a
314 convergence of the algorithm with the same order of asynchronous mode efficiency.
315 Maintaining such a system power but this time, increasing network throughput
316 inter cluster up to \np[Mbits/s]{50}, the result of efficiency of about \np[\%]{40} is
317 obtained with high external  precision of \np{E-11} for a matrix size from 110 to 150
318 side elements.
319
320 For the 3 clusters architecture including a total of 100 hosts, Table~\ref{tab.cluster.3x33} shows
321 that it was difficult to have a combination which gives an efficiency of
322 asynchronous below \np[\%]{80}. Indeed, for a matrix size of 62 elements, equality
323 between the performance of the two modes (synchronous and asynchronous) is
324 achieved with an inter cluster of \np[Mbits/s]{10} and a latency of \np{E-1} ms. To
325 challenge an efficiency by \np[\%]{78} with a matrix size of 100 points, it was
326 necessary to degrade the inter cluster network bandwidth from 5 to 2 Mbit/s.
327
328 A last attempt was made for a configuration of three clusters but more power
329 with 200 nodes in total. The convergence with a speedup of \np[\%]{90} was obtained
330 with a bandwidth of \np[Mbits/s]{1} as shown in Table~\ref{tab.cluster.3x67}.
331
332 \section{Conclusion}
333
334 \section*{Acknowledgment}
335
336
337 The authors would like to thank\dots{}
338
339
340 % trigger a \newpage just before the given reference
341 % number - used to balance the columns on the last page
342 % adjust value as needed - may need to be readjusted if
343 % the document is modified later
344 \bibliographystyle{IEEEtran}
345 \bibliography{hpccBib}
346
347 \end{document}
348
349 %%% Local Variables:
350 %%% mode: latex
351 %%% TeX-master: t
352 %%% fill-column: 80
353 %%% ispell-local-dictionary: "american"
354 %%% End: