]> AND Private Git Repository - hpcc2014.git/blob - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
c97d2bb0fb65f5201dfc1e843c6d62782f7cbf5a
[hpcc2014.git] / hpcc.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage{amsfonts,amssymb}
6 \usepackage{amsmath}
7 \usepackage{algorithm}
8 \usepackage{algpseudocode}
9 %\usepackage{amsthm}
10 \usepackage{graphicx}
11 %\usepackage{xspace}
12 \usepackage[american]{babel}
13 % Extension pour les liens intra-documents (tagged PDF)
14 % et l'affichage correct des URL (commande \url{http://example.com})
15 %\usepackage{hyperref}
16
17 \usepackage{url}
18 \DeclareUrlCommand\email{\urlstyle{same}}
19
20 \usepackage[autolanguage,np]{numprint}
21 \AtBeginDocument{%
22   \renewcommand*\npunitcommand[1]{\text{#1}}
23   \npthousandthpartsep{}}
24
25 \algnewcommand\algorithmicinput{\textbf{Input:}}
26 \algnewcommand\Input{\item[\algorithmicinput]}
27
28 \algnewcommand\algorithmicoutput{\textbf{Output:}}
29 \algnewcommand\Output{\item[\algorithmicoutput]}
30
31
32 \begin{document}
33
34 \title{Simulation of Asynchronous Iterative Numerical Algorithms Using SimGrid}
35
36 \author{%
37   \IEEEauthorblockN{%
38     Raphaël Couturier,
39     Arnaud Giersch,
40     David Laiymani and
41     Charles Emile Ramamonjisoa
42   }
43   \IEEEauthorblockA{%
44     Femto-ST Institute - DISC Department\\
45     Université de Franche-Comté\\
46     Belfort\\
47     Email: \email{raphael.couturier@univ-fcomte.fr}
48   }
49 }
50
51 \maketitle
52
53 \begin{abstract}
54 The abstract goes here.
55 \end{abstract}
56
57 \section{Introduction}
58
59 Parallel computing and high performance computing (HPC) are becoming 
60 more and more imperative for solving various problems raised by 
61 researchers on various scientific disciplines but also by industrial in 
62 the field. Indeed, the increasing complexity of these requested 
63 applications combined with a continuous increase of their sizes lead to 
64 write distributed and parallel algorithms requiring significant hardware 
65 resources (grid computing, clusters, broadband network, etc\dots{}) but
66 also a non-negligible CPU execution time. We consider in this paper a
67 class of highly efficient parallel algorithms called iterative executed 
68 in a distributed environment. As their name suggests, these algorithm 
69 solves a given problem that might be NP- complete complex by successive 
70 iterations ($X_{n +1} = f(X_{n})$) from an initial value $X_{0}$ to find
71 an approximate value $X^*$ of the solution with a very low
72 residual error. Several well-known methods demonstrate the convergence 
73 of these algorithms. Generally, to reduce the complexity and the 
74 execution time, the problem is divided into several \emph{pieces} that will
75 be solved in parallel on multiple processing units. The latter will 
76 communicate each intermediate results before a new iteration starts 
77 until the approximate solution is reached. These distributed parallel 
78 computations can be performed either in \emph{synchronous} communication mode
79 where a new iteration begin only when all nodes communications are 
80 completed, either \emph{asynchronous} mode where processors can continue
81 independently without or few synchronization points. Despite the 
82 effectiveness of iterative approach, a major drawback of the method is 
83 the requirement of huge resources in terms of computing capacity, 
84 storage and high speed communication network. Indeed, limited physical 
85 resources are blocking factors for large-scale deployment of parallel 
86 algorithms. 
87
88 In recent years, the use of a simulation environment to execute parallel 
89 iterative algorithms found some interests in reducing the highly cost of 
90 access to computing resources: (1) for the applications development life 
91 cycle and in code debugging (2) and in production to get results in a 
92 reasonable execution time with a simulated infrastructure not accessible 
93 with physical resources. Indeed, the launch of distributed iterative 
94 asynchronous algorithms to solve a given problem on a large-scale 
95 simulated environment challenges to find optimal configurations giving 
96 the best results with a lowest residual error and in the best of 
97 execution time. According our knowledge, no testing of large-scale 
98 simulation of the class of algorithm solving to achieve real results has 
99 been undertaken to date. We had in the scope of this work implemented a 
100 program for solving large non-symmetric linear system of equations by 
101 numerical method GMRES (Generalized Minimal Residual) in the simulation
102 environment SimGrid. The simulated platform had allowed us to launch
103 the application from a modest computing infrastructure by simulating 
104 different distributed architectures composed by clusters nodes 
105 interconnected by variable speed networks. In addition, it has been 
106 permitted to show the effectiveness of asynchronous mode algorithm by 
107 comparing its performance with the synchronous mode time. With selected 
108 parameters on the network platforms (bandwidth, latency of inter cluster 
109 network) and on the clusters architecture (number, capacity calculation 
110 power) in the simulated environment, the experimental results have
111 demonstrated not only the algorithm convergence within a reasonable time 
112 compared with the physical environment performance, but also a time 
113 saving of up to \np[\%]{40} in asynchronous mode.
114
115 This article is structured as follows: after this introduction, the next 
116 section will give a brief description of iterative asynchronous model. 
117 Then, the simulation framework SimGrid will be presented with the
118 settings to create various distributed architectures. The algorithm of 
119 the multi -splitting method used by GMRES written with MPI primitives 
120 and its adaptation to SimGrid with SMPI (Simulated MPI) will be in the
121 next section. At last, the experiments results carried out will be
122 presented before the conclusion which we will announce the opening of 
123 our future work after the results.
124  
125 \section{The asynchronous iteration model}
126
127 Décrire le modèle asynchrone. Je m'en charge (DL)
128
129 \section{SimGrid}
130
131 Décrire SimGrid (Arnaud)
132
133
134
135
136
137
138
139 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
140 \section{Simulation of the multisplitting method}
141 %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid.
142 Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $y$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi partitioning to solve this linear system on a large scale platform composed of $L$ clusters of processors. In this case, we apply a row-by-row splitting without overlapping  
143 \[
144 \left(\begin{array}{ccc}
145 A_{11} & \cdots & A_{1L} \\
146 \vdots & \ddots & \vdots\\
147 A_{L1} & \cdots & A_{LL}
148 \end{array} \right)
149 \times 
150 \left(\begin{array}{c}
151 X_1 \\
152 \vdots\\
153 X_L
154 \end{array} \right)
155 =
156 \left(\begin{array}{c}
157 Y_1 \\
158 \vdots\\
159 Y_L
160 \end{array} \right)\] 
161 in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster, where for all $l,i\in\{1,\ldots,L\}$ $A_{li}$ is a rectangular block of $A$ of size $n_l\times n_i$, $X_l$ and $Y_l$ are sub-vectors of $x$ and $y$, respectively, each of size $n_l$ and $\sum_{l} n_l=\sum_{i} n_i=n$.
162
163 The multisplitting method proceeds by iteration to solve in parallel the linear system by $L$ clusters of processors, in such a way each sub-system
164 \begin{equation}
165 \left\{
166 \begin{array}{l}
167 A_{ll}X_l = Y_l \mbox{,~such that}\\
168 Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i,
169 \end{array}
170 \right.
171 \label{eq:4.1}
172 \end{equation}
173 is solved independently by a cluster and communication are required to update the right-hand side sub-vectors $Y_l$, such that the sub-vectors $X_i$ represent the data dependencies between the clusters. As each sub-system (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our multisplitting method uses an iterative method as an inner solver which is easier to parallelize and more scalable than a direct method. In this work, we use the parallel GMRES method~\cite{ref1} which is one of the most used iterative method by many researchers. 
174
175 \begin{algorithm}
176 \caption{A multisplitting solver with inner iteration GMRES method}
177 \begin{algorithmic}[1]
178 \Input $A_l$ (local sparse matrix), $B_l$ (local right-hand side), $x^0$ (initial guess)
179 \Output $X_l$ (local solution vector)\vspace{0.2cm}
180 \State Load $A_l$, $B_l$, $x^0$
181 \State Initialize the shared vector $\hat{x}=x^0$
182 \For {$k=1,2,3,\ldots$ until the global convergence}
183 \State $x^0=\hat{x}$
184 \State Inner iteration solver: \Call{InnerSolver}{$x^0$, $k$}
185 \State Exchange the local solution ${X}_l^k$ with the neighboring clusters and copy the shared vector elements in $\hat{x}$
186 \EndFor
187
188 \Statex
189
190 \Function {InnerSolver}{$x^0$, $k$}
191 \State Compute the local right-hand side: $Y_l = B_l - \sum^L_{i=1,i\neq l}A_{li}X_i^0$
192 \State Solving the local splitting $A_{ll}X_l^k=Y_l$ using the parallel GMRES method, such that $X_l^0$ is the local initial guess
193 \State \Return $X_l^k$
194 \EndFunction
195 \end{algorithmic}
196 \label{algo:01}
197 \end{algorithm}
198 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
199
200
201
202
203
204
205
206
207 \section{Experimental results}
208
209 When the ``real'' application runs in the simulation environment and produces
210 the expected results, varying the input parameters and the program arguments
211 allows us to compare outputs from the code execution. We have noticed from this
212 study that the results depend on the following parameters: (1) at the network
213 level, we found that the most critical values are the bandwidth (bw) and the
214 network latency (lat). (2) Hosts power (GFlops) can also influence on the
215 results. And finally, (3) when submitting job batches for execution, the
216 arguments values passed to the program like the maximum number of iterations or
217 the ``external'' precision are critical to ensure not only the convergence of the
218 algorithm but also to get the main objective of the experimentation of the
219 simulation in having an execution time in asynchronous less than in synchronous
220 mode, in others words, in having a ``speedup'' less than 1 (Speedup = Execution
221 time in synchronous mode / Execution time in asynchronous mode).
222
223 A priori, obtaining a speedup less than 1 would be difficult in a local area
224 network configuration where the synchronous mode will take advantage on the rapid
225 exchange of information on such high-speed links. Thus, the methodology adopted
226 was to launch the application on clustered network. In this last configuration,
227 degrading the inter-cluster network performance will \emph{penalize} the synchronous
228 mode allowing to get a speedup lower than 1. This action simulates the case of
229 clusters linked with long distance network like Internet.
230
231 As a first step, the algorithm was run on a network consisting of two clusters
232 containing fifty hosts each, totaling one hundred hosts. Various combinations of
233 the above factors have providing the results shown in Table~\ref{tab.cluster.2x50} with a matrix size
234 ranging from Nx = Ny = Nz = 62 to 171 elements or from $62^{3} = \np{238328}$ to
235 $171^{3} = \np{5211000}$ entries.
236
237 Then we have changed the network configuration using three clusters containing
238 respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
239 clusters. In the same way as above, a judicious choice of key parameters has
240 permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the speedups less than 1 with
241 a matrix size from 62 to 100 elements.
242
243 In a final step, results of an execution attempt to scale up the three clustered
244 configuration but increasing by two hundreds hosts has been recorded in Table~\ref{tab.cluster.3x67}.
245
246 Note that the program was run with the following parameters:
247
248 \paragraph*{SMPI parameters}
249
250 \begin{itemize}
251         \item HOSTFILE: Hosts file description.
252         \item PLATFORM: file description of the platform architecture : clusters (CPU power,
253 \dots{}), intra cluster network description, inter cluster network (bandwidth bw,
254 lat latency, \dots{}).
255 \end{itemize}
256
257
258 \paragraph*{Arguments of the program}
259
260 \begin{itemize}
261         \item Description of the cluster architecture;
262         \item Maximum number of internal and external iterations;
263         \item Internal and external precisions;
264         \item Matrix size NX, NY and NZ;
265         \item Matrix diagonal value = 6.0;
266         \item Execution Mode: synchronous or asynchronous.
267 \end{itemize}
268
269 \begin{table}
270   \centering
271   \caption{2 clusters X 50 nodes}
272   \label{tab.cluster.2x50}
273   \includegraphics[width=209pt]{img1.jpg}
274 \end{table}
275
276 \begin{table}
277   \centering
278   \caption{3 clusters X 33 nodes}
279   \label{tab.cluster.3x33}
280   \includegraphics[width=209pt]{img2.jpg}
281 \end{table}
282
283 \begin{table}
284   \centering
285   \caption{3 clusters X 67 nodes}
286   \label{tab.cluster.3x67}
287 %  \includegraphics[width=160pt]{img3.jpg}
288   \includegraphics[scale=0.5]{img3.jpg}
289 \end{table}
290
291 \paragraph*{Interpretations and comments}
292
293 After analyzing the outputs, generally, for the configuration with two or three
294 clusters including one hundred hosts (Tables~\ref{tab.cluster.2x50} and~\ref{tab.cluster.3x33}), some combinations of the
295 used parameters affecting the results have given a speedup less than 1, showing
296 the effectiveness of the asynchronous performance compared to the synchronous
297 mode.
298
299 In the case of a two clusters configuration, Table~\ref{tab.cluster.2x50} shows that with a
300 deterioration of inter cluster network set with \np[Mbits/s]{5} of bandwidth, a latency
301 in order of a hundredth of a millisecond and a system power of one GFlops, an
302 efficiency of about \np[\%]{40} in asynchronous mode is obtained for a matrix size of 62
303 elements. It is noticed that the result remains stable even if we vary the
304 external precision from \np{E-5} to \np{E-9}. By increasing the problem size up to 100
305 elements, it was necessary to increase the CPU power of \np[\%]{50} to \np[GFlops]{1.5} for a
306 convergence of the algorithm with the same order of asynchronous mode efficiency.
307 Maintaining such a system power but this time, increasing network throughput
308 inter cluster up to \np[Mbits/s]{50}, the result of efficiency of about \np[\%]{40} is
309 obtained with high external  precision of \np{E-11} for a matrix size from 110 to 150
310 side elements.
311
312 For the 3 clusters architecture including a total of 100 hosts, Table~\ref{tab.cluster.3x33} shows
313 that it was difficult to have a combination which gives an efficiency of
314 asynchronous below \np[\%]{80}. Indeed, for a matrix size of 62 elements, equality
315 between the performance of the two modes (synchronous and asynchronous) is
316 achieved with an inter cluster of \np[Mbits/s]{10} and a latency of \np{E-1} ms. To
317 challenge an efficiency by \np[\%]{78} with a matrix size of 100 points, it was
318 necessary to degrade the inter cluster network bandwidth from 5 to 2 Mbit/s.
319
320 A last attempt was made for a configuration of three clusters but more power
321 with 200 nodes in total. The convergence with a speedup of \np[\%]{90} was obtained
322 with a bandwidth of \np[Mbits/s]{1} as shown in Table~\ref{tab.cluster.3x67}.
323
324 \section{Conclusion}
325
326 \section*{Acknowledgment}
327
328
329 The authors would like to thank\dots{}
330
331
332 % trigger a \newpage just before the given reference
333 % number - used to balance the columns on the last page
334 % adjust value as needed - may need to be readjusted if
335 % the document is modified later
336 \bibliographystyle{IEEEtran}
337 \bibliography{hpccBib}
338
339 \end{document}
340
341 %%% Local Variables:
342 %%% mode: latex
343 %%% TeX-master: t
344 %%% fill-column: 80
345 %%% ispell-local-dictionary: "american"
346 %%% End: