]> AND Private Git Repository - hpcc2014.git/blob - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modifs tables
[hpcc2014.git] / hpcc.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage{amsfonts,amssymb}
6 \usepackage{amsmath}
7 %\usepackage{algorithm}
8 \usepackage{algpseudocode}
9 %\usepackage{amsthm}
10 \usepackage{graphicx}
11 \usepackage[american]{babel}
12 % Extension pour les liens intra-documents (tagged PDF)
13 % et l'affichage correct des URL (commande \url{http://example.com})
14 %\usepackage{hyperref}
15
16 \usepackage{url}
17 \DeclareUrlCommand\email{\urlstyle{same}}
18
19 \usepackage[autolanguage,np]{numprint}
20 \AtBeginDocument{%
21   \renewcommand*\npunitcommand[1]{\text{#1}}
22   \npthousandthpartsep{}}
23
24 \usepackage{xspace}
25 \usepackage[textsize=footnotesize]{todonotes}
26 \newcommand{\AG}[2][inline]{%
27   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
28 \newcommand{\DL}[2][inline]{%
29   \todo[color=yellow!50,#1]{\sffamily\textbf{DL:} #2}\xspace}
30 \newcommand{\LZK}[2][inline]{%
31   \todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
32 \newcommand{\RC}[2][inline]{%
33   \todo[color=red!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
34 \newcommand{\CER}[2][inline]{%
35   \todo[color=pink!10,#1]{\sffamily\textbf{CER:} #2}\xspace}
36
37 \algnewcommand\algorithmicinput{\textbf{Input:}}
38 \algnewcommand\Input{\item[\algorithmicinput]}
39
40 \algnewcommand\algorithmicoutput{\textbf{Output:}}
41 \algnewcommand\Output{\item[\algorithmicoutput]}
42
43 \newcommand{\MI}{\mathit{MaxIter}}
44 \newcommand{\Time}[1]{\mathit{Time}_\mathit{#1}}
45
46 \begin{document}
47
48 \title{Simulation of Asynchronous Iterative Algorithms Using SimGrid}
49
50 \author{%
51   \IEEEauthorblockN{%
52     Charles Emile Ramamonjisoa\IEEEauthorrefmark{1},
53     Lilia Ziane Khodja\IEEEauthorrefmark{2},
54     David Laiymani\IEEEauthorrefmark{1},
55     Arnaud Giersch\IEEEauthorrefmark{1} and
56     Raphaël Couturier\IEEEauthorrefmark{1}
57   }
58   \IEEEauthorblockA{\IEEEauthorrefmark{1}%
59     Femto-ST Institute -- DISC Department\\
60     Université de Franche-Comté,
61     IUT de Belfort-Montbéliard\\
62     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
63     Email: \email{{charles.ramamonjisoa,david.laiymani,arnaud.giersch,raphael.couturier}@univ-fcomte.fr}
64   }
65   \IEEEauthorblockA{\IEEEauthorrefmark{2}%
66     Inria Bordeaux Sud-Ouest\\
67     200 avenue de la Vieille Tour, 33405 Talence cedex, France \\
68     Email: \email{lilia.ziane@inria.fr}
69   }
70 }
71
72 \maketitle
73
74 \begin{abstract}
75
76 Synchronous  iterative  algorithms  are  often less  scalable  than  asynchronous
77 iterative  ones.  Performing  large  scale experiments  with  different kind  of
78 network parameters is not easy  because with supercomputers such parameters are
79 fixed. So one  solution consists in using simulations first  in order to analyze
80 what parameters  could influence or not  the behaviors of an  algorithm. In this
81 paper, we show  that it is interesting to use SimGrid  to simulate the behaviors
82 of asynchronous  iterative algorithms. For that,  we compare the  behaviour of a
83 synchronous  GMRES  algorithm  with  an  asynchronous  multisplitting  one  with
84 simulations  which let us easily choose  some parameters.   Both  codes  are real  MPI
85 codes and simulations allow us to see when the asynchronous multisplitting algorithm can be more
86 efficient than the GMRES one to solve a 3D Poisson problem.
87
88
89 % no keywords for IEEE conferences
90 % Keywords: Algorithm distributed iterative asynchronous simulation SimGrid
91 \end{abstract}
92
93 \section{Introduction}
94
95 Parallel computing and high performance computing (HPC) are becoming  more and more imperative for solving various
96 problems raised by  researchers on various scientific disciplines but also by industrial in  the field. Indeed, the
97 increasing complexity of these requested  applications combined with a continuous increase of their sizes lead to  write
98 distributed and parallel algorithms requiring significant hardware  resources (grid computing, clusters, broadband
99 network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient
100 parallel algorithms called \emph{iterative algorithms} executed in a distributed environment. As their name
101 suggests, these algorithms solve a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value
102 $X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods
103 demonstrate the convergence of these algorithms~\cite{BT89,Bahi07}.
104
105 Parallelization of such algorithms generally involves the division of the problem
106 into  several  \emph{blocks}  that  will  be  solved  in  parallel  on  multiple
107 processing units. The latter will communicate each intermediate results before a
108 new  iteration starts  and until  the  approximate solution  is reached.   These
109 parallel computations can be performed either in \emph{synchronous} mode where a
110 new iteration  begins only  when all nodes  communications are completed,  or in
111 \emph{asynchronous}  mode where  processors can  continue independently  with no
112 synchronization points~\cite{bcvc06:ij}. In this case, local computations do not
113 need to  wait for  required data. Processors  can then perform  their iterations
114 with the  data present at that time.  Even if the number  of iterations required
115 before  the convergence  is generally  greater  than for  the synchronous  case,
116 asynchronous  iterative algorithms  can significantly  reduce  overall execution
117 times by  suppressing idle  times due to  synchronizations especially in  a grid
118 computing context (see~\cite{Bahi07} for more details).
119
120 Parallel applications  based on a (synchronous or  asynchronous) iteration model
121 may have different configuration and deployment requirements.  Quantifying their
122 resource  allocation  policies and  application  scheduling  algorithms in  grid
123 computing environments under varying load,  CPU power and network speeds is very
124 costly,       very        labor       intensive       and        very       time
125 consuming~\cite{Calheiros:2011:CTM:1951445.1951450}.   The case  of asynchronous
126 iterative algorithms  is even more problematic  since they are  very sensible to
127 the  execution environment  context.  For instance,  variations  in the  network
128 bandwidth (intra and  inter-clusters), in the number and the  power of nodes, in
129 the number  of clusters\dots{} can lead  to very different  number of iterations
130 and so  to very  different execution times.   Then, it  appears that the  use of
131 simulation tools to explore various  platform scenarios and to run large numbers
132 of  experiments quickly  can  be very  promising.  In  this  way, the  use of  a
133 simulation  environment  to execute  parallel  iterative  algorithms found  some
134 interests in reducing the highly cost  of access to computing resources: (1) for
135 the  applications  development life  cycle  and in  code  debugging  (2) and  in
136 production  to get  results  in a  reasonable  execution time  with a  simulated
137 infrastructure not  accessible with physical  resources.  Indeed, the  launch of
138 distributed  iterative asynchronous  algorithms to  solve a  given problem  on a
139 large-scale  simulated  environment challenges  to  find optimal  configurations
140 giving  the best  results  with  a lowest  residual  error and  in  the best  of
141 execution time.
142
143
144 To our knowledge,  there is no existing work on the  large-scale simulation of a
145 real asynchronous  iterative application.  {\bf The contribution  of the present
146   paper can be  summarized in two main points}.  First we  give a first approach
147 of the simulation  of asynchronous iterative algorithms using  a simulation tool
148 (i.e.    the   SimGrid   toolkit~\cite{SimGrid}).    Second,  we   confirm   the
149 effectiveness  of the  asynchronous  multisplitting algorithm  by comparing  its
150 performance   with  the   synchronous  GMRES   (Generalized   Minimal  Residual) method
151 \cite{ref1}.  Both  these codes can  be used to  solve large linear  systems. In
152 this  paper, we  focus  on  a 3D  Poisson  problem.  We  show,  that with  minor
153 modifications of the initial MPI code,  the SimGrid toolkit allows us to perform
154 a  test campaign  of  a  real asynchronous  iterative  application on  different
155 computing architectures.
156 % The  simulated results  we
157 %obtained are  in line with real  results exposed in  ??\AG[]{ref?}. 
158 SimGrid  had  allowed us  to  launch the  application  from  a modest  computing
159 infrastructure  by simulating  different distributed  architectures  composed by
160 clusters  nodes interconnected by  variable speed  networks.  Parameters  of the
161 network  platforms  are   the  bandwidth  and  the  latency   of  inter  cluster
162 network. Parameters on the cluster's architecture are the number of machines and
163 the  computation power  of a  machine.  Simulations show  that the  asynchronous
164 multisplitting algorithm  can solve the  3D Poisson problem  approximately twice
165 faster than GMRES with two distant clusters.
166
167
168
169 This article is structured as follows: after this introduction, the next section
170 will  give a  brief  description  of iterative  asynchronous  model.  Then,  the
171 simulation framework  SimGrid is presented  with the settings to  create various
172 distributed architectures.  Then, the  multisplitting method is presented, it is
173 based  on GMRES to  solve each  block obtained  of the  splitting. This  code is
174 written with MPI  primitives and its adaptation to  SimGrid with SMPI (Simulated
175 MPI) is  detailed in the next  section. At last, the  simulation results carried
176 out will be presented before some concluding remarks and future works.
177
178  
179 \section{Motivations and scientific context}
180
181 As exposed in  the introduction, parallel iterative methods  are now widely used
182 in  many scientific  domains.   They can  be  classified in  three main  classes
183 depending on  how iterations  and communications are  managed (for  more details
184 readers  can refer  to~\cite{bcvc06:ij}). In  the synchronous  iterations model,
185 data are exchanged  at the end of each iteration. All  the processors must begin
186 the same iteration  at the same time and important idle  times on processors are
187 generated.  It is possible to use asynchronous communications, in this case, the
188 model can be  compared to the previous one except that  data required on another
189 processor are  sent asynchronously i.e.  without  stopping current computations.
190 This technique  allows to partially  overlap communications by  computations but
191 unfortunately, the overlapping is only  partial and important idle times remain.
192 It is clear that, in a grid computing context, where the number of computational
193 nodes is large,  heterogeneous and widely distributed, the  idle times generated
194 by synchronizations are very penalizing. One  way to overcome this problem is to
195 use the asynchronous iterations model.   Here, local computations do not need to
196 wait for  required data. Processors can  then perform their  iterations with the
197 data present  at that time.  Figure~\ref{fig:aiac} illustrates  this model where
198 the gray blocks represent the  computation phases.  With this algorithmic model,
199 the number  of iterations required  before the convergence is  generally greater
200 than  for the  two former  classes.  But,  and as  detailed in~\cite{bcvc06:ij},
201 asynchronous  iterative algorithms  can significantly  reduce  overall execution
202 times by  suppressing idle  times due to  synchronizations especially in  a grid
203 computing context.
204
205 \begin{figure}[!t]
206   \centering
207     \includegraphics[width=8cm]{AIAC.pdf}
208   \caption{The asynchronous iterations model}
209   \label{fig:aiac}
210 \end{figure}
211
212
213 %% It is very challenging to develop efficient applications for large scale,
214 %% heterogeneous and distributed platforms such as computing grids. Researchers and
215 %% engineers have to develop techniques for maximizing application performance of
216 %% these multi-cluster platforms, by redesigning the applications and/or by using
217 %% novel algorithms that can account for the composite and heterogeneous nature of
218 %% the platform. Unfortunately, the deployment of such applications on these very
219 %% large scale systems is very costly, labor intensive and time consuming. In this
220 %% context, it appears that the use of simulation tools to explore various platform
221 %% scenarios at will and to run enormous numbers of experiments quickly can be very
222 %% promising. Several works\dots{}
223
224 %% \AG{Several works\dots{} what?\\
225 %  Le paragraphe suivant se trouve déjà dans l'intro ?}
226 In the context of asynchronous algorithms, the number of iterations to reach the
227 convergence depends on  the delay of messages. With  synchronous iterations, the
228 number of  iterations is exactly  the same than  in the sequential mode  (if the
229 parallelization process does  not change the algorithm). So  the difficulty with
230 asynchronous iterative algorithms comes from the fact it is necessary to run the algorithm
231 with real data. In fact, from an execution to another the order of messages will
232 change and the  number of iterations to reach the  convergence will also change.
233 According  to all  the parameters  of the  platform (number  of nodes,  power of
234 nodes,  inter  and  intra clusrters  bandwith  and  latency, etc.) and  of  the
235 algorithm  (number   of  splittings  with  the   multisplitting  algorithm),  the
236 multisplitting code  will obtain the solution  more or less  quickly. Of course,
237 the GMRES method also depends of the same parameters. As it is difficult to have
238 access to  many clusters,  grids or supercomputers  with many  different network
239 parameters,  it  is  interesting  to  be  able  to  simulate  the  behaviors  of
240 asynchronous iterative algoritms before being able to runs real experiments.
241
242
243
244
245
246
247 \section{SimGrid}
248
249 SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid} is a simulation
250 framework to study the behavior of large-scale distributed systems.  As its name
251 says, it emanates from the grid computing community, but is nowadays used to
252 study grids, clouds, HPC or peer-to-peer systems.  The early versions of SimGrid
253 date from 1999, but it is still actively developed and distributed as an open
254 source software.  Today, it is one of the major generic tools in the field of
255 simulation for large-scale distributed systems.
256
257 SimGrid provides several programming interfaces: MSG to simulate Concurrent
258 Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to
259 run real applications written in MPI~\cite{MPI}.  Apart from the native C
260 interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming
261 languages.  SMPI is the interface that has been used for the work exposed in
262 this paper.  The SMPI interface implements about \np[\%]{80} of the MPI 2.0
263 standard~\cite{bedaride:hal-00919507}, and supports applications written in C or
264 Fortran, with little or no modifications.
265
266 Within SimGrid, the execution of a distributed application is simulated on a
267 single machine.  The application code is really executed, but some operations
268 like the communications are intercepted, and their running time is computed
269 according to the characteristics of the simulated execution platform.  The
270 description of this target platform is given as an input for the execution, by
271 the mean of an XML file.  It describes the properties of the platform, such as
272 the computing nodes with their computing power, the interconnection links with
273 their bandwidth and latency, and the routing strategy.  The simulated running
274 time of the application is computed according to these properties.
275
276 To compute the durations of the operations in the simulated world, and to take
277 into account resource sharing (e.g. bandwidth sharing between competing
278 communications), SimGrid uses a fluid model.  This allows to run relatively fast
279 simulations, while still keeping accurate
280 results~\cite{bedaride:hal-00919507,tomacs13}.  Moreover, depending on the
281 simulated application, SimGrid/SMPI allows to skip long lasting computations and
282 to only take their duration into account.  When the real computations cannot be
283 skipped, but the results have no importance for the simulation results, there is
284 also the possibility to share dynamically allocated data structures between
285 several simulated processes, and thus to reduce the whole memory consumption.
286 These two techniques can help to run simulations at a very large scale.
287
288 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
289 \section{Simulation of the multisplitting method}
290
291 \subsection{The multisplitting method}
292 %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid.
293 Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $b$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi splitting to solve this linear system on a large scale platform composed of $L$ clusters of processors~\cite{o1985multi}. In this case, we apply a row-by-row splitting without overlapping  
294 \begin{equation*}
295   \left(\begin{array}{ccc}
296       A_{11} & \cdots & A_{1L} \\
297       \vdots & \ddots & \vdots\\
298       A_{L1} & \cdots & A_{LL}
299     \end{array} \right)
300   \times
301   \left(\begin{array}{c}
302       X_1 \\
303       \vdots\\
304       X_L
305     \end{array} \right)
306   =
307   \left(\begin{array}{c}
308       B_1 \\
309       \vdots\\
310       B_L
311     \end{array} \right)
312 \end{equation*}
313 in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$
314 are assigned to one cluster, where for all $\ell,m\in\{1,\ldots,L\}$, $A_{\ell
315   m}$ is a rectangular block of $A$ of size $n_\ell\times n_m$, $X_\ell$ and
316 $B_\ell$ are sub-vectors of $x$ and $b$, respectively, of size $n_\ell$ each,
317 and $\sum_{\ell} n_\ell=\sum_{m} n_m=n$.
318
319 The multisplitting method proceeds by iteration to solve in parallel the linear system on $L$ clusters of processors, in such a way each sub-system
320 \begin{equation}
321   \label{eq:4.1}
322   \left\{
323     \begin{array}{l}
324       A_{\ell\ell}X_\ell = Y_\ell \text{, such that}\\
325       Y_\ell = B_\ell - \displaystyle\sum_{\substack{m=1\\ m\neq \ell}}^{L}A_{\ell m}X_m
326     \end{array}
327   \right.
328 \end{equation}
329 is solved independently by a cluster and communications are required to update
330 the right-hand side sub-vector $Y_\ell$, such that the sub-vectors $X_m$
331 represent the data dependencies between the clusters. As each sub-system
332 (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our
333 multisplitting method uses an iterative method as an inner solver which is
334 easier to parallelize and more scalable than a direct method. In this work, we
335 use the parallel algorithm of GMRES method~\cite{ref1} which is one of the most
336 used iterative method by many researchers.
337
338 \begin{figure}[!t]
339   %%% IEEE instructions forbid to use an algorithm environment here, use figure
340   %%% instead
341 \begin{algorithmic}[1]
342 \Input $A_\ell$ (sparse sub-matrix), $B_\ell$ (right-hand side sub-vector)
343 \Output $X_\ell$ (solution sub-vector)\medskip
344
345 \State Load $A_\ell$, $B_\ell$
346 \State Set the initial guess $x^0$
347 \For {$k=0,1,2,\ldots$ until the global convergence}
348 \State Restart outer iteration with $x^0=x^k$
349 \State Inner iteration: \Call{InnerSolver}{$x^0$, $k+1$}
350 \State\label{algo:01:send} Send shared elements of $X_\ell^{k+1}$ to neighboring clusters
351 \State\label{algo:01:recv} Receive shared elements in $\{X_m^{k+1}\}_{m\neq \ell}$
352 \EndFor
353
354 \Statex
355
356 \Function {InnerSolver}{$x^0$, $k$}
357 \State Compute local right-hand side $Y_\ell$:
358        \begin{equation*}
359          Y_\ell = B_\ell - \sum\nolimits^L_{\substack{m=1\\ m\neq \ell}}A_{\ell m}X_m^0
360        \end{equation*}
361 \State Solving sub-system $A_{\ell\ell}X_\ell^k=Y_\ell$ with the parallel GMRES method
362 \State \Return $X_\ell^k$
363 \EndFunction
364 \end{algorithmic}
365 \caption{A multisplitting solver with GMRES method}
366 \label{algo:01}
367 \end{figure}
368
369 Algorithm on Figure~\ref{algo:01} shows the main key points of the
370 multisplitting method to solve a large sparse linear system. This algorithm is
371 based on an outer-inner iteration method where the parallel synchronous GMRES
372 method is used to solve the inner iteration. It is executed in parallel by each
373 cluster of processors. For all $\ell,m\in\{1,\ldots,L\}$, the matrices and
374 vectors with the subscript $\ell$ represent the local data for cluster $\ell$,
375 while $\{A_{\ell m}\}_{m\neq \ell}$ are off-diagonal matrices of sparse matrix
376 $A$ and $\{X_m\}_{m\neq \ell}$ contain vector elements of solution $x$ shared
377 with neighboring clusters. At every outer iteration $k$, asynchronous
378 communications are performed between processors of the local cluster and those
379 of distant clusters (lines~\ref{algo:01:send} and~\ref{algo:01:recv} in
380 Figure~\ref{algo:01}). The shared vector elements of the solution $x$ are
381 exchanged by message passing using MPI non-blocking communication routines.
382
383 \begin{figure}[!t]
384 \centering
385   \includegraphics[width=60mm,keepaspectratio]{clustering}
386 \caption{Example of three distant clusters of processors.}
387 \label{fig:4.1}
388 \end{figure}
389
390 The global convergence of the asynchronous multisplitting solver is detected
391 when the clusters of processors have all converged locally. We implemented the
392 global convergence detection process as follows. On each cluster a master
393 processor is designated (for example the processor with rank 1) and masters of
394 all clusters are interconnected by a virtual unidirectional ring network (see
395 Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around
396 the virtual ring from a master processor to another until the global convergence
397 is achieved. So starting from the cluster with rank 1, each master processor $\ell$
398 sets the token to \textit{True} if the local convergence is achieved or to
399 \textit{False} otherwise, and sends it to master processor $\ell+1$. Finally, the
400 global convergence is detected when the master of cluster 1 receives from the
401 master of cluster $L$ a token set to \textit{True}. In this case, the master of
402 cluster 1 broadcasts a stop message to masters of other clusters. In this work,
403 the local convergence on each cluster $\ell$ is detected when the following
404 condition is satisfied
405 \begin{equation*}
406   (k\leq \MI) \text{ or } (\|X_\ell^k - X_\ell^{k+1}\|_{\infty}\leq\epsilon)
407 \end{equation*}
408 where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the
409 tolerance threshold of the error computed between two successive local solution
410 $X_\ell^k$ and $X_\ell^{k+1}$.
411
412
413
414 In this paper, we solve the 3D Poisson problem whose the mathematical model is 
415 \begin{equation}
416 \left\{
417 \begin{array}{l}
418 \nabla^2 u = f \text{~in~} \Omega \\
419 u =0 \text{~on~} \Gamma =\partial\Omega
420 \end{array}
421 \right.
422 \label{eq:02}
423 \end{equation}
424 where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite differences scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. Our multisplitting method solves the 3D Poisson problem using a seven point stencil whose the general expression could be written as
425 \begin{equation}
426 \begin{array}{l}
427 u(x-1,y,z) + u(x,y-1,z) + u(x,y,z-1)\\+u(x+1,y,z)+u(x,y+1,z)+u(x,y,z+1) \\ -6u(x,y,z)=h^2f(x,y,z),
428 %u(x,y,z)= & \frac{1}{6}\times [u(x-1,y,z) + u(x+1,y,z) + \\
429  %         & u(x,y-1,z) + u(x,y+1,z) + \\
430   %        & u(x,y,z-1) + u(x,y,z+1) - \\ & h^2f(x,y,z)],
431 \end{array}
432 \label{eq:03}
433 \end{equation} 
434 where $h$ is the distance between two adjacent elements in the spatial discretization scheme and the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite. 
435
436 The parallel solving of the 3D Poisson problem with our multisplitting method requires a data partitioning of the problem between clusters and between processors within a cluster. We have chosen the 3D partitioning instead of the row-by-row partitioning in order to reduce the data exchanges at sub-domain boundaries. Figure~\ref{fig:4.2} shows an example of the data partitioning of the 3D Poisson problem between two clusters of processors, where each sub-problem is assigned to a processor. In this context, a processor has at most six neighbors within a cluster or in distant clusters with which it shares data at sub-domain boundaries. 
437
438 \begin{figure}[!t]
439 \centering
440   \includegraphics[width=80mm,keepaspectratio]{partition}
441 \caption{Example of the 3D data partitioning between two clusters of processors.}
442 \label{fig:4.2}
443 \end{figure}
444
445
446 \subsection{Simulation of the multisplitting method using SimGrid and SMPI}
447
448
449
450 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
451 We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code 
452 debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. For the synchronous GMRES method, the execution of the program raised no particular issue but in the asynchronous multisplitting method, the review of the sequence of \texttt{MPI\_Isend, MPI\_Irecv} and \texttt{MPI\_Waitall} instructions
453 and with the addition of the primitive \texttt{MPI\_Test} was needed to avoid a memory fault due to an infinite loop resulting from the non-convergence of the algorithm.
454 %\CER{On voulait en fait montrer la simplicité de l'adaptation de l'algo a SimGrid. Les problèmes rencontrés décrits dans ce paragraphe concerne surtout le mode async}\LZK{OK. J'aurais préféré avoir un peu plus de détails sur l'adaptation de la version async} 
455 %\CER{Le problème majeur sur l'adaptation MPI vers SMPI pour la partie asynchrone de l'algorithme a été le plantage en SMPI de Waitall après un Isend et Irecv. J'avais proposé un workaround en utilisant un MPI\_wait séparé pour chaque échange a la place d'un waitall unique pour TOUTES les échanges, une instruction qui semble bien fonctionner en MPI. Ce workaround aussi fonctionne bien. Mais après, tu as modifié le programme avec l'ajout d'un MPI\_Test, au niveau de la routine de détection de la convergence et du coup, l'échange global avec waitall a aussi fonctionné.}
456 Note here that the use of SMPI functions optimizer for memory footprint and CPU usage is not recommended knowing that one wants to get real results by simulation.
457 As mentioned, upon this adaptation, the algorithm is executed as in the real life in the simulated environment after the following minor changes. The scope of all declared 
458 global variables have been moved to local to subroutine. Indeed, global variables generate side effects arising from the concurrent access of 
459 shared memory used by threads simulating each computing unit in the SimGrid architecture. 
460 %Second, some compilation errors on MPI\_Waitall and MPI\_Finalize primitives have been fixed with the latest version of SimGrid.
461 %\AG{compilation or run-time error?}
462 In total, the initial MPI program running on the simulation environment SMPI gave after a very simple adaptation the same results as those obtained in a real 
463 environment. We have successfully executed the code for the synchronous GMRES algorithm compared with our asynchronous multisplitting algorithm after few modifications. 
464
465
466
467 \section{Simulation results}
468
469 When the \textit{real} application runs in the simulation environment and produces the expected results, varying the input
470 parameters and the program arguments allows us to compare outputs from the code execution. We have noticed from this
471 study that the results depend on the following parameters:  
472 \begin{itemize}
473 \item At the network level, we found that the most critical values are the
474   bandwidth and the network latency.
475 \item Hosts processors power (GFlops) can also influence on the results.
476 \item Finally, when submitting job batches for execution, the arguments values
477   passed to the program like the maximum number of iterations or the precision are critical. They allow us to ensure not only the convergence of the
478   algorithm but also to get the main objective in getting an execution time with the asynchronous multisplitting  less than with synchronous GMRES. 
479   \end{itemize}
480
481 The ratio between the simulated execution time of synchronous GMRES algorithm
482 compared to the asynchronous multisplitting algorithm ($t_\text{GMRES} / t_\text{Multisplitting}$) is defined as the \emph{relative gain}. So,
483 our objective running the algorithm in SimGrid is to obtain a relative gain greater than 1.
484 A priori, obtaining a relative gain greater than 1 would be difficult in a local
485 area network configuration where the synchronous GMRES method will take advantage on the
486 rapid exchange of information on such high-speed links. Thus, the methodology
487 adopted was to launch the application on a clustered network. In this
488 configuration, degrading the inter-cluster network performance will penalize the
489 synchronous mode allowing to get a relative gain greater than 1.  This action
490 simulates the case of distant clusters linked with long distance network as in grid computing context.
491
492
493
494 Both codes were simulated on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
495 factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem  ranges from $N=N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
496 $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
497 \text{\np{3375000}}$ entries). With the asynchronous multisplitting algorithm the simulated execution time is in average 2.5 times faster than with the synchronous GMRES one. 
498 %\AG{Expliquer comment lire les tableaux.}
499 %\CER{J'ai reformulé la phrase par la lecture du tableau. Plus de détails seront lus dans la partie Interprétations et commentaires}
500 % use the same column width for the following three tables
501 \newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
502 \newenvironment{mytable}[1]{% #1: number of columns for data
503   \renewcommand{\arraystretch}{1.3}%
504   \begin{tabular}{|>{\bfseries}r%
505                   |*{#1}{>{\centering\arraybackslash}p{\mytablew}|}}}{%
506     \end{tabular}}
507
508 \begin{table}[!t]
509   \centering
510   \caption{Relative gain  of the multisplitting algorithm compared  to GMRES for
511     different configurations with 2 clusters, each one composed of 50 nodes. Latency = $20$ms}
512   \label{tab.cluster.2x50}
513
514   \begin{mytable}{5}
515     \hline
516     bandwidth (Mbit/s)
517     & 5         & 5         & 5         & 5         & 5         \\
518     \hline
519   %  latency (ms)
520    % & 20      &  20      & 20      & 20      & 20      \\
521     %\hline
522     power (GFlops)
523     & 1         & 1         & 1         & 1.5       & 1.5       \\
524     \hline
525     size $(N)$
526     & $62^3$        & $62^3$        & $62^3$        & $100^3$       & $100^3$       \\
527     \hline
528     Precision
529     & \np{E-5}  & \np{E-8}  & \np{E-9}  & \np{E-11} & \np{E-11} \\
530     \hline
531     \hline
532     Relative gain
533     & 2.52      & 2.55      & 2.52      & 2.57      & 2.54      \\
534     \hline
535   \end{mytable}
536
537   \bigskip
538
539   \begin{mytable}{5}
540     \hline
541     bandwidth (Mbit/s)
542     & 50        & 50        & 50        & 50        & 50 \\ %       & 10        & 10 \\
543     \hline
544     %latency (ms)
545     %& 20      & 20      & 20      & 20      & 20 \\ %      & 0.03      & 0.01 \\
546     %\hline
547     Power (GFlops)
548     & 1.5       & 1.5       & 1.5       & 1.5       & 1.5 \\ %      & 1         & 1.5 \\
549     \hline
550     size $(N)$
551     & $110^3$       & $120^3$       & $130^3$       & $140^3$       & $150^3$  \\ %     & 171       & 171 \\
552     \hline
553     Precision
554     & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} \\ % & \np{E-5}  & \np{E-5} \\
555     \hline
556     \hline
557     Relative gain
558     & 2.53      & 2.51     & 2.58     & 2.55     & 2.54   \\ %  & 1.59      & 1.29 \\
559     \hline
560   \end{mytable}
561 \end{table}
562   
563 %\RC{Du coup la latence est toujours la même, pourquoi la mettre dans la table?}
564
565 %Then we have changed the network configuration using three clusters containing
566 %respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
567 %clusters. In the same way as above, a judicious choice of key parameters has
568 %permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the
569 %relative gains greater than 1 with a matrix size from 62 to 100 elements.
570
571 %\CER{En accord avec RC, on a pour le moment enlevé les tableaux 2 et 3 sachant que les résultats obtenus sont limites. De même, on a enlevé aussi les deux dernières colonnes du tableau I en attendant une meilleure performance et une meilleure precision}
572 %\begin{table}[!t]
573 %  \centering
574 %  \caption{3 clusters, each with 33 nodes}
575 %  \label{tab.cluster.3x33}
576 %
577 %  \begin{mytable}{6}
578 %    \hline
579 %    bandwidth 
580 %    & 10       & 5        & 4        & 3        & 2        & 6 \\
581 %    \hline
582 %    latency
583 %    & 0.01     & 0.02     & 0.02     & 0.02     & 0.02     & 0.02 \\
584 %    \hline
585 %    power
586 %    & 1        & 1        & 1        & 1        & 1        & 1 \\
587 %    \hline
588 %    size
589 %    & 62       & 100      & 100      & 100      & 100      & 171 \\
590 %    \hline
591 %    Prec/Eprec
592 %    & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} \\
593 %    \hline
594 %    \hline
595 %    Relative gain
596 %    & 1.003    & 1.01     & 1.08     & 1.19     & 1.28     & 1.01 \\
597 %    \hline
598 %  \end{mytable}
599 %\end{table}
600
601 %In a final step, results of an execution attempt to scale up the three clustered
602 %configuration but increasing by two hundreds hosts has been recorded in
603 %Table~\ref{tab.cluster.3x67}.
604
605 %\begin{table}[!t]
606 %  \centering
607 %  \caption{3 clusters, each with 66 nodes}
608 %  \label{tab.cluster.3x67}
609 %
610 %  \begin{mytable}{1}
611 %    \hline
612 %    bandwidth  & 1 \\
613 %    \hline
614 %    latency    & 0.02 \\
615 %    \hline
616 %    power      & 1 \\
617 %    \hline
618 %    size       & 62 \\
619 %    \hline
620 %    Prec/Eprec & \np{E-5} \\
621 %    \hline
622 %    \hline
623 %    Relative gain    & 1.11 \\
624 %    \hline
625 %  \end{mytable}
626 %\end{table}
627
628 Note that the program was run with the following parameters:
629
630 \paragraph*{SMPI parameters}
631
632 \begin{itemize}
633 \item HOSTFILE: Text file containing the list of the processors units name. Here 100 hosts;
634 \item PLATFORM: XML file description of the platform architecture whith the following characteristics: %two clusters (cluster1 and cluster2) with the following characteristics :
635   \begin{itemize}
636   \item 2 clusters of 50 hosts each;
637   \item Processor unit power: \np[GFlops]{1} or \np[GFlops]{1.5};
638   \item Intra-cluster network bandwidth: \np[Gbit/s]{1.25} and latency: \np[$\mu$s]{50};
639   \item Inter-cluster network bandwidth: \np[Mbit/s]{5} or \np[Mbit/s]{50} and latency: \np[ms]{20};
640   \end{itemize}
641 \end{itemize}
642
643
644 \paragraph*{Arguments of the program}
645
646 \begin{itemize}
647 \item Description of the cluster architecture matching the format <Number of
648   clusters> <Number of hosts in cluster1> <Number of hosts in cluster2>;
649 \item Maximum numbers of outer and inner iterations;
650 \item Outer and inner precisions on the residual error;
651 \item Matrix size $N_x$, $N_y$ and $N_z$;
652 \item Matrix diagonal value: $6$ (see Equation~(\ref{eq:03}));
653 \item Matrix off-diagonal values: $-1$;
654 \item Communication mode: asynchronous.
655 \end{itemize}
656
657 \paragraph*{Interpretations and comments}
658
659 After analyzing the outputs, generally, for the two clusters including one hundred hosts configuration (Tables~\ref{tab.cluster.2x50}), some combinations of parameters affecting
660 the results have given a relative gain more than 2.5, showing the effectiveness of the
661 asynchronous multisplitting  compared to GMRES with two distant clusters.
662
663 With these settings, Table~\ref{tab.cluster.2x50} shows
664 that after setting the bandwidth of the  inter cluster network to  \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
665 of one GFlops, an efficiency of about \np[\%]{40} is
666 obtained in asynchronous mode for a matrix size of $62^3$ elements. It is noticed that the result remains
667 stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
668 increasing the matrix size up to $100^3$ elements, it was necessary to increase the
669 CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency.  Maintaining such processor power but increasing network throughput inter cluster up to
670 \np[Mbit/s]{50}, the result of efficiency with a relative gain of 2.5 is obtained with
671 high external precision of \np{E-11} for a matrix size from $110^3$ to $150^3$ side
672 elements.
673
674 %For the 3 clusters architecture including a total of 100 hosts,
675 %Table~\ref{tab.cluster.3x33} shows that it was difficult to have a combination
676 %which gives a relative gain of asynchronous mode more than 1.2. Indeed, for a
677 %matrix size of 62 elements, equality between the performance of the two modes
678 %(synchronous and asynchronous) is achieved with an inter cluster of
679 %\np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency greater than 1.2 with a matrix %size of 100 points, it was necessary to degrade the
680 %inter cluster network bandwidth from 5 to \np[Mbit/s]{2}.
681 %\AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ???
682   %Quelle est la perte de perfs en faisant ça ?}
683
684 %A last attempt was made for a configuration of three clusters but more powerful
685 %with 200 nodes in total. The convergence with a relative gain around 1.1 was
686 %obtained with a bandwidth of \np[Mbit/s]{1} as shown in
687 %Table~\ref{tab.cluster.3x67}.
688
689 %\RC{Est ce qu'on sait expliquer pourquoi il y a une telle différence entre les résultats avec 2 et 3 clusters... Avec 3 clusters, ils sont pas très bons... Je me demande s'il ne faut pas les enlever...}
690 %\RC{En fait je pense avoir la réponse à ma remarque... On voit avec les 2 clusters que le gain est d'autant plus grand qu'on choisit une bonne précision. Donc, plusieurs solutions, lancer rapidement un long test pour confirmer ca, ou enlever des tests... ou on ne change rien :-)}
691 %\LZK{Ma question est: le bandwidth et latency sont ceux inter-clusters ou pour les deux inter et intra cluster??}
692 %\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.}
693 \section{Conclusion}
694 The simulation of the execution of parallel asynchronous iterative algorithms on large scale  clusters has been presented. 
695 In this work, we show that SIMGRID is an efficient simulation tool that allows us to 
696 reach the following two objectives: 
697
698 \begin{enumerate}
699 \item  To have  a flexible  configurable execution  platform that  allows  us to
700   simulate algorithms for  which execution of all parts of
701   the  code is  necessary. Using  simulations before  real executions  is  a nice
702   solution to detect potential scalability problems.
703
704 \item To test the combination of the cluster and network specifications permitting to execute an asynchronous algorithm faster than a synchronous one.
705 \end{enumerate}
706 Our results have shown that with two distant clusters, the asynchronous multisplitting method is faster to \np[\%]{40} compared to the synchronous GMRES method
707 which is not negligible for solving complex practical problems with more 
708 and more increasing size.
709
710 Several studies have already addressed the performance execution time of 
711 this class of algorithm. The work presented in this paper has 
712 demonstrated an original solution to optimize the use of a simulation 
713 tool to run efficiently an iterative parallel algorithm in asynchronous 
714 mode in a grid architecture. 
715
716 In future works, we plan to extend our experimentations to larger scale platforms by increasing the number of computing cores and the number of clusters. 
717 We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to better experimentally validate our study. Finally, we also plan to study other problems with the multisplitting method and other asynchronous iterative methods.
718
719 \section*{Acknowledgment}
720
721 This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01).
722 %\todo[inline]{The authors would like to thank\dots{}}
723
724 % trigger a \newpage just before the given reference
725 % number - used to balance the columns on the last page
726 % adjust value as needed - may need to be readjusted if
727 % the document is modified later
728 \bibliographystyle{IEEEtran}
729 \bibliography{IEEEabrv,hpccBib}
730
731
732
733 \end{document}
734
735 %%% Local Variables:
736 %%% mode: latex
737 %%% TeX-master: t
738 %%% fill-column: 80
739 %%% ispell-local-dictionary: "american"
740 %%% End:
741
742 % LocalWords:  Ramamonjisoa Laiymani Arnaud Giersch Ziane Khodja Raphaël Femto
743 % LocalWords:  Université Franche Comté IUT Montbéliard Maréchal Juin Inria Sud
744 % LocalWords:  Ouest Vieille Talence cedex scalability experimentations HPC MPI
745 % LocalWords:  Parallelization AIAC GMRES multi SMPI SISC SIAC SimDAG DAGs Lua
746 % LocalWords:  Fortran GFlops priori Mbit de du fcomte multisplitting scalable
747 % LocalWords:  SimGrid Belfort parallelize Labex ANR LABX IEEEabrv hpccBib
748 % LocalWords:  intra durations nonsingular Waitall discretization discretized
749 % LocalWords:  InnerSolver Isend Irecv