]> AND Private Git Repository - hpcc2014.git/blob - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Reindent author list.
[hpcc2014.git] / hpcc.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage{amsfonts,amssymb}
6 \usepackage{amsmath}
7 \usepackage{algorithm}
8 \usepackage{algpseudocode}
9 %\usepackage{amsthm}
10 \usepackage{graphicx}
11 %\usepackage{xspace}
12 \usepackage[american]{babel}
13 % Extension pour les liens intra-documents (tagged PDF)
14 % et l'affichage correct des URL (commande \url{http://example.com})
15 %\usepackage{hyperref}
16
17 \algnewcommand\algorithmicinput{\textbf{Input:}}
18 \algnewcommand\Input{\item[\algorithmicinput]}
19
20 \algnewcommand\algorithmicoutput{\textbf{Output:}}
21 \algnewcommand\Output{\item[\algorithmicoutput]}
22
23
24 \begin{document}
25
26 \title{Simulation of Asynchronous Iterative Numerical Algorithms Using SimGrid}
27
28 \author{%
29   \IEEEauthorblockN{%
30     Raphaël Couturier,
31     Arnaud Giersch,
32     David Laiymani and
33     Charles Emile Ramamonjisoa
34   }
35   \IEEEauthorblockA{%
36     Femto-ST Institute - DISC Department\\
37     Université de Franche-Comté\\
38     Belfort\\
39     Email: raphael.couturier@univ-fcomte.fr
40   }
41 }
42
43 \maketitle
44
45 \begin{abstract}
46 The abstract goes here.
47 \end{abstract}
48
49 \section{Introduction}
50
51 Parallel computing and high performance computing (HPC) are becoming 
52 more and more imperative for solving various problems raised by 
53 researchers on various scientific disciplines but also by industrial in 
54 the field. Indeed, the increasing complexity of these requested 
55 applications combined with a continuous increase of their sizes lead to 
56 write distributed and parallel algorithms requiring significant hardware 
57 resources ( grid computing , clusters, broadband network ,etc... ) but 
58 also a non- negligible CPU execution time. We consider in this paper a 
59 class of highly efficient parallel algorithms called iterative executed 
60 in a distributed environment. As their name suggests, these algorithm 
61 solves a given problem that might be NP- complete complex by successive 
62 iterations (X$_{n +1 }$= f (X$_{n}$) ) from an initial value X
63 $_{0}$ to find an approximate value X* of the solution with a very low 
64 residual error. Several well-known methods demonstrate the convergence 
65 of these algorithms. Generally, to reduce the complexity and the 
66 execution time, the problem is divided into several "pieces" that will 
67 be solved in parallel on multiple processing units. The latter will 
68 communicate each intermediate results before a new iteration starts 
69 until the approximate solution is reached. These distributed parallel 
70 computations can be performed either in "synchronous" communication mode 
71 where a new iteration begin only when all nodes communications are 
72 completed, either "asynchronous" mode where processors can continue 
73 independently without or few synchronization points. Despite the 
74 effectiveness of iterative approach, a major drawback of the method is 
75 the requirement of huge resources in terms of computing capacity, 
76 storage and high speed communication network. Indeed, limited physical 
77 resources are blocking factors for large-scale deployment of parallel 
78 algorithms. 
79
80 In recent years, the use of a simulation environment to execute parallel 
81 iterative algorithms found some interests in reducing the highly cost of 
82 access to computing resources: (1) for the applications development life 
83 cycle and in code debugging (2) and in production to get results in a 
84 reasonable execution time with a simulated infrastructure not accessible 
85 with physical resources. Indeed, the launch of distributed iterative 
86 asynchronous algorithms to solve a given problem on a large-scale 
87 simulated environment challenges to find optimal configurations giving 
88 the best results with a lowest residual error and in the best of 
89 execution time. According our knowledge, no testing of large-scale 
90 simulation of the class of algorithm solving to achieve real results has 
91 been undertaken to date. We had in the scope of this work implemented a 
92 program for solving large non-symmetric linear system of equations by 
93 numerical method GMRES (Generalized Minimal Residual ) in the simulation 
94 environment Simgrid . The simulated platform had allowed us to launch 
95 the application from a modest computing infrastructure by simulating 
96 different distributed architectures composed by clusters nodes 
97 interconnected by variable speed networks. In addition, it has been 
98 permitted to show the effectiveness of asynchronous mode algorithm by 
99 comparing its performance with the synchronous mode time. With selected 
100 parameters on the network platforms (bandwidth, latency of inter cluster 
101 network) and on the clusters architecture (number, capacity calculation 
102 power) in the simulated environment , the experimental results have 
103 demonstrated not only the algorithm convergence within a reasonable time 
104 compared with the physical environment performance, but also a time 
105 saving of up to 40 \% in asynchronous mode.
106
107 This article is structured as follows: after this introduction, the next 
108 section will give a brief description of iterative asynchronous model. 
109 Then, the simulation framework SIMGRID will be presented with the 
110 settings to create various distributed architectures. The algorithm of 
111 the multi -splitting method used by GMRES written with MPI primitives 
112 and its adaptation to Simgrid with SMPI (Simulation MPI ) will be in the 
113 next section . At last, the experiments results carried out will be 
114 presented before the conclusion which we will announce the opening of 
115 our future work after the results.
116  
117 \section{The asynchronous iteration model}
118
119 Décrire le modèle asynchrone. Je m'en charge (DL)
120
121 \section{SimGrid}
122
123 Décrire SimGrid (Arnaud)
124
125
126
127
128
129
130
131 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
132 \section{Simulation of the multisplitting method}
133 %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid.
134 Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $y$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi partitioning to solve this linear system on a large scale platform composed of $L$ clusters of processors. In this case, we apply a row-by-row splitting without overlapping  
135 \[
136 \left(\begin{array}{ccc}
137 A_{11} & \cdots & A_{1L} \\
138 \vdots & \ddots & \vdots\\
139 A_{L1} & \cdots & A_{LL}
140 \end{array} \right)
141 \times 
142 \left(\begin{array}{c}
143 X_1 \\
144 \vdots\\
145 X_L
146 \end{array} \right)
147 =
148 \left(\begin{array}{c}
149 Y_1 \\
150 \vdots\\
151 Y_L
152 \end{array} \right)\] 
153 in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster, where for all $l,i\in\{1,\ldots,L\}$ $A_{li}$ is a rectangular block of $A$ of size $n_l\times n_i$, $X_l$ and $Y_l$ are sub-vectors of $x$ and $y$, respectively, each of size $n_l$ and $\sum_{l} n_l=\sum_{i} n_i=n$.
154
155 The multisplitting method proceeds by iteration to solve in parallel the linear system by $L$ clusters of processors, in such a way each sub-system
156 \begin{equation}
157 \left\{
158 \begin{array}{l}
159 A_{ll}X_l = Y_l \mbox{,~such that}\\
160 Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i,
161 \end{array}
162 \right.
163 \label{eq:4.1}
164 \end{equation}
165 is solved independently by a cluster and communication are required to update the right-hand side sub-vectors $Y_l$, such that the sub-vectors $X_i$ represent the data dependencies between the clusters. As each sub-system (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our multisplitting method uses an iterative method as an inner solver which is easier to parallelize and more scalable than a direct method. In this work, we use the parallel GMRES method~\cite{ref1} which is one of the most used iterative method by many researchers. 
166
167 \begin{algorithm}
168 \caption{A multisplitting solver with inner iteration GMRES method}
169 \begin{algorithmic}[1]
170 \Input $A_l$ (local sparse matrix), $B_l$ (local right-hand side), $x^0$ (initial guess)
171 \Output $X_l$ (local solution vector)\vspace{0.2cm}
172 \State Load $A_l$, $B_l$, $x^0$
173 \State Initialize the shared vector $\hat{x}=x^0$
174 \For {$k=1,2,3,\ldots$ until the global convergence}
175 \State $x^0=\hat{x}$
176 \State Inner iteration solver: \Call{InnerSolver}{$x^0$, $k$}
177 \State Exchange the local solution ${X}_l^k$ with the neighboring clusters and copy the shared vector elements in $\hat{x}$
178 \EndFor
179
180 \Statex
181
182 \Function {InnerSolver}{$x^0$, $k$}
183 \State Compute the local right-hand side: $Y_l = B_l - \sum^L_{i=1,i\neq l}A_{li}X_i^0$
184 \State Solving the local splitting $A_{ll}X_l^k=Y_l$ using the parallel GMRES method, such that $X_l^0$ is the local initial guess
185 \State \Return $X_l^k$
186 \EndFunction
187 \end{algorithmic}
188 \label{algo:01}
189 \end{algorithm}
190 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
191
192
193
194
195
196
197
198
199 \section{Experimental results}
200
201 When the ``real'' application runs in the simulation environment and produces
202 the expected results, varying the input parameters and the program arguments
203 allows us to compare outputs from the code execution. We have noticed from this
204 study that the results depend on the following parameters: (1) at the network
205 level, we found that the most critical values are the bandwidth (bw) and the
206 network latency (lat). (2) Hosts power (GFlops) can also influence on the
207 results. And finally, (3) when submitting job batches for execution, the
208 arguments values passed to the program like the maximum number of iterations or
209 the ``external'' precision are critical to ensure not only the convergence of the
210 algorithm but also to get the main objective of the experimentation of the
211 simulation in having an execution time in asynchronous less than in synchronous
212 mode, in others words, in having a ``speedup'' less than 1 (Speedup = Execution
213 time in synchronous mode / Execution time in asynchronous mode).
214
215 A priori, obtaining a speedup less than 1 would be difficult in a local area
216 network configuration where the synchronous mode will take advantage on the rapid
217 exchange of information on such high-speed links. Thus, the methodology adopted
218 was to launch the application on clustered network. In this last configuration,
219 degrading the inter-cluster network performance will "penalize" the synchronous
220 mode allowing to get a speedup lower than 1. This action simulates the case of
221 clusters linked with long distance network like Internet.
222
223 As a first step, the algorithm was run on a network consisting of two clusters
224 containing fifty hosts each, totaling one hundred hosts. Various combinations of
225 the above factors have providing the results shown in Table~\ref{tab.cluster.2x50} with a matrix size
226 ranging from Nx = Ny = Nz = 62 to 171 elements or from 62$^{3}$ = 238328 to
227 171$^{3}$ = 5,211,000 entries.
228
229 Then we have changed the network configuration using three clusters containing
230 respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
231 clusters. In the same way as above, a judicious choice of key parameters has
232 permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the speedups less than 1 with
233 a matrix size from 62 to 100 elements.
234
235 In a final step, results of an execution attempt to scale up the three clustered
236 configuration but increasing by two hundreds hosts has been recorded in Table~\ref{tab.cluster.3x67}.
237
238 Note that the program was run with the following parameters:
239
240 \paragraph*{SMPI parameters}
241
242 \begin{itemize}
243         \item HOSTFILE : Hosts file description.
244         \item PLATFORM: file description of the platform architecture : clusters (CPU power,
245 ... ) , intra cluster network description, inter cluster network (bandwidth bw ,
246 lat latency , ... ).
247 \end{itemize}
248
249
250 \paragraph*{Arguments of the program}
251
252 \begin{itemize}
253         \item Description of the cluster architecture;
254         \item Maximum number of internal and external iterations;
255         \item Internal and external precisions;
256         \item Matrix size NX , NY and NZ;
257         \item Matrix diagonal value = 6.0;
258         \item Execution Mode: synchronous or asynchronous.
259 \end{itemize}
260
261 \begin{table}
262   \centering
263   \caption{2 clusters X 50 nodes}
264   \label{tab.cluster.2x50}
265   \includegraphics[width=209pt]{img1.jpg}
266 \end{table}
267
268 \begin{table}
269   \centering
270   \caption{3 clusters X 33 nodes}
271   \label{tab.cluster.3x33}
272   \includegraphics[width=209pt]{img2.jpg}
273 \end{table}
274
275 \begin{table}
276   \centering
277   \caption{3 clusters X 67 nodes}
278   \label{tab.cluster.3x67}
279 %  \includegraphics[width=160pt]{img3.jpg}
280   \includegraphics[scale=0.5]{img3.jpg}
281 \end{table}
282
283 \paragraph*{Interpretations and comments}
284
285 After analyzing the outputs, generally, for the configuration with two or three
286 clusters including one hundred hosts (Tables~\ref{tab.cluster.2x50} and~\ref{tab.cluster.3x33}), some combinations of the
287 used parameters affecting the results have given a speedup less than 1, showing
288 the effectiveness of the asynchronous performance compared to the synchronous
289 mode.
290
291 In the case of a two clusters configuration, Table~\ref{tab.cluster.2x50} shows that with a
292 deterioration of inter cluster network set with 5 Mbits/s of bandwidth, a latency
293 in order of a hundredth of a millisecond and a system power of one GFlops, an
294 efficiency of about 40\% in asynchronous mode is obtained for a matrix size of 62
295 elements . It is noticed that the result remains stable even if we vary the
296 external precision from E -05 to E-09. By increasing the problem size up to 100
297 elements, it was necessary to increase the CPU power of 50 \% to 1.5 GFlops for a
298 convergence of the algorithm with the same order of asynchronous mode efficiency.
299 Maintaining such a system power but this time, increasing network throughput
300 inter cluster up to 50 Mbits /s, the result of efficiency of about 40\% is
301 obtained with high external  precision of E-11 for a matrix size from 110 to 150
302 side elements .
303
304 For the 3 clusters architecture including a total of 100 hosts, Table~\ref{tab.cluster.3x33} shows
305 that it was difficult to have a combination which gives an efficiency of
306 asynchronous below 80 \%. Indeed, for a matrix size of 62 elements, equality
307 between the performance of the two modes (synchronous and asynchronous) is
308 achieved with an inter cluster of 10 Mbits/s and a latency of E- 01 ms. To
309 challenge an efficiency by 78\% with a matrix size of 100 points, it was
310 necessary to degrade the inter cluster network bandwidth from 5 to 2 Mbit/s.
311
312 A last attempt was made for a configuration of three clusters but more power
313 with 200 nodes in total. The convergence with a speedup of 90 \% was obtained
314 with a bandwidth of 1 Mbits/s as shown in Table~\ref{tab.cluster.3x67}.
315
316 \section{Conclusion}
317
318 \section*{Acknowledgment}
319
320
321 The authors would like to thank...
322
323
324 % trigger a \newpage just before the given reference
325 % number - used to balance the columns on the last page
326 % adjust value as needed - may need to be readjusted if
327 % the document is modified later
328 \bibliographystyle{IEEEtran}
329 \bibliography{hpccBib}
330
331 \end{document}
332
333 %%% Local Variables:
334 %%% mode: latex
335 %%% TeX-master: t
336 %%% fill-column: 80
337 %%% ispell-local-dictionary: "american"
338 %%% End: