Both codes were simulated on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
-factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem ranges from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
+factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem ranges from $N=N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
$\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
\text{\np{3375000}}$ entries). With the asynchronous multisplitting algorithm the simulated execution time is in average 2.5 times faster than with the synchronous GMRES one.
%\AG{Expliquer comment lire les tableaux.}
power (GFlops)
& 1 & 1 & 1 & 1.5 & 1.5 \\
\hline
- size $(n^3)$
+ size $(N)$
& 62 & 62 & 62 & 100 & 100 \\
\hline
Precision
Power (GFlops)
& 1.5 & 1.5 & 1.5 & 1.5 & 1.5 \\ % & 1 & 1.5 \\
\hline
- size $(n^3)$
+ size $(N)$
& 110 & 120 & 130 & 140 & 150 \\ % & 171 & 171 \\
\hline
Precision