+
+\begin{algorithm}
+\caption{A multisplitting solver with inner iteration GMRES method}
+\begin{algorithmic}[1]
+\Input $A_l$ (local sparse matrix), $B_l$ (local right-hand side), $x^0$ (initial guess)
+\Output $X_l$ (local solution vector)\vspace{0.2cm}
+\State Load $A_l$, $B_l$, $x^0$
+\State Initialize the shared vector $\hat{x}=x^0$
+\For {$k=1,2,3,\ldots$ until the global convergence}
+\State $x^0=\hat{x}$
+\State Inner iteration solver: \Call{InnerSolver}{$x^0$, $k$}
+\State Exchange the local solution ${X}_l^k$ with the neighboring clusters and copy the shared vector elements in $\hat{x}$
+\EndFor
+
+\Statex
+
+\Function {InnerSolver}{$x^0$, $k$}
+\State Compute the local right-hand side: $Y_l = B_l - \sum^L_{i=1,i\neq l}A_{li}X_i^0$
+\State Solving the local splitting $A_{ll}X_l^k=Y_l$ using the parallel GMRES method, such that $X_l^0$ is the local initial guess
+\State \Return $X_l^k$
+\EndFunction
+\end{algorithmic}
+\label{algo:01}
+\end{algorithm}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%