]> AND Private Git Repository - hpcc2014.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Typos.
authorArnaud Giersch <arnaud.giersch@univ-fcomte.fr>
Mon, 21 Apr 2014 14:00:18 +0000 (16:00 +0200)
committerArnaud Giersch <arnaud.giersch@univ-fcomte.fr>
Mon, 21 Apr 2014 14:00:36 +0000 (16:00 +0200)
hpcc.tex

index 497ed68987dbf2a5f0b0d7a9bf78f6988095a3f4..e06c9c5cc8f090e01cd75d74e4adb9967a5659ef 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -106,15 +106,15 @@ increasing complexity of these requested  applications combined with a continuou
 distributed and parallel algorithms requiring significant hardware  resources (grid computing, clusters, broadband
 network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient
 parallel algorithms called \emph{numerical iterative algorithms} executed in a distributed environment. As their name
 distributed and parallel algorithms requiring significant hardware  resources (grid computing, clusters, broadband
 network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient
 parallel algorithms called \emph{numerical iterative algorithms} executed in a distributed environment. As their name
-suggests, these algorithm solves a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value
+suggests, these algorithms solve a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value
 $X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods
 demonstrate the convergence of these algorithms \cite{BT89,Bahi07}. 
 
 $X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods
 demonstrate the convergence of these algorithms \cite{BT89,Bahi07}. 
 
-Parallelization of such algorithms generally involved the division of the problem into several \emph{blocks} that will
+Parallelization of such algorithms generally involve the division of the problem into several \emph{blocks} that will
 be solved in parallel on multiple processing units. The latter will communicate each intermediate results before a new
 iteration starts and until the approximate solution is reached. These parallel  computations can be performed either in
 be solved in parallel on multiple processing units. The latter will communicate each intermediate results before a new
 iteration starts and until the approximate solution is reached. These parallel  computations can be performed either in
-\emph{synchronous} mode where a new iteration begin only when all nodes communications are completed,
-either \emph{asynchronous} mode where processors can continue independently without or few synchronization points. For
+\emph{synchronous} mode where a new iteration begins only when all nodes communications are completed,
+or in \emph{asynchronous} mode where processors can continue independently with few or no synchronization points. For
 instance in the \textit{Asynchronous Iterations~-- Asynchronous Communications (AIAC)} model \cite{bcvc06:ij}, local
 computations do not need to wait for required data. Processors can then perform their iterations with the data present
 at that time. Even if the number of iterations required before the convergence is generally greater than for the
 instance in the \textit{Asynchronous Iterations~-- Asynchronous Communications (AIAC)} model \cite{bcvc06:ij}, local
 computations do not need to wait for required data. Processors can then perform their iterations with the data present
 at that time. Even if the number of iterations required before the convergence is generally greater than for the
@@ -143,9 +143,9 @@ performance with the synchronous mode. More precisely, we had implemented a prog
 linear system of equations by numerical method GMRES (Generalized Minimal Residual) []. We show, that with minor
 modifications of the initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a real AIAC
 application on different computing architectures. The simulated results we obtained are in line with real results
 linear system of equations by numerical method GMRES (Generalized Minimal Residual) []. We show, that with minor
 modifications of the initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a real AIAC
 application on different computing architectures. The simulated results we obtained are in line with real results
-exposed in ??. SimGrid had allowed us to launch the application from a modest computing infrastructure by simulating
-different distributed architectures composed by clusters nodes interconnected by variable speed networks. It has been
-permitted to show  With selected parameters on the network platforms (bandwidth, latency of inter  cluster network) and
+exposed in ??\AG[]{??}. SimGrid had allowed us to launch the application from a modest computing infrastructure by simulating
+different distributed architectures composed by clusters nodes interconnected by variable speed networks.
+With selected parameters on the network platforms (bandwidth, latency of inter  cluster network) and
 on the clusters architecture (number, capacity calculation power) in the simulated environment, the experimental results
 have demonstrated not only the algorithm convergence within a reasonable time compared with the physical environment
 performance, but also a time saving of up to \np[\%]{40} in asynchronous mode.
 on the clusters architecture (number, capacity calculation power) in the simulated environment, the experimental results
 have demonstrated not only the algorithm convergence within a reasonable time compared with the physical environment
 performance, but also a time saving of up to \np[\%]{40} in asynchronous mode.