-\AG{Cette partie sur le poisson 3D
- % on sait donc que ce n'est pas une plie ou une sole (/me fatigué)
- n'est pas à sa place. Elle devrait être placée plus tôt.}
-In this paper, we solve the 3D Poisson problem whose the mathematical model is
-\begin{equation}
-\left\{
-\begin{array}{l}
-\nabla^2 u = f \text{~in~} \Omega \\
-u =0 \text{~on~} \Gamma =\partial\Omega
-\end{array}
-\right.
-\label{eq:02}
-\end{equation}
-where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. The general iteration scheme of our multisplitting method in a 3D domain using a seven point stencil could be written as
-\begin{equation}
-\begin{array}{ll}
-u^{k+1}(x,y,z)= & u^k(x,y,z) - \frac{1}{6}\times\\
- & (u^k(x-1,y,z) + u^k(x+1,y,z) + \\
- & u^k(x,y-1,z) + u^k(x,y+1,z) + \\
- & u^k(x,y,z-1) + u^k(x,y,z+1)),
-\end{array}
-\label{eq:03}
-\end{equation}
-where the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite.
-
-The parallel solving of the 3D Poisson problem with our multisplitting method requires a data partitioning of the problem between clusters and between processors within a cluster. We have chosen the 3D partitioning instead of the row-by-row partitioning in order to reduce the data exchanges at sub-domain boundaries. Figure~\ref{fig:4.2} shows an example of the data partitioning of the 3D Poisson problem between two clusters of processors, where each sub-problem is assigned to a processor. In this context, a processor has at most six neighbors within a cluster or in distant clusters with which it shares data at sub-domain boundaries.
-
-\begin{figure}[!t]
-\centering
- \includegraphics[width=80mm,keepaspectratio]{partition}
-\caption{Example of the 3D data partitioning between two clusters of processors.}
-\label{fig:4.2}
-\end{figure}
-