]> AND Private Git Repository - kahina_paper1.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
MAJ de quelque commentaire pour les figures....
[kahina_paper1.git] / paper.tex
1 \documentclass[review]{elsarticle}
2
3 \usepackage{lineno,hyperref}
4 %%\usepackage[utf8]{inputenc}
5 %%\usepackage[T1]{fontenc}
6 %%\usepackage[french]{babel}
7 \usepackage{float} 
8 \usepackage{amsmath,amsfonts,amssymb}
9 \usepackage[ruled,vlined]{algorithm2e}
10 %\usepackage[french,boxed,linesnumbered]{algorithm2e}
11 \usepackage{array,multirow,makecell}
12 \setcellgapes{1pt}
13 \makegapedcells
14 \newcolumntype{R}[1]{>{\raggedleft\arraybackslash }b{#1}}
15 \newcolumntype{L}[1]{>{\raggedright\arraybackslash }b{#1}}
16 \newcolumntype{C}[1]{>{\centering\arraybackslash }b{#1}}
17 \modulolinenumbers[5]
18
19 \journal{Journal of \LaTeX\ Templates}
20
21 %%%%%%%%%%%%%%%%%%%%%%%
22 %% Elsevier bibliography styles
23 %%%%%%%%%%%%%%%%%%%%%%%
24 %% To change the style, put a % in front of the second line of the current style and
25 %% remove the % from the second line of the style you would like to use.
26 %%%%%%%%%%%%%%%%%%%%%%%
27
28 %% Numbered
29 %\bibliographystyle{model1-num-names}
30
31 %% Numbered without titles
32 %\bibliographystyle{model1a-num-names}
33
34 %% Harvard
35 %\bibliographystyle{model2-names.bst}\biboptions{authoryear}
36
37 %% Vancouver numbered
38 %\usepackage{numcompress}\bibliographystyle{model3-num-names}
39
40 %% Vancouver name/year
41 %\usepackage{numcompress}\bibliographystyle{model4-names}\biboptions{authoryear}
42
43 %% APA style
44 %\bibliographystyle{model5-names}\biboptions{authoryear}
45
46 %% AMA style
47 %\usepackage{numcompress}\bibliographystyle{model6-num-names}
48
49 %% `Elsevier LaTeX' style
50 \bibliographystyle{elsarticle-num}
51 %%%%%%%%%%%%%%%%%%%%%%%
52
53 \begin{document}
54
55 \begin{frontmatter}
56
57 \title{Rapid solution of very high degree polynomials root finding using GPU}
58
59 %% Group authors per affiliation:
60 \author{Elsevier\fnref{myfootnote}}
61 \address{Radarweg 29, Amsterdam}
62 \fntext[myfootnote]{Since 1880.}
63
64 %% or include affiliations in footnotes:
65 \author[mymainaddress]{Ghidouche Kahina\corref{mycorrespondingauthor}}
66 %%\ead[url]{kahina.ghidouche@gmail.com}
67 \cortext[mycorrespondingauthor]{Corresponding author}
68 \ead{kahina.ghidouche@gmail.com}
69
70 \author[mysecondaryaddress]{Couturier Raphael\corref{mycorrespondingauthor}}
71 %%\cortext[mycorrespondingauthor]{Corresponding author}
72 \ead{raphael.couturier@univ-fcomte.fr}
73
74 \author[mymainaddress]{Abderrahmane Sider\corref{mycorrespondingauthor}}
75 %%\cortext[mycorrespondingauthor]{Corresponding author}
76 \ead{ar.sider@univ-bejaia.dz}
77
78 \address[mymainaddress]{Department of informatics,University of Bejaia,Algeria}
79 \address[mysecondaryaddress]{FEMTO-ST Institute, University of Franche-Compté }
80
81 \begin{abstract}
82 Polynomials are mathematical algebraic structures that play a great role in science and engineering. But the process of solving them  for high and large degrees is computationally demanding and still not solved. In this paper, we present the results of a parallel implementation of the Ehrlish-Aberth algorithm for the problem root finding for
83 high degree polynomials on GPU architectures (Graphics Processing Unit). The main result of this work is to be able to solve high and very large degree polynomials (up to 100000) very efficiently. We also compare the results with a sequential implementation and the Durand-Kerner method on full and sparse polynomials.
84 \end{abstract}
85
86 \begin{keyword}
87 root finding of polynomials, high degree, iterative methods, Ehrlish-Aberth, Durant-Kerner, GPU, CUDA, CPU , Parallelization
88 \end{keyword}
89
90 \end{frontmatter}
91
92 \linenumbers
93
94 \section{The problem of finding roots of a polynomial}
95 Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomenons and to express any outcome in the form of a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
96 %%\begin{center}
97 \begin{equation}
98      {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
99 \end{equation}
100 %%\end{center}
101
102 The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeroes of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
103 \begin{equation}
104      {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
105 \end{equation}
106
107 The problem of finding a root is equivalent to that of solving a fixed-point problem. To see this, consider the fixed-point problem of finding the $n$-dimensional
108 vector $x$ such that
109 \begin{center}
110 $x=g(x)$
111 \end{center}
112 where $g : C^{n}\longrightarrow C^{n}$. Usually, we can easily
113 rewrite this fixed-point problem as a root-finding problem by
114 setting $f(x) = x-g(x)$ and likewise we can recast the
115 root-finding problem into a fixed-point problem by setting
116 \begin{center}
117 $g(x)= f(x)-x$.
118 \end{center}
119
120 Often it is not be possible to solve such nonlinear equation
121 root-finding problems analytically. When this occurs we turn to
122 numerical methods to approximate the solution. 
123 Generally speaking, algorithms for solving problems can be divided into
124 two main groups: direct methods and iterative methods.
125 \\
126 Direct methods exist only for $n \leq 4$, solved in closed form by G. Cardano
127 in the mid-16th century. However, N.H. Abel in the early 19th
128 century showed that polynomials of degree five or more could not
129 be solved by  directs methods. Since then, mathmathicians have
130 focussed on numerical (iterative) methods such as the famous
131 Newton's method, Bernoulli's method of the 18th, and Graeffe's.
132
133 Later on, with the advent of electronic computers, other methods has
134 been developed such as the Jenkins-Traub method, Larkin's method,
135 Muller's method, and several methods for simultaneous
136 approximation of all the roots, starting with the Durand-Kerner (DK)
137 method :
138 %%\begin{center}
139 \begin{equation}
140  Z_{i}=Z_{i}-\frac{P(Z_{i})}{\prod_{i\neq j}(z_{i}-z_{j})}
141 \end{equation}
142 %%\end{center}
143
144 This formula is mentioned for the first time by
145 Weiestrass~\cite{Weierstrass03} as part of the fundamental theorem
146 of Algebra and is rediscovered by Ilieff~\cite{Ilie50},
147 Docev~\cite{Docev62}, Durand~\cite{Durand60},
148 Kerner~\cite{Kerner66}. Another method discovered by
149 Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
150 in the following form by Ehrlich~\cite{Ehrlich67} and
151 Aberth~\cite{Aberth73} uses a different iteration formula given as fellows :
152 %%\begin{center}
153 \begin{equation}
154  Z_{i}=Z_{i}-\frac{1}{{\frac {P'(Z_{i})} {P(Z_{i})}}-{\sum_{i\neq j}(z_{i}-z_{j})}}.
155 \end{equation}
156 %%\end{center}
157
158 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizon83} have proved that
159 the Ehrlisch-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
160
161
162 Iterative methods raise several problem when implemented e.g.
163 specific sizes of numbers must be used to deal with this
164 difficulty. Moreover, the convergence time of iterative methods
165 drastically increases like the degrees of high polynomials. It is expected that the
166 parallelization of these algorithms will improve the convergence
167 time.
168
169 Many authors have dealt with the parallelisation of
170 simultaneous methods, i.e. that find all the zeros simultaneously. 
171 Freeman~\cite{Freeman89} implemeted and compared DK, EA and another method of the fourth order proposed
172 by Farmer and Loizou~\cite{Loizon83}, on a 8- processor linear
173 chain, for polynomials of degree up to 8. The third method often
174 diverges, but the first two methods have speed-up 5.5
175 (speed-up=(Time on one processor)/(Time on p processors)). Later,
176 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
177 algorithms, in which each processor continues to update its
178 approximations even though the latest values of other $z_i((k))$
179 have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration.
180 Couturier et al. ~\cite{Raphaelall01} proposed two methods of parallelisation for
181 a shared memory architecture and for distributed memory one. They were able to
182 compute the roots of polynomials of degree 10000 in 430 seconds with only 8
183 personal computers and 2 communications per iteration. Comparing to the sequential implementation
184 where it takes up to 3300 seconds to obtain the same results, the authors show an interesting speedup, indeed.
185
186 Very few works had been since this last work until the appearing of
187 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
188 parallel computing platform and a programming model invented by
189 NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of
190 of CPUs. However, CUDA adopts a totally new computing architecture to use the
191 hardware resources provided by GPU in order to offer a stronger
192 computing ability to the massive data computing.
193
194
195 Ghidouche et al. ~\cite{Kahinall14} proposed an implementation of the
196 Durand-Kerner method on GPU. Their main
197 result showed that a parallel CUDA implementation is 10 times as fast as
198 the sequential implementation on a single CPU for high degree
199 polynomials of about 48000. To our knowledge, it is the first time such high degree polynomials are numerically solved.
200
201
202 In this paper, we focus on the implementation of the Aberth method for
203 high degree polynomials on GPU. The paper is organised as fellows. Initially, we recall the Aberth method in Section.\ref{sec1}. Improvements for the Aberth method are proposed in Section.\ref{sec2}. Related work to the implementation of simultaneous methods using a parallel approach is presented in Section.\ref{secStateofArt}.
204 In Section.4 we propose a parallel implementation of the Aberth method on GPU and discuss it. Section 5 presents and investigates our implementation and experimental study results. Finally, Section 6 concludes this paper and gives some hints for future research directions in this topic.  
205
206 \section{The Sequential Aberth method}
207 \label{sec1}
208 A cubically convergent iteration method for finding zeros of
209 polynomials was proposed by O.Aberth~\cite{Aberth73}. The Aberth
210 method is a purely algebraic derivation. To illustrate the
211 derivation, we let $w_{i}(z)$ be the product of linear factors 
212
213 \begin{equation}
214 w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
215 \end{equation}
216
217 And let a rational function $R_{i}(z)$ be the correction term of the
218 Weistrass method~\cite{Weierstrass03}
219
220 \begin{equation}
221 R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
222 \end{equation}
223
224 Differentiating the rational function $R_{i}(z)$ and applying the
225 Newton method, we have:
226
227 \begin{equation}
228 \frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{i}}}, i=1,2,...,n
229 \end{equation}
230
231 Substituting $x_{j}$ for z we obtain the Aberth iteration method.
232
233 In the fellowing we present the main stages of the running of the Aberth method.
234
235 \subsection{Polynomials Initialization}
236 The initialization of a polynomial p(z) is done by setting each of the $n$ complex coefficients $a_{i}$
237 :
238
239 \begin{equation}
240 \label{eq:SimplePolynome}
241   p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
242 \end{equation}
243
244
245 \subsection{Vector $z^{(0)}$ Initialization}
246
247 Like for any iterative method, we need to choose $n$ initial guess points $z^{(0)}_{i}, i = 1, . . . , n.$
248 The initial guess is very important since the number of steps needed by the iterative method to reach
249 a given approximation strongly depends on it.
250 In~\cite{Aberth73} the Aberth iteration is started by selecting $n$
251 equi-spaced points on a circle of center 0 and radius r, where r is
252 an upper bound to the moduli of the zeros. Later, Bini et al.~\cite{Bini96}
253 performed this choice by selecting complex numbers along different
254 circles and relies on the result of~\cite{Ostrowski41}.
255
256 \begin{equation}
257 \label{eq:radiusR}
258 %%\begin{align}
259 \sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
260 v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
261 %%\end{align}
262 \end{equation}
263 Where:
264 \begin{equation}
265 u_{i}=2.|a_{i}|^{\frac{1}{i}};
266 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
267 \end{equation}
268
269 \subsection{Iterative Function $H_{i}$}
270 The operator used by the Aberth method is corresponding to the
271 following equation which will enable the convergence towards
272 polynomial solutions, provided all the roots are distinct.
273
274 \begin{equation}
275 H_{i}(z)=z_{i}-\frac{1}{\frac{p^{'}(z_{i})}{p(z_{i})}-\sum_{j\neq
276 i}{\frac{1}{z_{i}-z_{j}}}}
277 \end{equation}
278
279 \subsection{Convergence Condition}
280 The convergence condition determines the termination of the algorithm. It consists in stopping from running
281 the iterative function $H_{i}(z)$ when the roots are sufficiently stable. We consider that the method
282 converges sufficiently when :
283
284 \begin{equation}
285 \label{eq:Aberth-Conv-Cond}
286 \forall i \in
287 [1,n];\frac{z_{i}^{(k)}-z_{i}^{(k-1)}}{z_{i}^{(k)}}<\xi
288 \end{equation}
289
290
291 \section{Improving the Ehrlisch-Aberth Method}
292 \label{sec2}
293 The Ehrlisch-Aberth method implementation suffers of overflow problems. This
294 situation occurs, for instance, in the case where a polynomial
295 having positive coefficients and a large degree is computed at a
296 point $\xi$ where $|\xi| > 1$, where $|x|$ stands for the modolus of a complex $x$. Indeed, the limited number in the
297 mantissa of floating points representations makes the computation of p(z) wrong when z
298 is large. For example $(10^{50}) +1+ (- 10^{50})$ will give the wrong result
299 of $0$ instead of $1$. Consequently, we can not compute the roots
300 for large degrees. This problem was early discussed in
301 ~\cite{Karimall98} for the Durand-Kerner method, the authors
302 propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent.
303
304 \begin{equation}
305 \label{deflncomplex}
306  \forall(x,y)\in R^{*2}; \ln (x+i.y)=\ln(x^{2}+y^{2})
307 2+i.\arcsin(y\sqrt{x^{2}+y^{2}})_{\left] -\pi, \pi\right[ }
308 \end{equation}
309 %%\begin{equation}
310 \begin{align}
311 \label{defexpcomplex}
312  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
313                                      & =\exp(x).\cos(y)+i.\exp(x).\sin(y)\label{defexpcomplex}
314 \end{align}
315 %%\end{equation}
316
317 Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
318 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
319
320 Applying this solution for the Aberth method we obtain the
321 iteration function with logarithm:
322 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
323 \begin{equation}
324 H_{i}(z)=z_{i}^{k}-\exp \left(\ln \left(
325 p(z_{k})\right)-\ln\left(p(z_{k}^{'})\right)- \ln
326 \left(1-Q(z_{k})\right)\right),
327 \end{equation}
328
329 where:
330
331 \begin{equation}
332 Q(z_{k})=\exp\left( \ln (p(z_{k}))-\ln(p(z_{k}^{'}))+\ln \left(
333 \sum_{k\neq j}^{n}\frac{1}{z_{k}-z_{j}}\right)\right).
334 \end{equation}
335
336 This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated as:
337 $$R = \exp( \log(DBL\_MAX) / (2*n) )$$ where $DBL\_MAX$ stands for the maximum representable double value.
338
339 \section{The implementation of simultaneous methods in a parallel computer}
340 \label{secStateofArt}   
341 The main problem of simultaneous methods is that the necessary
342 time needed for convergence is increased when we increase
343 the degree of the polynomial. The parallelisation of these
344 algorithms is expected to improve the convergence time.
345 Authors usually adopt one of the two following approaches to parallelize root
346 finding algorithms. The first approach aims at reducing the total number of
347 iterations as by Miranker
348 ~\cite{Mirankar68,Mirankar71}, Schedler~\cite{Schedler72} and
349 Winogard~\cite{Winogard72}. The second approach aims at reducing the
350 computation time per iteration, as reported
351 in~\cite{Benall68,Jana06,Janall99,Riceall06}. 
352
353 There are many schemes for the simultaneous approximation of all roots of a given
354 polynomial. Several works on different methods and issues of root
355 finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Skachek08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlisch-Aberth methods are the most practical choices among
356 them~\cite{Bini04}. These two methods have been extensively
357 studied for parallelization due to their intrinsics, i.e. the
358 computations involved in both methods has some inherent
359 parallelism that can be suitably exploited by SIMD machines.
360 Moreover, they have fast rate of convergence (quadratic for the
361 Durand-Kerner and cubic for the Ehrlisch-Aberth). Various parallel
362 algorithms reported for these methods can be found
363 in~\cite{Cosnard90, Freeman89,Freemanall90,Jana99,Janall99}.
364 Freeman and Bane~\cite{Freemanall90} presented two parallel
365 algorithms on a local memory MIMD computer with the compute-to
366 communication time ratio O(n). However, their algorithms require
367 each processor to communicate its current approximation to all
368 other processors at the end of each iteration (synchronous). Therefore they
369 cause a high degree of memory conflict. Recently the author
370 in~\cite{Mirankar71} proposed two versions of parallel algorithm
371 for the Durand-Kerner method, and Ehrlisch-Aberth method on a model of
372 Optoelectronic Transpose Interconnection System (OTIS).The
373 algorithms are mapped on an OTIS-2D torus using N processors. This
374 solution needs N processors to compute N roots, which is not
375 practical for solving polynomials with large degrees.
376 Until very recently, the literature doen not mention implementations able to compute the roots of
377 large degree polynomials (higher then 1000) and within small or at least tractable times. Finding polynomial roots rapidly and accurately is the main objective of our work. 
378 With the advent of CUDA (Compute Unified Device
379 Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time. 
380 In~\cite{Kahinall14} we already proposed the first implementation
381 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
382 that a parallel CUDA implementation is 10 times as fast as the
383 sequential implementation on a single CPU for high degree
384 polynomials of 48000. In this paper we present a parallel implementation of Ehlisch-Aberth method on
385 GPUs, which details are discussed in the sequel.
386
387
388 \section {A CUDA parallel Ehrlisch-Aberth method}
389 In the following, we describe the parallel implementation of Ehrlisch-Aberth method on GPU 
390 for solving high degree polynomials. First, the hardware and software of the GPUs are presented. Then, a CUDA parallel Ehrlisch-Aberth method are presented.
391
392 \subsection{Background on the GPU architecture}
393 A GPU is viewed as an accelerator for the data-parallel and
394 intensive arithmetic computations. It draws its computing power
395 from the parallel nature of its hardware and software
396 architectures. A GPU is composed of hundreds of Streaming
397 Processors (SPs) organized in several blocks called Streaming
398 Multiprocessors (SMs). It also has a memory hierarchy. It has a
399 private read-write local memory per SP, fast shared memory and
400 read-only constant and texture caches per SM and a read-write
401 global memory shared by all its SPs~\cite{NVIDIA10}.
402
403 On a CPU equipped with a GPU, all the data-parallel and intensive
404 functions of an application running on the CPU are off-loaded onto
405 the GPU in order to accelerate their computations. A similar
406 data-parallel function is executed on a GPU as a kernel by
407 thousands or even millions of parallel threads, grouped together
408 as a grid of thread blocks. Therefore, each SM of the GPU executes
409 one or more thread blocks in SIMD fashion (Single  Instruction,
410 Multiple Data) and in turn each SP of a GPU SM runs one or more
411 threads within a block in SIMT fashion (Single Instruction,
412 Multiple threads). Indeed at any given clock cycle, the threads
413 execute the same instruction of a kernel, but each of them
414 operates on different data.
415  GPUs only work on data filled in their
416 global memories and the final results of their kernel executions
417 must be communicated to their CPUs. Hence, the data must be
418 transferred in and out of the GPU. However, the speed of memory
419 copy between the GPU and the CPU is slower than the memory
420 bandwidths of the GPU memories and, thus, it dramatically affects
421 the performances of GPU computations. Accordingly, it is necessary
422 to limit as much as possible, data transfers between the GPU and its CPU during the
423 computations.
424 \subsection{Background on the CUDA Programming Model}
425
426 The CUDA programming model is similar in style to a single program
427 multiple-data (SPMD) software model. The GPU is viewed as a
428 coprocessor that executes data-parallel kernel functions. CUDA
429 provides three key abstractions, a hierarchy of thread groups,
430 shared memories, and barrier synchronization. Threads have a three
431 level hierarchy. A grid is a set of thread blocks that execute a
432 kernel function. Each grid consists of blocks of threads. Each
433 block is composed of hundreds of threads. Threads within one block
434 can share data using shared memory and can be synchronized at a
435 barrier. All threads within a block are executed concurrently on a
436 multithreaded architecture.The programmer specifies the number of
437 threads per block, and the number of blocks per grid. A thread in
438 the CUDA programming language is much lighter weight than a thread
439 in traditional operating systems. A thread in CUDA typically
440 processes one data element at a time. The CUDA programming model
441 has two shared read-write memory spaces, the shared memory space
442 and the global memory space. The shared memory is local to a block
443 and the global memory space is accessible by all blocks. CUDA also
444 provides two read-only memory spaces, the constant space and the
445 texture space, which reside in external DRAM, and are accessed via
446 read-only caches.
447
448 \subsection{ The implementation of Aberth method on GPU}
449 %%\subsection{A CUDA implementation of the Aberth's method }
450 %%\subsection{A GPU implementation of the Aberth's method }
451
452
453
454 \subsubsection{A sequential Aberth algorithm}
455 The main steps of Aberth method are shown in Algorithm.~\ref{alg1-seq} :
456   
457 \begin{algorithm}[H]
458 \label{alg1-seq}
459 %\LinesNumbered
460 \caption{A sequential algorithm to find roots with the Aberth method}
461
462 \KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
463 tolerance threshold),P(Polynomial to solve)}
464
465 \KwOut {Z(The solution root's vector)}
466
467 \BlankLine
468
469 Initialization of the coefficients of the polynomial to solve\;
470 Initialization of the solution vector $Z^{0}$\;
471
472 \While {$\Delta z_{max}\succ \epsilon$}{
473  Let $\Delta z_{max}=0$\;
474 \For{$j \gets 0 $ \KwTo $n$}{
475 $ZPrec\left[j\right]=Z\left[j\right]$\;
476 $Z\left[j\right]=H\left(j,Z\right)$\;
477 }
478
479 \For{$i \gets 0 $ \KwTo $n-1$}{
480 $c=\frac{\left|Z\left[i\right]-ZPrec\left[i\right]\right|}{Z\left[i\right]}$\;
481 \If{$c\succ\Delta z_{max}$ }{
482 $\Delta z_{max}$=c\;}
483 }
484 }
485 \end{algorithm}
486
487 ~\\ 
488 In this sequential algorithm, one CPU thread  executes all the steps. Let us look to the $3^{rd}$ step i.e. the execution of the iterative function, 2 sub-steps are needed. The first sub-step \textit{save}s the solution vector of the previous iteration, the second sub-step \textit{update}s or computes the new values of the roots vector.
489 There exists two ways to execute the iterative function that we call a Jacobi one and a Gauss-Seidel one. With the Jacobi iteration, at iteration $k+1$ we need all the previous values $z^{(k)}_{i}$ to compute the new values $z^{(k+1)}_{i}$, that is :
490
491 \begin{equation}
492 H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}}}, i=1,...,n.
493 \end{equation}
494
495 With the Gauss-seidel iteration, we have:
496 \begin{equation}
497 \label{eq:Aberth-H-GS}
498 H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{(k)}_{i}-z^{(k+1)}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}})}, i=1,...,n.
499 \end{equation}
500
501 Using Equation.~\ref{eq:Aberth-H-GS} for the update sub-step of $H(i,z^{k+1})$, we expect the Gauss-Seidel iteration to converge more quickly because, just as its ancestor (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
502
503 The $4^{th}$ step of the algorithm checks the convergence condition using Equation.~\ref{eq:Aberth-Conv-Cond}.
504 Both steps 3 and 4 use 1 thread to compute all the $n$ roots on CPU, which is very harmful for performance in case of the large degree polynomials.
505
506 \paragraph{The execution time}
507 Let $T_{i}(n)$ be the time to compute one new root value at step 3, $T_{i}$ depends on the polynomial's degree $n$. When $n$ increase $T_{i}(n)$ increases too. We need $n.T_{i}(n)$ to compute all the new values in one iteration at step 3.
508
509 Let $T_{j}$ be the time needed to check the convergence of one root value at the step 4, so we need $n.T_{j}$ to compute global convergence condition in each iteration at step 4.
510
511 Thus, the execution time for both steps 3 and 4 is:
512 \begin{equation}
513 T_{iter}=n(T_{i}(n)+T_{j})+O(n).
514 \end{equation}
515 Let $K$ be the number of iterations necessary to compute all the roots, so the total execution time $T$ can be given as:
516
517 \begin{equation}
518 \label{eq:T-global}
519 T=\left[n\left(T_{i}(n)+T_{j}\right)+O(n)\right].K
520 \end{equation}
521 The execution time increases with the increasing of the polynomial degree, which justifies to parallelise these steps  in order to reduce the global execution time. In the following,  we explain how we did parrallelize these steps on a GPU architecture using the CUDA platform.
522
523 \subsubsection{A Parallel implementation with CUDA }
524 On the CPU,  both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
525 In the GPU, the schduler assigns the execution of this loop to a group of threads organised as a grid of blocks with block containing a number of threads. All threads within a block are executed concurrently in parallel. The instructions run on the GPU are grouped in special function called kernels. It's up to the programmer, to describe the execution context, that is the size of the Grid, the number of blocks and the number of threads per block upon the call of a given kernel, according to a special syntax defined by CUDA.
526
527 Let N be the number of threads executed in parallel,  Equation.~\ref{eq:T-global} becomes then : 
528
529 \begin{equation}
530 T=\left[\frac{n}{N}\left(T_{i}(n)+T_{j}\right)+O(n)\right].K.
531 \end{equation}
532
533 In theory, total execution time $T$ on GPU is speed up $N$ times as  $T$ on CPU. We will see at what extent this is true in the experimental study hereafter. 
534 ~\\
535 ~\\
536 In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual ``C`` function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
537
538 Algorithm~\ref{alg2-cuda} shows a sketch of the Aberth algorithm usind CUDA.
539
540 \begin{algorithm}[H]
541 \label{alg2-cuda}
542 %\LinesNumbered
543 \caption{CUDA Algorithm to find roots with the Aberth method}
544
545 \KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
546 tolerance threshold),P(Polynomial to solve)}
547
548 \KwOut {Z(The solution root's vector)}
549
550 \BlankLine
551
552 Initialization of the coeffcients of the polynomial to solve\;
553 Initialization of the solution vector $Z^{0}$\;
554 Allocate and copy initial data to the GPU global memory\;
555
556 \While {$\Delta z_{max}\succ \epsilon$}{
557  Let $\Delta z_{max}=0$\;
558 $ kernel\_save(d\_z^{k-1})$\;
559 $ kernel\_update(d\_z^{k})$\;
560 $kernel\_testConverge(\Delta z_{max},d_z^{k},d_z^{k-1})$\;
561 }
562 \end{algorithm}
563 ~\\ 
564
565 After the initialisation step, all data of the root finding problem to be solved must be copied from the CPU memory to the GPU global memory, because the GPUs only access data already present in their memories. Next, all the data-parallel arithmetic operations inside the main loop \verb=(do ... while(...))= are executed as kernels by the GPU. The first kernel named \textit{save} in line 6 of Algorithm~\ref{alg2-cuda} consists in saving the vector of polynomial's root found at the previous time-step in GPU memory, in order to check the convergence of the roots after each iteration (line 8, Algorithm~\ref{alg2-cuda}).
566
567 The second kernel executes the iterative function $H$ and updates $z^{k}$, according to Algorithm~\ref{alg3-update}. We notice that the update kernel is called in two forms, separated with the value of \emph{R} which determines the radius beyond which we apply the logarithm computation of the power of a complex. 
568
569 \begin{algorithm}[H]
570 \label{alg3-update}
571 %\LinesNumbered
572 \caption{A global Algorithm for the iterative function}
573
574 \eIf{$(\left|Z^{(k)}\right|<= R)$}{
575 $kernel\_update(d\_z^{k})$\;}
576 {
577 $kernel\_update\_Log(d\_z^{k})$\;
578 }
579 \end{algorithm}
580
581 The first form executes formula \ref{eq:SimplePolynome} if the modulus of the current complex is less than the a certain value called the radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes formulas (Eq.~\ref{deflncomplex},Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as :
582
583 $$R = \exp( \log(DBL\_MAX) / (2*n) )$$ where $DBL\_MAX$ stands for the maximum representable double value.
584
585 The last kernel verifies the convergence of the roots after each update of $Z^{(k)}$, according to formula. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
586
587 The kernels terminate it computations when all the roots converge. Finally, the solution of the root finding problem is copied back from GPU global memory to CPU memory. We use the communication functions of CUDA for the memory allocation in the GPU \verb=(cudaMalloc())= and for data transfers from the CPU memory to the GPU memory \verb=(cudaMemcpyHostToDevice)=
588 or from GPU memory to CPU memory \verb=(cudaMemcpyDeviceToHost))=. 
589 %%HIER END MY REVISIONS (SIDER)
590 \section{Experimental study}
591
592 \subsection{Definition of the polynomial used}
593 We study two forms of  polynomials the sparse polynomials and the full polynomials:
594 \paragraph{Sparse polynomial}: in this following form, the roots are distributed on 2 distinct circles:
595 \begin{equation}
596         \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
597 \end{equation}
598 This form makes it possible to associate roots having two
599 different modules and thus to work on a polynomial constitute
600 of four non zero terms.
601
602 \paragraph{Full polynomial}: the second form used to obtain a full polynomial is:
603 %%\begin{equation}
604         %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
605 %%\end{equation}
606
607 \begin{equation}
608      {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
609 \end{equation}
610 with this form, we can have until \textit{n} non zero terms.
611
612 \subsection{The study condition} 
613 The our experiences results concern two parameters which are
614 the polynomial degree and the execution time of our program
615 to converge on the solution. The polynomial degree allows us
616 to validate that our algorithm is powerful with high degree
617 polynomials. The execution time remains the
618 element-key which justifies our work of parallelization.
619         For our tests we used a CPU Intel(R) Xeon(R) CPU
620 E5620@2.40GHz and a GPU K40 (with 6 Go of ram).
621
622
623 \subsection{Comparative study}
624 In this section, we discuss the performance Ehrlish-Aberth method  of root finding polynomials implemented on CPUs and on GPUs.
625
626 We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution time,the  polynomial size and the number of threads per block performed by sum or each experiment on CPUs and on GPUs.
627
628 All experimental results obtained from the simulations are made in double precision data, for a convergence tolerance of the methods set to $10^{-7}$. Since we were more interested in the comparison of the performance behaviors of Ehrlish-Aberth and Durand-Kerner methods on CPUs versus on GPUs. The initialization values of the vector solution of the Ehrlich-Aberth method are given in section 2.2. 
629 \subsubsection{The execution time in seconds of Ehrlisch-Aberth algorithm on CPU core vs. on a Tesla GPU}
630
631
632 \begin{figure}[H]
633 \centering
634   \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU}
635 \caption{The execution time in seconds of Ehrlisch-Aberth algorithm on CPU core vs. on a Tesla GPU}
636 \label{fig:01}
637 \end{figure}
638
639 Figure 1 %%show a comparison of execution time between the parallel and sequential version of the Ehrlisch-Aberth algorithm with sparse polynomial exceed 100000, 
640 We report the execution times of the Ehrlisch-Aberth method implemented on one core of the Quad-Core Xeon E5620 CPU and those of the same methods implemented on one Nvidia Tesla K40c GPU, with sparse polynomial degrees ranging from 100,000 to 1,000,000. We can see that the methods implemented on the GPU are faster than those implemented on the CPU. This is due to the GPU ability to compute the data-parallel functions faster than its CPU counterpart. However, the execution time for the sequential implementation exceed 16,000 s for 450,000 degrees polynomials, in counterpart  the GPU implementation for the same polynomials need only 350 s, more than again, with 1,000,000 polynomials degrees GPU implementation not reach 2,300 s degrees. While CPU implementation need more than 10 hours. We can also notice that the GPU implementation are almost 47 faster then those implementation on the CPU. Furthermore, we verify that the number of iterations is the same. This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
641  
642
643
644 \subsubsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
645 It is also interesting to see the influence of the number of threads per block on the execution time. For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40c GPU is 1024, so we varied the number of threads per block from 8 to 1024. We took into account the execution time for both sparse and full polynomials of size 50000 and 500000 degrees.
646
647 \begin{figure}[H]
648 \centering
649   \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
650 \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
651 \label{fig:01}
652 \end{figure}
653
654 The figure 2 show that, the best execution time for both sparse and full polynomial are given while the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the number of threads per block is 64, Whereas, the large polynomials the number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256.
655
656 \subsubsection{The impact of exp-log solution to compute very high degrees of  polynomial}
657
658 \begin{figure}[H]
659 \centering
660   \includegraphics[width=0.8\textwidth]{figures/log_exp}
661 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
662 \label{fig:01}
663 \end{figure}
664  
665 \subsubsection{A comparative study between Aberth and Durand-kerner algorithm}
666
667
668 \begin{figure}[H]
669 \centering
670   \includegraphics[width=0.8\textwidth]{figures/EA_DK}
671 \caption{The execution time of Ehrlisch-Aberth versus Durand-Kerner algorithm}
672 \label{fig:01}
673 \end{figure}
674
675 \begin{figure}[H]
676 \centering
677   \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
678 \caption{The iteration number of Ehrlisch-Aberth versus Durand-Kerner algorithm}
679 \label{fig:01}
680 \end{figure}
681
682 \bibliography{mybibfile}
683
684 \end{document}