]> AND Private Git Repository - kahina_paper1.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
0ff4207f68d8e410d2fe7ebb99f16ae008e07966
[kahina_paper1.git] / paper.tex
1 \documentclass[review]{elsarticle}
2
3 \usepackage{lineno,hyperref}
4 \usepackage[utf8]{inputenc}
5 %%\usepackage[T1]{fontenc}
6 %%\usepackage[french]{babel}
7 \usepackage{float} 
8 \usepackage{amsmath,amsfonts,amssymb}
9 \usepackage[ruled,vlined]{algorithm2e}
10 %\usepackage[french,boxed,linesnumbered]{algorithm2e}
11 \usepackage{array,multirow,makecell}
12 \setcellgapes{1pt}
13 \makegapedcells
14 \newcolumntype{R}[1]{>{\raggedleft\arraybackslash }b{#1}}
15 \newcolumntype{L}[1]{>{\raggedright\arraybackslash }b{#1}}
16 \newcolumntype{C}[1]{>{\centering\arraybackslash }b{#1}}
17 \modulolinenumbers[5]
18
19 \journal{Journal of \LaTeX\ Templates}
20
21 %%%%%%%%%%%%%%%%%%%%%%%
22 %% Elsevier bibliography styles
23 %%%%%%%%%%%%%%%%%%%%%%%
24 %% To change the style, put a % in front of the second line of the current style and
25 %% remove the % from the second line of the style you would like to use.
26 %%%%%%%%%%%%%%%%%%%%%%%
27
28 %% Numbered
29 %\bibliographystyle{model1-num-names}
30
31 %% Numbered without titles
32 %\bibliographystyle{model1a-num-names}
33
34 %% Harvard
35 %\bibliographystyle{model2-names.bst}\biboptions{authoryear}
36
37 %% Vancouver numbered
38 %\usepackage{numcompress}\bibliographystyle{model3-num-names}
39
40 %% Vancouver name/year
41 %\usepackage{numcompress}\bibliographystyle{model4-names}\biboptions{authoryear}
42
43 %% APA style
44 %\bibliographystyle{model5-names}\biboptions{authoryear}
45
46 %% AMA style
47 %\usepackage{numcompress}\bibliographystyle{model6-num-names}
48
49 %% `Elsevier LaTeX' style
50 \bibliographystyle{elsarticle-num}
51 %%%%%%%%%%%%%%%%%%%%%%%
52
53 \begin{document}
54
55 \begin{frontmatter}
56
57 \title{Efficient high degree polynomial root finding using GPU}
58
59 %% Group authors per affiliation:
60 %\author{Elsevier\fnref{myfootnote}}
61 %\address{Radarweg 29, Amsterdam}
62 %\fntext[myfootnote]{Since 1880.}
63
64 %% or include affiliations in footnotes:
65 \author[mymainaddress]{Kahina Ghidouche}
66 %%\ead[url]{kahina.ghidouche@univ-bejaia.dz}
67 \cortext[mycorrespondingauthor]{Corresponding author}
68 \ead{kahina.ghidouche@univ-bejaia.dz}
69
70 \author[mysecondaryaddress]{Raphaël Couturier\corref{mycorrespondingauthor}}
71 %%\cortext[mycorrespondingauthor]{Corresponding author}
72 \ead{raphael.couturier@univ-fcomte.fr}
73
74 \author[mymainaddress]{Abderrahmane Sider}
75 %%\cortext[mycorrespondingauthor]{Corresponding author}
76 \ead{ar.sider@univ-bejaia.dz}
77
78 \address[mymainaddress]{Laboratoire LIMED, Faculté des sciences
79   exactes, Université de Bejaia, 06000, Algeria}
80 \address[mysecondaryaddress]{FEMTO-ST Institute, University of
81   Bourgogne Franche-Comte, France }
82
83 \begin{abstract}
84 Polynomials are mathematical algebraic structures that play a great
85 role in science and engineering. Finding roots of high degree
86 polynomials is computationally demanding. In this paper, we present
87 the results of a parallel implementation of the Ehrlich-Aberth
88 algorithm for the root finding problem for high degree polynomials on
89 GPU architectures. The main result of this
90 work is to be able to solve high degree polynomials (up
91 to 1,000,000) very efficiently. We also compare the results with a
92 sequential implementation and the Durand-Kerner method on full and
93 sparse polynomials.
94 \end{abstract}
95
96 \begin{keyword}
97 Polynomial root finding, Iterative methods, Ehrlich-Aberth, Durand-Kerner, GPU
98 \end{keyword}
99
100 \end{frontmatter}
101
102 \linenumbers
103
104 \section{The problem of finding roots of a polynomial}
105 Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomenons and to express any outcome in the form of a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
106 %%\begin{center}
107 \begin{equation}
108      {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
109 \end{equation}
110 %%\end{center}
111
112 The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeroes of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
113 \begin{equation}
114      {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
115 \end{equation}
116
117 The problem of finding a root is equivalent to that of solving a fixed-point problem. To see this, consider the fixed-point problem of finding the $n$-dimensional
118 vector $x$ such that
119 \begin{center}
120 $x=g(x)$
121 \end{center}
122 where $g : C^{n}\longrightarrow C^{n}$. Usually, we can easily
123 rewrite this fixed-point problem as a root-finding problem by
124 setting $f(x) = x-g(x)$ and likewise we can recast the
125 root-finding problem into a fixed-point problem by setting
126 \begin{center}
127 $g(x)= f(x)-x$.
128 \end{center}
129
130 Often it is not be possible to solve such nonlinear equation
131 root-finding problems analytically. When this occurs we turn to
132 numerical methods to approximate the solution. 
133 Generally speaking, algorithms for solving problems can be divided into
134 two main groups: direct methods and iterative methods.
135 \\
136 Direct methods exist only for $n \leq 4$, solved in closed form by G. Cardano
137 in the mid-16th century. However, N. H. Abel in the early 19th
138 century showed that polynomials of degree five or more could not
139 be solved by  direct methods. Since then, mathmathicians have
140 focussed on numerical (iterative) methods such as the famous
141 Newton method, the Bernoulli method of the 18th, and the Graeffe method.
142
143 Later on, with the advent of electronic computers, other methods have
144 been developed such as the Jenkins-Traub method, the Larkin method,
145 the Muller method, and several methods for simultaneous
146 approximation of all the roots, starting with the Durand-Kerner (DK)
147 method:
148 %%\begin{center}
149 \begin{equation}
150  Z_i^{k+1}=Z_{i}^k-\frac{P(Z_i^k)}{\prod_{i\neq j}(Z_i^k-Z_j^k)}
151 \end{equation}
152 %%\end{center}
153 where $Z_i^k$ is the $i^{th}$ root of the polynomial $P$ at the
154 iteration $k$.
155
156
157 This formula is mentioned for the first time by
158 Weiestrass~\cite{Weierstrass03} as part of the fundamental theorem
159 of Algebra and is rediscovered by Ilieff~\cite{Ilie50},
160 Docev~\cite{Docev62}, Durand~\cite{Durand60},
161 Kerner~\cite{Kerner66}. Another method discovered by
162 Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
163 in the following form by Ehrlich~\cite{Ehrlich67} and
164 Aberth~\cite{Aberth73} uses a different iteration formula given as fellows :
165 %%\begin{center}
166 \begin{equation}
167  Z_i^{k+1}=Z_i^k-\frac{1}{{\frac {P'(Z_i^k)} {P(Z_i^k)}}-{\sum_{i\neq j}(Z_i^k-Z_j^k)}}.
168 \end{equation}
169 %%\end{center}
170 where $P'(Z)$ is the polynomial derivative of $P$ evaluated in the
171 point $Z$.
172
173 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizon83} have proved that
174 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
175
176
177 Iterative methods raise several problem when implemented e.g.
178 specific sizes of numbers must be used to deal with this
179 difficulty. Moreover, the convergence time of iterative methods
180 drastically increases like the degrees of high polynomials. It is expected that the
181 parallelization of these algorithms will improve the convergence
182 time.
183
184 Many authors have dealt with the parallelisation of
185 simultaneous methods, i.e. that find all the zeros simultaneously. 
186 Freeman~\cite{Freeman89} implemeted and compared DK, EA and another method of the fourth order proposed
187 by Farmer and Loizou~\cite{Loizon83}, on a 8- processor linear
188 chain, for polynomials of degree up to 8. The third method often
189 diverges, but the first two methods have speed-up 5.5
190 (speed-up=(Time on one processor)/(Time on p processors)). Later,
191 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
192 algorithms, in which each processor continues to update its
193 approximations even though the latest values of other $z_i((k))$
194 have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration.
195 Couturier et al. ~\cite{Raphaelall01} proposed two methods of parallelisation for
196 a shared memory architecture and for distributed memory one. They were able to
197 compute the roots of polynomials of degree 10000 in 430 seconds with only 8
198 personal computers and 2 communications per iteration. Comparing to the sequential implementation
199 where it takes up to 3300 seconds to obtain the same results, the authors show an interesting speedup, indeed.
200
201 Very few works had been since this last work until the appearing of
202 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
203 parallel computing platform and a programming model invented by
204 NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of
205 of CPUs. However, CUDA adopts a totally new computing architecture to use the
206 hardware resources provided by GPU in order to offer a stronger
207 computing ability to the massive data computing.
208
209
210 Ghidouche et al. ~\cite{Kahinall14} proposed an implementation of the
211 Durand-Kerner method on GPU. Their main
212 result showed that a parallel CUDA implementation is 10 times as fast as
213 the sequential implementation on a single CPU for high degree
214 polynomials of about 48000. To our knowledge, it is the first time such high degree polynomials are numerically solved.
215
216
217 In this paper, we focus on the implementation of the Aberth method for
218 high degree polynomials on GPU. The paper is organised as fellows. Initially, we recall the Aberth method in Section.\ref{sec1}. Improvements for the Aberth method are proposed in Section.\ref{sec2}. Related work to the implementation of simultaneous methods using a parallel approach is presented in Section.\ref{secStateofArt}.
219 In Section.4 we propose a parallel implementation of the Aberth method on GPU and discuss it. Section 5 presents and investigates our implementation and experimental study results. Finally, Section 6 concludes this paper and gives some hints for future research directions in this topic.  
220
221 \section{The Sequential Aberth method}
222 \label{sec1}
223 A cubically convergent iteration method for finding zeros of
224 polynomials was proposed by O.Aberth~\cite{Aberth73}. The Aberth
225 method is a purely algebraic derivation. To illustrate the
226 derivation, we let $w_{i}(z)$ be the product of linear factors 
227
228 \begin{equation}
229 w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
230 \end{equation}
231
232 And let a rational function $R_{i}(z)$ be the correction term of the
233 Weistrass method~\cite{Weierstrass03}
234
235 \begin{equation}
236 R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
237 \end{equation}
238
239 Differentiating the rational function $R_{i}(z)$ and applying the
240 Newton method, we have:
241
242 \begin{equation}
243 \frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{i}}}, i=1,2,...,n
244 \end{equation}
245
246 Substituting $x_{j}$ for z we obtain the Aberth iteration method.
247
248 In the fellowing we present the main stages of the running of the Aberth method.
249
250 \subsection{Polynomials Initialization}
251 The initialization of a polynomial p(z) is done by setting each of the $n$ complex coefficients $a_{i}$
252 :
253
254 \begin{equation}
255 \label{eq:SimplePolynome}
256   p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
257 \end{equation}
258
259
260 \subsection{Vector $z^{(0)}$ Initialization}
261
262 Like for any iterative method, we need to choose $n$ initial guess points $z^{(0)}_{i}, i = 1, . . . , n.$
263 The initial guess is very important since the number of steps needed by the iterative method to reach
264 a given approximation strongly depends on it.
265 In~\cite{Aberth73} the Aberth iteration is started by selecting $n$
266 equi-spaced points on a circle of center 0 and radius r, where r is
267 an upper bound to the moduli of the zeros. Later, Bini et al.~\cite{Bini96}
268 performed this choice by selecting complex numbers along different
269 circles and relies on the result of~\cite{Ostrowski41}.
270
271 \begin{equation}
272 \label{eq:radiusR}
273 %%\begin{align}
274 \sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
275 v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
276 %%\end{align}
277 \end{equation}
278 Where:
279 \begin{equation}
280 u_{i}=2.|a_{i}|^{\frac{1}{i}};
281 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
282 \end{equation}
283
284 \subsection{Iterative Function $H_{i}$}
285 The operator used by the Aberth method is corresponding to the
286 following equation which will enable the convergence towards
287 polynomial solutions, provided all the roots are distinct.
288
289 \begin{equation}
290 H_{i}(z)=z_{i}-\frac{1}{\frac{p^{'}(z_{i})}{p(z_{i})}-\sum_{j\neq
291 i}{\frac{1}{z_{i}-z_{j}}}}
292 \end{equation}
293
294 \subsection{Convergence Condition}
295 The convergence condition determines the termination of the algorithm. It consists in stopping from running
296 the iterative function $H_{i}(z)$ when the roots are sufficiently stable. We consider that the method
297 converges sufficiently when :
298
299 \begin{equation}
300 \label{eq:Aberth-Conv-Cond}
301 \forall i \in
302 [1,n];\frac{z_{i}^{(k)}-z_{i}^{(k-1)}}{z_{i}^{(k)}}<\xi
303 \end{equation}
304
305
306 \section{Improving the Ehrlich-Aberth Method}
307 \label{sec2}
308 The Ehrlich-Aberth method implementation suffers of overflow problems. This
309 situation occurs, for instance, in the case where a polynomial
310 having positive coefficients and a large degree is computed at a
311 point $\xi$ where $|\xi| > 1$, where $|x|$ stands for the modolus of a complex $x$. Indeed, the limited number in the
312 mantissa of floating points representations makes the computation of p(z) wrong when z
313 is large. For example $(10^{50}) +1+ (- 10^{50})$ will give the wrong result
314 of $0$ instead of $1$. Consequently, we can not compute the roots
315 for large degrees. This problem was early discussed in
316 ~\cite{Karimall98} for the Durand-Kerner method, the authors
317 propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent.
318
319 \begin{equation}
320 \label{deflncomplex}
321  \forall(x,y)\in R^{*2}; \ln (x+i.y)=\ln(x^{2}+y^{2})
322 2+i.\arcsin(y\sqrt{x^{2}+y^{2}})_{\left] -\pi, \pi\right[ }
323 \end{equation}
324 %%\begin{equation}
325 \begin{align}
326 \label{defexpcomplex}
327  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
328                                      & =\exp(x).\cos(y)+i.\exp(x).\sin(y)\label{defexpcomplex}
329 \end{align}
330 %%\end{equation}
331
332 Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
333 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
334
335 Applying this solution for the Aberth method we obtain the
336 iteration function with logarithm:
337 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
338 \begin{equation}
339 \label{Log_H2}
340 H_{i}(z)=z_{i}^{k}-\exp \left(\ln \left(
341 p(z_{k})\right)-\ln\left(p(z_{k}^{'})\right)- \ln
342 \left(1-Q(z_{k})\right)\right),
343 \end{equation}
344
345 where:
346
347 \begin{equation}
348 \label{Log_H1}
349 Q(z_{k})=\exp\left( \ln (p(z_{k}))-\ln(p(z_{k}^{'}))+\ln \left(
350 \sum_{k\neq j}^{n}\frac{1}{z_{k}-z_{j}}\right)\right).
351 \end{equation}
352
353 This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated as:
354 \begin{equation}
355 \label{R}
356 R = \exp( \log(DBL\_MAX) / (2*n) )
357 \end{equation}
358  where $DBL\_MAX$ stands for the maximum representable double value.
359
360 \section{The implementation of simultaneous methods in a parallel computer}
361 \label{secStateofArt}   
362 The main problem of simultaneous methods is that the necessary
363 time needed for convergence is increased when we increase
364 the degree of the polynomial. The parallelisation of these
365 algorithms is expected to improve the convergence time.
366 Authors usually adopt one of the two following approaches to parallelize root
367 finding algorithms. The first approach aims at reducing the total number of
368 iterations as by Miranker
369 ~\cite{Mirankar68,Mirankar71}, Schedler~\cite{Schedler72} and
370 Winogard~\cite{Winogard72}. The second approach aims at reducing the
371 computation time per iteration, as reported
372 in~\cite{Benall68,Jana06,Janall99,Riceall06}. 
373
374 There are many schemes for the simultaneous approximation of all roots of a given
375 polynomial. Several works on different methods and issues of root
376 finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Skachek08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich-Aberth methods are the most practical choices among
377 them~\cite{Bini04}. These two methods have been extensively
378 studied for parallelization due to their intrinsics, i.e. the
379 computations involved in both methods has some inherent
380 parallelism that can be suitably exploited by SIMD machines.
381 Moreover, they have fast rate of convergence (quadratic for the
382 Durand-Kerner and cubic for the Ehrlich-Aberth). Various parallel
383 algorithms reported for these methods can be found
384 in~\cite{Cosnard90, Freeman89,Freemanall90,Jana99,Janall99}.
385 Freeman and Bane~\cite{Freemanall90} presented two parallel
386 algorithms on a local memory MIMD computer with the compute-to
387 communication time ratio O(n). However, their algorithms require
388 each processor to communicate its current approximation to all
389 other processors at the end of each iteration (synchronous). Therefore they
390 cause a high degree of memory conflict. Recently the author
391 in~\cite{Mirankar71} proposed two versions of parallel algorithm
392 for the Durand-Kerner method, and Ehrlich-Aberth method on a model of
393 Optoelectronic Transpose Interconnection System (OTIS).The
394 algorithms are mapped on an OTIS-2D torus using N processors. This
395 solution needs N processors to compute N roots, which is not
396 practical for solving polynomials with large degrees.
397 Until very recently, the literature doen not mention implementations able to compute the roots of
398 large degree polynomials (higher then 1000) and within small or at least tractable times. Finding polynomial roots rapidly and accurately is the main objective of our work. 
399 With the advent of CUDA (Compute Unified Device
400 Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time. 
401 In~\cite{Kahinall14} we already proposed the first implementation
402 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
403 that a parallel CUDA implementation is 10 times as fast as the
404 sequential implementation on a single CPU for high degree
405 polynomials of 48000. In this paper we present a parallel implementation of Ehlisch-Aberth method on
406 GPUs, which details are discussed in the sequel.
407
408
409 \section {A CUDA parallel Ehrlich-Aberth method}
410 In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
411 for solving high degree polynomials. First, the hardware and software of the GPUs are presented. Then, a CUDA parallel Ehrlich-Aberth method are presented.
412
413 \subsection{Background on the GPU architecture}
414 A GPU is viewed as an accelerator for the data-parallel and
415 intensive arithmetic computations. It draws its computing power
416 from the parallel nature of its hardware and software
417 architectures. A GPU is composed of hundreds of Streaming
418 Processors (SPs) organized in several blocks called Streaming
419 Multiprocessors (SMs). It also has a memory hierarchy. It has a
420 private read-write local memory per SP, fast shared memory and
421 read-only constant and texture caches per SM and a read-write
422 global memory shared by all its SPs~\cite{NVIDIA10}.
423
424 On a CPU equipped with a GPU, all the data-parallel and intensive
425 functions of an application running on the CPU are off-loaded onto
426 the GPU in order to accelerate their computations. A similar
427 data-parallel function is executed on a GPU as a kernel by
428 thousands or even millions of parallel threads, grouped together
429 as a grid of thread blocks. Therefore, each SM of the GPU executes
430 one or more thread blocks in SIMD fashion (Single  Instruction,
431 Multiple Data) and in turn each SP of a GPU SM runs one or more
432 threads within a block in SIMT fashion (Single Instruction,
433 Multiple threads). Indeed at any given clock cycle, the threads
434 execute the same instruction of a kernel, but each of them
435 operates on different data.
436  GPUs only work on data filled in their
437 global memories and the final results of their kernel executions
438 must be communicated to their CPUs. Hence, the data must be
439 transferred in and out of the GPU. However, the speed of memory
440 copy between the GPU and the CPU is slower than the memory
441 bandwidths of the GPU memories and, thus, it dramatically affects
442 the performances of GPU computations. Accordingly, it is necessary
443 to limit as much as possible, data transfers between the GPU and its CPU during the
444 computations.
445 \subsection{Background on the CUDA Programming Model}
446
447 The CUDA programming model is similar in style to a single program
448 multiple-data (SPMD) software model. The GPU is viewed as a
449 coprocessor that executes data-parallel kernel functions. CUDA
450 provides three key abstractions, a hierarchy of thread groups,
451 shared memories, and barrier synchronization. Threads have a three
452 level hierarchy. A grid is a set of thread blocks that execute a
453 kernel function. Each grid consists of blocks of threads. Each
454 block is composed of hundreds of threads. Threads within one block
455 can share data using shared memory and can be synchronized at a
456 barrier. All threads within a block are executed concurrently on a
457 multithreaded architecture.The programmer specifies the number of
458 threads per block, and the number of blocks per grid. A thread in
459 the CUDA programming language is much lighter weight than a thread
460 in traditional operating systems. A thread in CUDA typically
461 processes one data element at a time. The CUDA programming model
462 has two shared read-write memory spaces, the shared memory space
463 and the global memory space. The shared memory is local to a block
464 and the global memory space is accessible by all blocks. CUDA also
465 provides two read-only memory spaces, the constant space and the
466 texture space, which reside in external DRAM, and are accessed via
467 read-only caches.
468
469 \subsection{ The implementation of Aberth method on GPU}
470 %%\subsection{A CUDA implementation of the Aberth's method }
471 %%\subsection{A GPU implementation of the Aberth's method }
472
473
474
475 \subsubsection{A sequential Aberth algorithm}
476 The main steps of Aberth method are shown in Algorithm.~\ref{alg1-seq} :
477   
478 \begin{algorithm}[H]
479 \label{alg1-seq}
480 %\LinesNumbered
481 \caption{A sequential algorithm to find roots with the Aberth method}
482
483 \KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
484 tolerance threshold),P(Polynomial to solve)}
485
486 \KwOut {Z(The solution root's vector)}
487
488 \BlankLine
489
490 Initialization of the coefficients of the polynomial to solve\;
491 Initialization of the solution vector $Z^{0}$\;
492
493 \While {$\Delta z_{max}\succ \epsilon$}{
494  Let $\Delta z_{max}=0$\;
495 \For{$j \gets 0 $ \KwTo $n$}{
496 $ZPrec\left[j\right]=Z\left[j\right]$\;
497 $Z\left[j\right]=H\left(j,Z\right)$\;
498 }
499
500 \For{$i \gets 0 $ \KwTo $n-1$}{
501 $c=\frac{\left|Z\left[i\right]-ZPrec\left[i\right]\right|}{Z\left[i\right]}$\;
502 \If{$c\succ\Delta z_{max}$ }{
503 $\Delta z_{max}$=c\;}
504 }
505 }
506 \end{algorithm}
507
508 ~\\ 
509 In this sequential algorithm, one CPU thread  executes all the steps. Let us look to the $3^{rd}$ step i.e. the execution of the iterative function, 2 sub-steps are needed. The first sub-step \textit{save}s the solution vector of the previous iteration, the second sub-step \textit{update}s or computes the new values of the roots vector.
510 There exists two ways to execute the iterative function that we call a Jacobi one and a Gauss-Seidel one. With the Jacobi iteration, at iteration $k+1$ we need all the previous values $z^{(k)}_{i}$ to compute the new values $z^{(k+1)}_{i}$, that is :
511
512 \begin{equation}
513 H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}}}, i=1,...,n.
514 \end{equation}
515
516 With the Gauss-seidel iteration, we have:
517 \begin{equation}
518 \label{eq:Aberth-H-GS}
519 H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{(k)}_{i}-z^{(k+1)}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}})}, i=1,...,n.
520 \end{equation}
521
522 Using Equation.~\ref{eq:Aberth-H-GS} for the update sub-step of $H(i,z^{k+1})$, we expect the Gauss-Seidel iteration to converge more quickly because, just as its ancestor (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
523
524 The $4^{th}$ step of the algorithm checks the convergence condition using Equation.~\ref{eq:Aberth-Conv-Cond}.
525 Both steps 3 and 4 use 1 thread to compute all the $n$ roots on CPU, which is very harmful for performance in case of the large degree polynomials.
526
527 \paragraph{The execution time}
528 Let $T_{i}(n)$ be the time to compute one new root value at step 3, $T_{i}$ depends on the polynomial's degree $n$. When $n$ increase $T_{i}(n)$ increases too. We need $n.T_{i}(n)$ to compute all the new values in one iteration at step 3.
529
530 Let $T_{j}$ be the time needed to check the convergence of one root value at the step 4, so we need $n.T_{j}$ to compute global convergence condition in each iteration at step 4.
531
532 Thus, the execution time for both steps 3 and 4 is:
533 \begin{equation}
534 T_{iter}=n(T_{i}(n)+T_{j})+O(n).
535 \end{equation}
536 Let $K$ be the number of iterations necessary to compute all the roots, so the total execution time $T$ can be given as:
537
538 \begin{equation}
539 \label{eq:T-global}
540 T=\left[n\left(T_{i}(n)+T_{j}\right)+O(n)\right].K
541 \end{equation}
542 The execution time increases with the increasing of the polynomial degree, which justifies to parallelise these steps  in order to reduce the global execution time. In the following,  we explain how we did parrallelize these steps on a GPU architecture using the CUDA platform.
543
544 \subsubsection{A Parallel implementation with CUDA }
545 On the CPU,  both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
546 In the GPU, the schduler assigns the execution of this loop to a group of threads organised as a grid of blocks with block containing a number of threads. All threads within a block are executed concurrently in parallel. The instructions run on the GPU are grouped in special function called kernels. It's up to the programmer, to describe the execution context, that is the size of the Grid, the number of blocks and the number of threads per block upon the call of a given kernel, according to a special syntax defined by CUDA.
547
548 Let N be the number of threads executed in parallel,  Equation.~\ref{eq:T-global} becomes then : 
549
550 \begin{equation}
551 T=\left[\frac{n}{N}\left(T_{i}(n)+T_{j}\right)+O(n)\right].K.
552 \end{equation}
553
554 In theory, total execution time $T$ on GPU is speed up $N$ times as  $T$ on CPU. We will see at what extent this is true in the experimental study hereafter. 
555 ~\\
556 ~\\
557 In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual ``C`` function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
558
559 Algorithm~\ref{alg2-cuda} shows a sketch of the Aberth algorithm usind CUDA.
560
561 \begin{algorithm}[H]
562 \label{alg2-cuda}
563 %\LinesNumbered
564 \caption{CUDA Algorithm to find roots with the Aberth method}
565
566 \KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
567 tolerance threshold),P(Polynomial to solve)}
568
569 \KwOut {Z(The solution root's vector)}
570
571 \BlankLine
572
573 Initialization of the coeffcients of the polynomial to solve\;
574 Initialization of the solution vector $Z^{0}$\;
575 Allocate and copy initial data to the GPU global memory\;
576
577 \While {$\Delta z_{max}\succ \epsilon$}{
578  Let $\Delta z_{max}=0$\;
579 $ kernel\_save(d\_z^{k-1})$\;
580 $ kernel\_update(d\_z^{k})$\;
581 $kernel\_testConverge(\Delta z_{max},d_z^{k},d_z^{k-1})$\;
582 }
583 \end{algorithm}
584 ~\\ 
585
586 After the initialisation step, all data of the root finding problem to be solved must be copied from the CPU memory to the GPU global memory, because the GPUs only access data already present in their memories. Next, all the data-parallel arithmetic operations inside the main loop \verb=(do ... while(...))= are executed as kernels by the GPU. The first kernel named \textit{save} in line 6 of Algorithm~\ref{alg2-cuda} consists in saving the vector of polynomial's root found at the previous time-step in GPU memory, in order to check the convergence of the roots after each iteration (line 8, Algorithm~\ref{alg2-cuda}).
587
588 The second kernel executes the iterative function $H$ and updates $z^{k}$, according to Algorithm~\ref{alg3-update}. We notice that the update kernel is called in two forms, separated with the value of \emph{R} which determines the radius beyond which we apply the logarithm computation of the power of a complex. 
589
590 \begin{algorithm}[H]
591 \label{alg3-update}
592 %\LinesNumbered
593 \caption{A global Algorithm for the iterative function}
594
595 \eIf{$(\left|Z^{(k)}\right|<= R)$}{
596 $kernel\_update(d\_z^{k})$\;}
597 {
598 $kernel\_update\_Log(d\_z^{k})$\;
599 }
600 \end{algorithm}
601
602 The first form executes formula \ref{eq:SimplePolynome} if the modulus of the current complex is less than the a certain value called the radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes formulas (Eq.~\ref{deflncomplex},Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as :
603
604 $$R = \exp( \log(DBL\_MAX) / (2*n) )$$ where $DBL\_MAX$ stands for the maximum representable double value.
605
606 The last kernel verifies the convergence of the roots after each update of $Z^{(k)}$, according to formula. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
607
608 The kernels terminate it computations when all the roots converge. Finally, the solution of the root finding problem is copied back from GPU global memory to CPU memory. We use the communication functions of CUDA for the memory allocation in the GPU \verb=(cudaMalloc())= and for data transfers from the CPU memory to the GPU memory \verb=(cudaMemcpyHostToDevice)=
609 or from GPU memory to CPU memory \verb=(cudaMemcpyDeviceToHost))=. 
610 %%HIER END MY REVISIONS (SIDER)
611 \section{Experimental study}
612
613 \subsection{Definition of the used polynomials }
614 We study two categories of polynomials : the sparse polynomials and the full polynomials.
615 \paragraph{A sparse polynomial}: is a polynomial for which only some coefficients are not null. We use in the following polonymial for which the roots are distributed on 2 distinct circles :
616 \begin{equation}
617         \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
618 \end{equation}
619
620
621 \paragraph{A full polynomial} is in contrast, a polynomial for which all the coefficients are not null. the second form used to obtain a full polynomial is:
622 %%\begin{equation}
623         %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
624 %%\end{equation}
625
626 \begin{equation}
627      {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
628 \end{equation}
629 With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
630
631 \subsection{The study condition} 
632 The our experiences results concern two parameters which are
633 the polynomial degree and the execution time of our program
634 to converge on the solution. The polynomial degree allows us
635 to validate that our algorithm is powerful with high degree
636 polynomials. The execution time remains the
637 element-key which justifies our work of parallelization.
638         For our tests we used a CPU Intel(R) Xeon(R) CPU
639 E5620@2.40GHz and a GPU K40 (with 6 Go of ram).
640
641
642 \subsection{Comparative study}
643 In this section, we discuss the performance Ehrlich-Aberth method  of root finding polynomials implemented on CPUs and on GPUs.
644
645 We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution time, the  polynomial size and the number of threads per block performed by sum or each experiment on CPUs and on GPUs.
646
647 All experimental results obtained from the simulations are made in double precision data, for a convergence tolerance of the methods set to $10^{-7}$. Since we were more interested in the comparison of the performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on CPUs versus on GPUs. The initialization values of the vector solution of the Ehrlich-Aberth method are given in section 2.2. 
648 \subsubsection{The execution time in seconds of Ehrlich-Aberth algorithm on CPU OpenMP (1 core, 4 cores) vs. on a Tesla GPU}
649
650
651 %\begin{figure}[H]
652 %\centering
653  % \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU}
654 %\caption{The execution time in seconds of Ehrlich-Aberth algorithm on CPU core vs. on a Tesla GPU}
655 %\label{fig:01}
656 %\end{figure}
657
658 \begin{figure}[H]
659 \centering
660   \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
661 \caption{The execution time in seconds of Ehrlich-Aberth algorithm on CPU OpenMP (1 core, 4 cores) vs. on a Tesla GPU}
662 \label{fig:01}
663 \end{figure}
664 Figure 1 %%show a comparison of execution time between the parallel and sequential version of the Ehrlich-Aberth algorithm with sparse polynomial exceed 100000, 
665 We report respectively the execution time of the Ehrlich-Aberth method implemented initially on one core of the Quad-Core Xeon E5620 CPU than on four cores of the same machine with \textit{OpenMP} platform and the execution time of the same method implemented on one Nvidia Tesla K40c GPU, with sparse polynomial degrees ranging from 100,000 to 1,000,000. We can see that the method implemented on the GPU are faster than those implemented on the CPU (4 cores). This is due to the GPU ability to compute the data-parallel functions faster than its CPU counterpart. However, the execution time for the CPU(4 cores) implementation exceed 5,000 s for 250,000 degrees polynomials, in counterpart  the GPU implementation for the same polynomials not reach 100 s, more than again, with an execution time under to 2500 s CPU (4 cores) implementation can resolve polynomials degrees of only 200,000, whereas GPU implementation can resolve polynomials more than 1,000,000 degrees. We can also notice that the GPU implementation are almost 47 faster then those implementation on the CPU(4 cores). However the CPU(4 cores) implementation are almost 4 faster then his implementation on CPU (1 core). Furthermore, we verify that the number of iterations and the convergence precision is the same for the both CPU and GPU implementation. %This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
666  
667  %We notice that the convergence precision is a round $10^{-7}$ for the both implementation on CPU and GPU. Consequently, we can conclude that Ehrlich-Aberth on GPU are faster and accurately then CPU implementation.
668
669 \subsubsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
670 To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel) and to optimize the use of the various memoirs GPU. In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. 
671 For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40 GPU is 1024, so we varied the number of threads per block from 8 to 1024. We took into account the execution time for both sparse and full of 10 different polynomials of size 50000 and 10 different polynomials of size 500000 degrees.
672
673 \begin{figure}[H]
674 \centering
675   \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
676 \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
677 \label{fig:01}
678 \end{figure}
679
680 The figure 2 show that, the best execution time for both sparse and full polynomial are given when the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the best number of threads per block is 64, Whereas, the large polynomials the best number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256.
681
682 \subsubsection{The impact of exp-log solution to compute very high degrees of  polynomial}
683
684 In this experiment we report the performance of log.exp solution describe in ~\ref{sec2} to compute very high degrees polynomials.   
685 \begin{figure}[H]
686 \centering
687   \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog}
688 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
689 \label{fig:01}
690 \end{figure}
691
692 The figure 3, show a comparison between the execution time of the Ehrlich-Aberth algorithm applying log-exp solution and the execution time of the Ehrlich-Aberth algorithm without applying log-exp solution, with full and sparse polynomials degrees. We can see that the execution time for the both algorithms are the same while the full polynomials degrees are less than 4000 and full polynomials are less than 150,000. After,we show clearly that the classical version of Ehrlich-Aberth algorithm (without applying log.exp) stop to converge and can not solving any polynomial sparse or full. In counterpart, the new version of Ehrlich-Aberth algorithm (applying log.exp solution) can solve very high and large full polynomial exceed 100,000 degrees.
693
694 in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying log.exp solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees . 
695
696
697 %\begin{figure}[H]
698 \%centering
699   %\includegraphics[width=0.8\textwidth]{figures/log_exp_Sparse}
700 %\caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
701 %\label{fig:01}
702 %\end{figure}
703
704 %we report the performances of the exp.log for the Ehrlich-Aberth algorithm for solving very high degree of polynomial. 
705
706  
707 \subsubsection{A comparative study between Ehrlich-Aberth algorithm and Durand-kerner algorithm}
708 In this part, we are interesting to compare the simultaneous methods, Ehrlich-Aberth and Durand-Kerner in parallel computer using GPU. We took into account the execution time, the number of iteration and the polynomial's size. for the both sparse and full polynomials.  
709
710 \begin{figure}[H]
711 \centering
712   \includegraphics[width=0.8\textwidth]{figures/EA_DK}
713 \caption{The execution time of Ehrlich-Aberth versus Durand-Kerner algorithm on GPU}
714 \label{fig:01}
715 \end{figure}
716
717 This figure show the execution time of the both algorithm EA and DK with sparse polynomial degrees ranging from 1000 to 1000000. We can see that the Ehrlich-Aberth algorithm are faster than Durand-Kerner algorithm, with an average of 25 times as fast. Then, when degrees of polynomial exceed 500000 the execution time with EA is of the order 100 whereas DK passes in the order 1000. %with double precision not exceed $10^{-5}$.
718
719 \begin{figure}[H]
720 \centering
721   \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
722 \caption{The iteration number of Ehrlich-Aberth versus Durand-Kerner algorithm}
723 \label{fig:01}
724 \end{figure}
725
726 %\subsubsection{The execution time of Ehrlich-Aberth algorithm on OpenMP(1 core, 4 cores) vs. on a Tesla GPU}
727
728
729
730
731
732
733 \section{Conclusion and perspective}
734
735 \bibliography{mybibfile}
736
737 \end{document}