]> AND Private Git Repository - kahina_paper1.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
2dcee5775eefb549e1dbff4c00c96a5267b763e2
[kahina_paper1.git] / paper.tex
1 \documentclass[review]{elsarticle}
2
3 \usepackage{lineno,hyperref}
4 \usepackage[utf8]{inputenc}
5 %%\usepackage[T1]{fontenc}
6 %%\usepackage[french]{babel}
7 \usepackage{float} 
8 \usepackage{amsmath,amsfonts,amssymb}
9 \usepackage[ruled,vlined]{algorithm2e}
10 %\usepackage[french,boxed,linesnumbered]{algorithm2e}
11 \usepackage{array,multirow,makecell}
12 \setcellgapes{1pt}
13 \makegapedcells
14 \newcolumntype{R}[1]{>{\raggedleft\arraybackslash }b{#1}}
15 \newcolumntype{L}[1]{>{\raggedright\arraybackslash }b{#1}}
16 \newcolumntype{C}[1]{>{\centering\arraybackslash }b{#1}}
17 \modulolinenumbers[5]
18
19 \journal{Journal of \LaTeX\ Templates}
20
21 %%%%%%%%%%%%%%%%%%%%%%%
22 %% Elsevier bibliography styles
23 %%%%%%%%%%%%%%%%%%%%%%%
24 %% To change the style, put a % in front of the second line of the current style and
25 %% remove the % from the second line of the style you would like to use.
26 %%%%%%%%%%%%%%%%%%%%%%%
27
28 %% Numbered
29 %\bibliographystyle{model1-num-names}
30
31 %% Numbered without titles
32 %\bibliographystyle{model1a-num-names}
33
34 %% Harvard
35 %\bibliographystyle{model2-names.bst}\biboptions{authoryear}
36
37 %% Vancouver numbered
38 %\usepackage{numcompress}\bibliographystyle{model3-num-names}
39
40 %% Vancouver name/year
41 %\usepackage{numcompress}\bibliographystyle{model4-names}\biboptions{authoryear}
42
43 %% APA style
44 %\bibliographystyle{model5-names}\biboptions{authoryear}
45
46 %% AMA style
47 %\usepackage{numcompress}\bibliographystyle{model6-num-names}
48
49 %% `Elsevier LaTeX' style
50 \bibliographystyle{elsarticle-num}
51 %%%%%%%%%%%%%%%%%%%%%%%
52
53 \begin{document}
54
55 \begin{frontmatter}
56
57 \title{Efficient high degree polynomial root finding using GPU}
58
59 %% Group authors per affiliation:
60 %\author{Elsevier\fnref{myfootnote}}
61 %\address{Radarweg 29, Amsterdam}
62 %\fntext[myfootnote]{Since 1880.}
63
64 %% or include affiliations in footnotes:
65 \author[mymainaddress]{Kahina Ghidouche}
66 %%\ead[url]{kahina.ghidouche@univ-bejaia.dz}
67 \cortext[mycorrespondingauthor]{Corresponding author}
68 \ead{kahina.ghidouche@univ-bejaia.dz}
69
70 \author[mysecondaryaddress]{Raphaël Couturier\corref{mycorrespondingauthor}}
71 %%\cortext[mycorrespondingauthor]{Corresponding author}
72 \ead{raphael.couturier@univ-fcomte.fr}
73
74 \author[mymainaddress]{Abderrahmane Sider}
75 %%\cortext[mycorrespondingauthor]{Corresponding author}
76 \ead{ar.sider@univ-bejaia.dz}
77
78 \address[mymainaddress]{Laboratoire LIMED, Faculté des sciences
79   exactes, Université de Bejaia, 06000, Algeria}
80 \address[mysecondaryaddress]{FEMTO-ST Institute, University of
81   Bourgogne Franche-Comte, France }
82
83 \begin{abstract}
84 Polynomials are mathematical algebraic structures that play a great
85 role in science and engineering. Finding roots of high degree
86 polynomials is computationally demanding. In this paper, we present
87 the results of a parallel implementation of the Ehrlich-Aberth
88 algorithm for the root finding problem for high degree polynomials on
89 GPU architectures. The main result of this
90 work is to be able to solve high degree polynomials (up
91 to 1,000,000) very efficiently. We also compare the results with a
92 sequential implementation and the Durand-Kerner method on full and
93 sparse polynomials.
94 \end{abstract}
95
96 \begin{keyword}
97 Polynomial root finding, Iterative methods, Ehrlich-Aberth, Durand-Kerner, GPU
98 \end{keyword}
99
100 \end{frontmatter}
101
102 \linenumbers
103
104 \section{The problem of finding roots of a polynomial}
105 Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomenons and to express any outcome in the form of a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
106 %%\begin{center}
107 \begin{equation}
108      {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
109 \end{equation}
110 %%\end{center}
111
112 The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeroes of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
113 \begin{equation}
114      {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
115 \end{equation}
116
117 The problem of finding a root is equivalent to that of solving a fixed-point problem. To see this, consider the fixed-point problem of finding the $n$-dimensional
118 vector $x$ such that :
119 \begin{center}
120 $x=g(x)$
121 \end{center}
122 where $g : C^{n}\longrightarrow C^{n}$. Usually, we can easily
123 rewrite this fixed-point problem as a root-finding problem by
124 setting $f(x) = x-g(x)$ and likewise we can recast the
125 root-finding problem into a fixed-point problem by setting :
126 \begin{center}
127 $g(x)= f(x)-x$.
128 \end{center}
129
130 Often it is not be possible to solve such nonlinear equation
131 root-finding problems analytically. When this occurs we turn to
132 numerical methods to approximate the solution. 
133 Generally speaking, algorithms for solving problems can be divided into
134 two main groups: direct methods and iterative methods.
135 \\
136 Direct methods exist only for $n \leq 4$, solved in closed form by G. Cardano
137 in the mid-16th century. However, N. H. Abel in the early 19th
138 century showed that polynomials of degree five or more could not
139 be solved by  direct methods. Since then, mathematicians have
140 focussed on numerical (iterative) methods such as the famous
141 Newton method, the Bernoulli method of the 18th, and the Graeffe method.
142
143 Later on, with the advent of electronic computers, other methods have
144 been developed such as the Jenkins-Traub method, the Larkin method,
145 the Muller method, and several methods for simultaneous
146 approximation of all the roots, starting with the Durand-Kerner (DK)
147 method:
148 %%\begin{center}
149 \begin{equation}
150 \label{DK}
151  DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, . . . , n,
152 \end{equation}
153 %%\end{center}
154 where $z_i^k$ is the $i^{th}$ root of the polynomial $p$ at the
155 iteration $k$.
156
157
158 This formula is mentioned for the first time by
159 Weiestrass~\cite{Weierstrass03} as part of the fundamental theorem
160 of Algebra and is rediscovered by Ilieff~\cite{Ilie50},
161 Docev~\cite{Docev62}, Durand~\cite{Durand60},
162 Kerner~\cite{Kerner66}. Another method discovered by
163 Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
164 in the following form by Ehrlich~\cite{Ehrlich67} and
165 Aberth~\cite{Aberth73} uses a different iteration formula given as:
166 %%\begin{center}
167 \begin{equation}
168 \label{Eq:EA}
169  EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, . . . , n,
170 \end{equation}
171 %%\end{center}
172 where $p'(z)$ is the polynomial derivative of $p$ evaluated in the
173 point $z$.
174
175 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
176 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
177
178
179 Iterative methods raise several problem when implemented e.g.
180 specific sizes of numbers must be used to deal with this
181 difficulty. Moreover, the convergence time of iterative methods
182 drastically increases like the degrees of high polynomials. It is expected that the
183 parallelization of these algorithms will improve the convergence
184 time.
185
186 Many authors have dealt with the parallelization of
187 simultaneous methods, i.e. that find all the zeros simultaneously. 
188 Freeman~\cite{Freeman89} implemented and compared DK, EA and another method of the fourth order proposed
189 by Farmer and Loizou~\cite{Loizou83}, on a 8-processor linear
190 chain, for polynomials of degree up to 8. The third method often
191 diverges, but the first two methods have speed-up equal to 5.5. Later,
192 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
193 algorithms, in which each processor continues to update its
194 approximations even though the latest values of other $z_i^{k}$
195 have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration.
196 Couturier and al.~\cite{Raphaelall01} proposed two methods of parallelization for
197 a shared memory architecture and for distributed memory one. They were able to
198 compute the roots of sparse polynomials of degree 10,000 in 430 seconds with only 8
199 personal computers and 2 communications per iteration. Comparing to the sequential implementation
200 where it takes up to 3,300 seconds to obtain the same results, the authors show an interesting speedup.
201
202 Very few works had been performed since this last work until the appearing of
203 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
204 parallel computing platform and a programming model invented by
205 NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the
206 hardware resources provided by GPU in order to offer a stronger
207 computing ability to the massive data computing.
208
209
210 Ghidouche and al~\cite{Kahinall14} proposed an implementation of the
211 Durand-Kerner method on GPU. Their main
212 result showed that a parallel CUDA implementation is about 10 times faster than
213 the sequential implementation on a single CPU for  sparse
214 polynomials of degree 48,000. 
215
216
217 In this paper, we focus on the implementation of the Ehrlich-Aberth
218 method for high degree polynomials on GPU. We propose an adaptation of
219 the exponential logarithm in order to be able to solve sparse and full
220 polynomial of degree up to $1,000,000$. The paper is organized as
221 follows. Initially, we recall the Ehrlich-Aberth method in
222 Section~\ref{sec1}. Improvements for the Ehrlich-Aberth method are
223 proposed in Section \ref{sec2}. Related work to the implementation of
224 simultaneous methods using a parallel approach is presented in Section
225 \ref{secStateofArt}.  In Section~\ref{sec5} we propose a parallel
226 implementation of the Ehrlich-Aberth method on GPU and discuss
227 it. Section~\ref{sec6} presents and investigates our implementation
228 and experimental study results. Finally, Section~\ref{sec7} concludes
229 this paper and gives some hints for future research directions in this
230 topic.
231
232 \section{Ehrlich-Aberth method}
233 \label{sec1}
234 A cubically convergent iteration method for finding zeros of
235 polynomials was proposed by O. Aberth~\cite{Aberth73}. The Ehrlich-Aberth method contain 4 main steps, presented in the following. 
236 %The Aberth method is a purely algebraic derivation. 
237 %To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors 
238
239 %\begin{equation}
240 %w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
241 %\end{equation}
242
243 %And let a rational function $R_{i}(z)$ be the correction term of the
244 %Weistrass method~\cite{Weierstrass03}
245
246 %\begin{equation}
247 %R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
248 %\end{equation}
249
250 %Differentiating the rational function $R_{i}(z)$ and applying the
251 %Newton method, we have:
252
253 %\begin{equation}
254 %\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
255 %\end{equation}
256 %where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z 
257 %Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.% 
258
259
260 \subsection{Polynomials Initialization}
261 The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients $a_{i}$:
262
263 \begin{equation}
264 \label{eq:SimplePolynome}
265   p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
266 \end{equation}
267
268
269 \subsection{Vector $Z^{(0)}$ Initialization}
270 \label{sec:vec_initialization}
271 As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , n.$
272 The initial guess is very important since the number of steps needed by the iterative method to reach
273 a given approximation strongly depends on it.
274 In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
275 equi-spaced points on a circle of center 0 and radius r, where r is
276 an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
277 performed this choice by selecting complex numbers along different
278 circles and relies on the result of~\cite{Ostrowski41}.
279
280 \begin{equation}
281 \label{eq:radiusR}
282 %%\begin{align}
283 \sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
284 v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
285 %%\end{align}
286 \end{equation}
287 Where:
288 \begin{equation}
289 u_{i}=2.|a_{i}|^{\frac{1}{i}};
290 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
291 \end{equation}
292
293 \subsection{Iterative Function}
294 %The operator used by the Aberth method is corresponding to the
295 %following equation~\ref{Eq:EA} which will enable the convergence towards
296 %polynomial solutions, provided all the roots are distinct.
297
298 Here we give a second form of the iterative function used by Ehrlich-Aberth method: 
299
300 \begin{equation}
301 \label{Eq:Hi}
302 EA2: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
303 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n
304 \end{equation}
305 It can be noticed that this equation is equivalent to Eq.~\ref{Eq:EA},
306 but we prefer the latter one because we can use it to improve the
307 Ehrlich-Aberth method and find the roots of very high degrees polynomials. More
308 details are given in Section~\ref{sec2}.
309 \subsection{Convergence Condition}
310 The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
311
312 \begin{equation}
313 \label{eq:Aberth-Conv-Cond}
314 \forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
315 \end{equation}
316
317
318 \section{Improving the Ehrlich-Aberth Method for high degree polynomials with exp-log formulation}
319 \label{sec2}
320 With high degree polynomial, the Ehrlich-Aberth method implementation,
321 as well as the Durand-Kerner implement, suffers from overflow problems. This
322 situation occurs, for instance, in the case where a polynomial
323 having positive coefficients and a large degree is computed at a
324 point $\xi$ where $|\xi| > 1$, where $|z|$ stands for the modolus of a complex $z$. Indeed, the limited number in the
325 mantissa of floating points representations makes the computation of $p(z)$ wrong when z
326 is large. For example $(10^{50}) +1+ (- 10^{50})$ will give the wrong result
327 of $0$ instead of $1$. Consequently, we can not compute the roots
328 for large degrees. This problem was early discussed in
329 ~\cite{Karimall98} for the Durand-Kerner method, the authors
330 propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent.
331
332 \begin{equation}
333 \label{deflncomplex}
334  \forall(x,y)\in R^{*2}; \ln (x+i.y)=\ln(x^{2}+y^{2})
335 2+i.\arcsin(y\sqrt{x^{2}+y^{2}})_{\left] -\pi, \pi\right[ }
336 \end{equation}
337 %%\begin{equation}
338 \begin{align}
339 \label{defexpcomplex}
340  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
341                                      & =\exp(x).\cos(y)+i.\exp(x).\sin(y)\label{defexpcomplex1}
342 \end{align}
343 %%\end{equation}
344
345 Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
346 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
347
348 Applying this solution for the iteration function Eq.~\ref{Eq:Hi} of Ehrlich-Aberth method, we obtain the iteration function with exponential and logarithm:
349 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
350 \begin{equation}
351 \label{Log_H2}
352 EA.EL: z^{k+1}_{i}=z_{i}^{k}-\exp \left(\ln \left(
353 p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln\left(1-Q(z^{k}_{i})\right)\right),
354 \end{equation}
355
356 where:
357
358 \begin{equation}
359 \label{Log_H1}
360 Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
361 \sum_{i\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right)i=1,...,n,
362 \end{equation}
363
364 This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as :
365 \begin{equation}
366 \label{R.EL}
367 R = exp(log(DBL\_MAX)/(2*n) );
368 \end{equation}
369
370
371 %\begin{equation}
372
373 %R = \exp( \log(DBL\_MAX) / (2*n) )
374 %\end{equation}
375  where \verb=DBL_MAX= stands for the maximum representable \verb=double= value.
376
377 \section{Implementation of simultaneous methods in a parallel computer}
378 \label{secStateofArt}   
379 The main problem of simultaneous methods is that the necessary
380 time needed for convergence is increased when we increase
381 the degree of the polynomial. The parallelization of these
382 algorithms is expected to improve the convergence time.
383 Authors usually adopt one of the two following approaches to parallelize root
384 finding algorithms. The first approach aims at reducing the total number of
385 iterations as by Miranker
386 ~\cite{Mirankar68,Mirankar71}, Schedler~\cite{Schedler72} and
387 Winograd~\cite{Winogard72}. The second approach aims at reducing the
388 computation time per iteration, as reported
389 in~\cite{Benall68,Jana06,Janall99,Riceall06}. 
390
391 There are many schemes for the simultaneous approximation of all roots of a given
392 polynomial. Several works on different methods and issues of root
393 finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich-Aberth methods are the most practical choices among
394 them~\cite{Bini04}. These two methods have been extensively
395 studied for parallelization due to their intrinsics parallelism, i.e. the
396 computations involved in both methods has some inherent
397 parallelism that can be suitably exploited by SIMD machines.
398 Moreover, they have fast rate of convergence (quadratic for the
399 Durand-Kerner and cubic for the Ehrlich-Aberth). Various parallel
400 algorithms reported for these methods can be found
401 in~\cite{Cosnard90, Freeman89,Freemanall90,Jana99,Janall99}.
402 Freeman and Bane~\cite{Freemanall90} presented two parallel
403 algorithms on a local memory MIMD computer with the compute-to
404 communication time ratio O(n). However, their algorithms require
405 each processor to communicate its current approximation to all
406 other processors at the end of each iteration (synchronous). Therefore they
407 cause a high degree of memory conflict. Recently the author
408 in~\cite{Mirankar71} proposed two versions of parallel algorithm
409 for the Durand-Kerner method, and Ehrlich-Aberth method on a model of
410 Optoelectronic Transpose Interconnection System (OTIS). The
411 algorithms are mapped on an OTIS-2D torus using $N$ processors. This
412 solution needs $N$ processors to compute $N$ roots, which is not
413 practical for solving polynomials with large degrees.
414 %Until very recently, the literature did not mention implementations
415 %able to compute the roots of large degree polynomials (higher then
416 %1000) and within small or at least tractable times.
417
418 Finding polynomial roots rapidly and accurately is the main objective of our work. 
419 With the advent of CUDA (Compute Unified Device
420 Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time. 
421 In~\cite{Kahinall14} we already proposed the first implementation
422 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
423 that a parallel CUDA implementation is 10 times as fast as the
424 sequential implementation on a single CPU for high degree
425 polynomials of 48,000.
426 %In this paper we present a parallel implementation of Ehrlich-Aberth
427 %method on GPUs for sparse and full polynomials with high degree (up
428 %to $1,000,000$).
429
430
431 %% \section {A CUDA parallel Ehrlich-Aberth method}
432 %% In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
433 %% for solving high degree polynomials (up to $1,000,000$). First, the hardware and software of the GPUs are presented. Then, the CUDA parallel Ehrlich-Aberth method is presented.
434
435 %% \subsection{Background on the GPU architecture}
436 %% A GPU is viewed as an accelerator for the data-parallel and
437 %% intensive arithmetic computations. It draws its computing power
438 %% from the parallel nature of its hardware and software
439 %% architectures. A GPU is composed of hundreds of Streaming
440 %% Processors (SPs) organized in several blocks called Streaming
441 %% Multiprocessors (SMs). It also has a memory hierarchy. It has a
442 %% private read-write local memory per SP, fast shared memory and
443 %% read-only constant and texture caches per SM and a read-write
444 %% global memory shared by all its SPs~\cite{NVIDIA10}.
445
446 %% On a CPU equipped with a GPU, all the data-parallel and intensive
447 %% functions of an application running on the CPU are off-loaded onto
448 %% the GPU in order to accelerate their computations. A similar
449 %% data-parallel function is executed on a GPU as a kernel by
450 %% thousands or even millions of parallel threads, grouped together
451 %% as a grid of thread blocks. Therefore, each SM of the GPU executes
452 %% one or more thread blocks in SIMD fashion (Single  Instruction,
453 %% Multiple Data) and in turn each SP of a GPU SM runs one or more
454 %% threads within a block in SIMT fashion (Single Instruction,
455 %% Multiple threads). Indeed at any given clock cycle, the threads
456 %% execute the same instruction of a kernel, but each of them
457 %% operates on different data.
458 %%  GPUs only work on data filled in their
459 %% global memories and the final results of their kernel executions
460 %% must be communicated to their CPUs. Hence, the data must be
461 %% transferred in and out of the GPU. However, the speed of memory
462 %% copy between the GPU and the CPU is slower than the memory
463 %% bandwidths of the GPU memories and, thus, it dramatically affects
464 %% the performances of GPU computations. Accordingly, it is necessary
465 %% to limit as much as possible, data transfers between the GPU and its CPU during the
466 %% computations.
467 %% \subsection{Background on the CUDA Programming Model}
468
469 %% The CUDA programming model is similar in style to a single program
470 %% multiple-data (SPMD) software model. The GPU is viewed as a
471 %% coprocessor that executes data-parallel kernel functions. CUDA
472 %% provides three key abstractions, a hierarchy of thread groups,
473 %% shared memories, and barrier synchronization. Threads have a three
474 %% level hierarchy. A grid is a set of thread blocks that execute a
475 %% kernel function. Each grid consists of blocks of threads. Each
476 %% block is composed of hundreds of threads. Threads within one block
477 %% can share data using shared memory and can be synchronized at a
478 %% barrier. All threads within a block are executed concurrently on a
479 %% multithreaded architecture.The programmer specifies the number of
480 %% threads per block, and the number of blocks per grid. A thread in
481 %% the CUDA programming language is much lighter weight than a thread
482 %% in traditional operating systems. A thread in CUDA typically
483 %% processes one data element at a time. The CUDA programming model
484 %% has two shared read-write memory spaces, the shared memory space
485 %% and the global memory space. The shared memory is local to a block
486 %% and the global memory space is accessible by all blocks. CUDA also
487 %% provides two read-only memory spaces, the constant space and the
488 %% texture space, which reside in external DRAM, and are accessed via
489 %% read-only caches.
490
491 \section{ Implementation of Ehrlich-Aberth method on GPU}
492 \label{sec5}
493 %%\subsection{A CUDA implementation of the Aberth's method }
494 %%\subsection{A GPU implementation of the Aberth's method }
495
496
497
498 %% \subsection{Sequential Ehrlich-Aberth algorithm}
499 %% The main steps of Ehrlich-Aberth method are shown in Algorithm.~\ref{alg1-seq} :
500 %% %\LinesNumbered  
501 %% \begin{algorithm}[H]
502 %% \label{alg1-seq}
503
504 %% \caption{A sequential algorithm to find roots with the Ehrlich-Aberth method}
505
506 %% \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (error tolerance
507 %%   threshold), $P$ (Polynomial to solve),$Pu$ (the derivative of P) $\Delta z_{max}$ (maximum value
508 %%   of stop condition), k (number of iteration), n (Polynomial's degrees)}
509 %% \KwOut {$Z$ (The solution root's vector), $ZPrec$ (the previous solution root's vector)}
510
511 %% \BlankLine
512
513 %% Initialization of $P$\;
514 %% Initialization of $Pu$\;
515 %% Initialization of the solution vector $Z^{0}$\;
516 %% $\Delta z_{max}=0$\;
517 %%  k=0\;
518
519 %% \While {$\Delta z_{max} > \varepsilon$}{
520 %%  Let $\Delta z_{max}=0$\;
521 %% \For{$j \gets 0 $ \KwTo $n$}{
522 %% $ZPrec\left[j\right]=Z\left[j\right]$;// save Z at the iteration k.\
523
524 %% $Z\left[j\right]=H\left(j, Z, P, Pu\right)$;//update Z with the iterative function.\
525 %% }
526 %% k=k+1\;
527
528 %% \For{$i \gets 0 $ \KwTo $n-1$}{
529 %% $c= testConverge(\Delta z_{max},ZPrec\left[j\right],Z\left[j\right])$\;
530 %% \If{$c > \Delta z_{max}$ }{
531 %% $\Delta z_{max}$=c\;}
532 %% }
533
534 %% }
535 %% \end{algorithm}
536
537 %% ~\\ 
538 %% In this sequential algorithm, one CPU thread  executes all the steps. Let us look to the $3^{rd}$ step i.e. the execution of the iterative function, 2 sub-steps are needed. The first sub-step \textit{save}s the solution vector of the previous iteration, the second sub-step \textit{update}s or computes the new values of the roots vector.
539
540 \subsection{Parallel implementation with CUDA }
541
542 In order to implement the Ehrlich-Aberth method in CUDA, it is
543 possible to use the Jacobi scheme or the Gauss-Seidel one.  With the
544 Jacobi iteration, at iteration $k+1$ we need all the previous values
545 $z^{k}_{i}$ to compute the new values $z^{k+1}_{i}$, that is :
546
547 \begin{equation}
548 EAJ: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
549 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n.
550 \end{equation}
551
552 With the Gauss-Seidel iteration, we have:
553 %\begin{equation}
554 %\label{eq:Aberth-H-GS}
555 %EAGS: z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{k}_{i}-z^{k}_{j}})}, i=1,...,n.
556 %\end{equation}
557
558 \begin{equation}
559 \label{eq:Aberth-H-GS}
560 EAGS: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
561 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum_{j=i+1}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}})}, i=1,. . . .,n
562 \end{equation}
563
564 Using Eq.~\ref{eq:Aberth-H-GS} to update the vector solution
565 \textit{Z}, we expect the Gauss-Seidel iteration to converge more
566 quickly because, just as any Jacobi algorithm (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
567
568 %The $4^{th}$ step of the algorithm checks the convergence condition using Eq.~\ref{eq:Aberth-Conv-Cond}.
569 %Both steps 3 and 4 use 1 thread to compute all the $n$ roots on CPU, which is very harmful for performance in case of the large degree polynomials.
570
571
572
573 %On the CPU,  both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
574 %In the GPU, the scheduler assigns the execution of this loop to a
575 %group of threads organised as a grid of blocks with block containing a
576 %number of threads. All threads within a block are executed
577 %concurrently in parallel. The instructions run on the GPU are grouped
578 %in special function called kernels. With CUDA, a programmer must
579 %describe the kernel execution context:  the size of the Grid, the number of blocks and the number of threads per block.
580
581 %In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual \verb=C= function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
582
583 Algorithm~\ref{alg2-cuda} shows sketch of the Ehrlich-Aberth method using CUDA.
584
585 \begin{enumerate}
586 \begin{algorithm}[H]
587 \label{alg2-cuda}
588 %\LinesNumbered
589 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
590
591 \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
592   threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial's degrees), $\Delta z_{max}$ (Maximum value of stop condition)}
593
594 \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
595
596 \BlankLine
597
598 \item Initialization of the of P\;
599 \item Initialization of the of Pu\;
600 \item Initialization of the solution vector $Z^{0}$\;
601 \item Allocate and copy initial data to the GPU global memory\;
602 \item k=0\;
603 \While {$\Delta z_{max} > \epsilon$}{
604 \item Let $\Delta z_{max}=0$\;
605 \item $ kernel\_save(ZPrec,Z)$\;
606 \item  k=k+1\;
607 \item $ kernel\_update(Z,P,Pu)$\;
608 \item $kernel\_testConverge(\Delta z_{max},Z,ZPrec)$\;
609
610 }
611 \item Copy results from GPU memory to CPU memory\;
612 \end{algorithm}
613 \end{enumerate}
614 ~\\ 
615
616 After the initialization step, all data of the root finding problem
617 must be copied from the CPU memory to the GPU global memory. Next, all
618 the data-parallel arithmetic operations inside the main loop
619 \verb=(while(...))= are executed as kernels by the GPU. The
620 first kernel named \textit{save} in line 7 of
621 Algorithm~\ref{alg2-cuda} consists in saving the vector of
622 polynomial's root found at the previous time-step in GPU memory, in
623 order to check the convergence of the roots after each iteration (line
624 10, Algorithm~\ref{alg2-cuda}).
625
626 The second kernel executes the iterative function and updates
627 $Z$, according to Algorithm~\ref{alg3-update}. We notice that the
628 update kernel is called in two forms, according to the value
629 \emph{R} which determines the radius beyond which we apply the
630 exponential logarithm algorithm. 
631
632 \begin{algorithm}[H]
633 \label{alg3-update}
634 %\LinesNumbered
635 \caption{Kernel update}
636
637 \eIf{$(\left|Z\right|<= R)$}{
638 $kernel\_update(Z,P,Pu)$\;}
639 {
640 $kernel\_update\_ExpoLog(Z,P,Pu)$\;
641 }
642 \end{algorithm}
643
644 The first form executes formula the EA function Eq.~\ref{Eq:Hi} if the modulus
645 of the current complex is less than the a certain value called the
646 radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes the EA.EL
647 function Eq.~\ref{Log_H2}
648 (with Eq.~\ref{deflncomplex}, Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as in Eq.~\ref{R.EL}.
649
650 The last kernel checks the convergence of the roots after each update
651 of $Z^{k}$, according to formula Eq.~\ref{eq:Aberth-Conv-Cond}. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
652
653 The kernel terminates its computations when all the roots have
654 converged. It should be noticed that, as blocks of threads are
655 scheduled automatically by the GPU, we have absolutely no control on
656 the order of the blocks. Consequently, our algorithm is executed more
657 or less in an asynchronous iteration model, where blocks of roots are
658 updated in a non deterministic way. As the Durand-Kerner method has
659 been proved to converge with asynchronous iterations, we think it is
660 similar with the Ehrlich-Aberth method, but we did not try to prove
661 this in that paper. Another consequence of that, is that several
662 executions of our algorithm with the same polynomial do no give
663 necessarily the same result (but roots have the same accuracy) and the
664 same number of iterations (even if the variation is not very
665 significant).
666
667
668
669
670
671 %%HIER END MY REVISIONS (SIDER)
672 \section{Experimental study}
673 \label{sec6}
674 %\subsection{Definition of the used polynomials }
675 We study two categories of polynomials: sparse polynomials and the full polynomials.\\
676 {\it A sparse polynomial} is a polynomial for which only some
677 coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles:
678 \begin{equation}
679         \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
680 \end{equation}\noindent
681 {\it A full polynomial} is, in contrast, a polynomial for which
682 all the coefficients are not null. A full polynomial is defined by:
683 %%\begin{equation}
684         %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
685 %%\end{equation}
686
687 \begin{equation}
688      {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
689 \end{equation}
690 %With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
691
692 %\subsection{The study condition} 
693 %Two parameters are studied are
694 %the polynomial degree and the execution time of our program
695 %to converge on the solution. The polynomial degree allows us
696 %to validate that our algorithm is powerful with high degree
697 %polynomials. The execution time remains the
698 %element-key which justifies our work of parallelization.
699 For our tests, a CPU Intel(R) Xeon(R) CPU
700 E5620@2.40GHz and a GPU K40 (with 6 Go of ram) are used. 
701
702
703 %\subsection{Comparative study}
704 %First, performances of the Ehrlich-Aberth method  of root finding polynomials
705 %implemented on CPUs and on GPUs are studied.
706
707 We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution times, the  polynomial size and the number of threads per block performed by sum or each experiment on CPU and on GPU.
708
709 All experimental results obtained from the simulations are made in
710 double precision data, the convergence threshold of the methods is set
711 to $10^{-7}$.
712 %Since we were more interested in the comparison of the
713 %performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on
714 %CPUs versus on GPUs.
715 The initialization values of the vector solution
716 of the methods are given in Section~\ref{sec:vec_initialization}.
717
718 \subsection{Comparison of execution times of the Ehrlich-Aberth method
719   on a CPU with OpenMP (1 core and 4 cores) vs. on a Tesla GPU}
720
721 \begin{figure}[htbp]
722 \centering
723   \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
724 \caption{Comparison of execution times  of the Ehrlich-Aberth method
725   on a CPU with OpenMP (1 core, 4 cores) and on a Tesla GPU}
726 \label{fig:01}
727 \end{figure}
728 %%Figure 1 %%show a comparison of execution time between the parallel
729 %%and sequential version of the Ehrlich-Aberth algorithm with sparse
730 %%polynomial exceed 100000,
731
732 In Figure~\ref{fig:01}, we report the execution times of the
733 Ehrlich-Aberth method on one core of a Quad-Core Xeon E5620 CPU, on
734 four cores on the same machine with \textit{OpenMP} and on a Nvidia
735 Tesla K40 GPU.  We chose different sparse polynomials with degrees
736 ranging from 100,000 to 1,000,000. We can see that the implementation
737 on the GPU is faster than those implemented on the CPU.
738 However, the execution time for the
739 CPU (4 cores) implementation exceed 5,000s for 250,000 degrees
740 polynomials. In counterpart, the GPU implementation for the same
741 polynomials do not take more 100s. With the GPU
742 we can solve high degrees polynomials very quickly up to degree
743  of 1,000,000. We can also notice that the GPU implementation are
744  almost 40 faster then those implementation on the CPU (4 cores).
745
746
747  
748
749 %This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
750  
751  %We notice that the convergence precision is a round $10^{-7}$ for the both implementation on CPU and GPU. Consequently, we can conclude that Ehrlich-Aberth on GPU are faster and accurately then CPU implementation.
752
753 \subsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
754 To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel). In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. 
755 For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40 GPU is 1,024, so we varied the number of threads per block from 8 to 1,024. We took into account the execution time for both sparse and full of 10 different polynomials of size 50,000 and 10 different polynomials of size 500,000 degrees.
756
757 \begin{figure}[htbp]
758 \centering
759   \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
760 \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
761 \label{fig:02}
762 \end{figure}
763
764 The figure 2 show that, the best execution time for both sparse and full polynomial are given when the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the best number of threads per block is 64, Whereas, the large polynomials the best number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256.
765
766 \subsection{Influence of exp-log solution to compute high degree polynomials}
767
768 In this experiment we report the performance of the exp-log solution described in Section~\ref{sec2} to compute very high degrees polynomials.   
769 \begin{figure}[htbp]
770 \centering
771   \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog}
772 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
773 \label{fig:03}
774 \end{figure}
775
776
777 Figure~\ref{fig:03} shows a comparison between the execution time of
778 the Ehrlich-Aberth method using the exp-log solution and the
779 execution time of the Ehrlich-Aberth method without this solution,
780 with full and sparse polynomials degrees. We can see that the
781 execution times for both algorithms are the same with full polynomials
782 degrees less than 4,000 and sparse polynomials less than 150,000. We
783 also clearly show that the classical version (without exp-log) of
784 Ehrlich-Aberth algorithm do not converge after these degree with
785 sparse and full polynomials. In counterpart, the new version of
786 Ehrlich-Aberth algorithm with the exp-log solution can solve very
787 high degree polynomials.
788
789 %in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying exp-log solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees . 
790
791
792
793
794 \subsection{Comparison of the Durand-Kerner and the Ehrlich-Aberth methods}
795
796 In this part, we  compare the Durand-Kerner and the Ehrlich-Aberth
797 methods on GPU. We took into account the execution times, the number of iterations and the polynomials size for the both sparse and full polynomials.  
798
799 \begin{figure}[htbp]
800 \centering
801   \includegraphics[width=0.8\textwidth]{figures/EA_DK}
802 \caption{Execution times of the  Durand-Kerner and the Ehrlich-Aberth methods on GPU}
803 \label{fig:04}
804 \end{figure}
805
806 Figure~\ref{fig:04} shows the execution times of both methods with
807 sparse polynomial degrees ranging from 1,000 to 1,000,000. We can see
808 that the Ehrlich-Aberth algorithm is faster than Durand-Kerner
809 algorithm, with an average of 25 times faster. Then, when degrees of
810 polynomial exceed 500,000 the execution times with DK are very long.
811
812 %with double precision not exceed $10^{-5}$.
813
814 \begin{figure}[htbp]
815 \centering
816   \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
817 \caption{The number of iterations to converge for the Ehrlich-Aberth
818   and the Durand-Kerner methods}
819 \label{fig:05}
820 \end{figure}
821
822 Figure~\ref{fig:05} show the evaluation of the number of iteration according
823 to degree of polynomial from both EA and DK algorithms, we can see
824 that the iteration number of DK is of order 100 while EA is of order
825 10. Indeed the computing of the derivative of P (the polynomial to
826 resolve) in the iterative function (Eq.~\ref{Eq:Hi}) executed by EA
827 allows the algorithm to converge more quickly. In counterpart, the
828 DK operator (Eq.~\ref{DK}) needs low operation, consequently low
829 execution time per iteration, but it needs more iterations to converge.
830
831
832  \section{Conclusion and perspectives}
833 \label{sec7}
834 In this paper we have presented the parallel implementation
835 Ehrlich-Aberth method on GPU for the problem of finding roots
836 polynomial. Moreover, we have improved the classical Ehrlich-Aberth
837 method which suffers from overflow problems, the exp-log solution
838 applied to the iterative function allows to solve high degree
839 polynomials.
840
841 We have performed many experiments with the Ehrlich-Aberth method in
842 GPU. These experiments highlight that this method is very efficient in
843 GPU compared to all the other implementations. The improvement with
844 the exponential logarithm solution allows us to solve sparse and full
845 high degree polynomials up to 1,000,000 degree. Hence, it may be
846 possible to consider to use polynomial root finding methods in other
847 numerical applications on GPU.
848
849
850 In future works, we plan to investigate the possibility of using
851 several multiple GPUs simultaneously, either with multi-GPU machine or
852 with cluster of GPUs. It may also be interesting to study the
853 implementation of other root finding polynomial methods on GPU.
854
855
856
857 \bibliography{mybibfile}
858
859 \end{document}