]> AND Private Git Repository - kahina_paper1.git/blob - elsarticle-template.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[kahina_paper1.git] / elsarticle-template.tex
1 \documentclass[review]{elsarticle}
2
3 \usepackage{lineno,hyperref}
4 %%\usepackage[utf8]{inputenc}
5 %%\usepackage[T1]{fontenc}
6 %%\usepackage[french]{babel}
7 \usepackage{amsmath,amsfonts,amssymb}
8 \usepackage[ruled,vlined]{algorithm2e}
9 \usepackage{array,multirow,makecell}
10 \setcellgapes{1pt}
11 \makegapedcells
12 \newcolumntype{R}[1]{>{\raggedleft\arraybackslash }b{#1}}
13 \newcolumntype{L}[1]{>{\raggedright\arraybackslash }b{#1}}
14 \newcolumntype{C}[1]{>{\centering\arraybackslash }b{#1}}
15 \modulolinenumbers[5]
16
17 \journal{Journal of \LaTeX\ Templates}
18
19 %%%%%%%%%%%%%%%%%%%%%%%
20 %% Elsevier bibliography styles
21 %%%%%%%%%%%%%%%%%%%%%%%
22 %% To change the style, put a % in front of the second line of the current style and
23 %% remove the % from the second line of the style you would like to use.
24 %%%%%%%%%%%%%%%%%%%%%%%
25
26 %% Numbered
27 %\bibliographystyle{model1-num-names}
28
29 %% Numbered without titles
30 %\bibliographystyle{model1a-num-names}
31
32 %% Harvard
33 %\bibliographystyle{model2-names.bst}\biboptions{authoryear}
34
35 %% Vancouver numbered
36 %\usepackage{numcompress}\bibliographystyle{model3-num-names}
37
38 %% Vancouver name/year
39 %\usepackage{numcompress}\bibliographystyle{model4-names}\biboptions{authoryear}
40
41 %% APA style
42 %\bibliographystyle{model5-names}\biboptions{authoryear}
43
44 %% AMA style
45 %\usepackage{numcompress}\bibliographystyle{model6-num-names}
46
47 %% `Elsevier LaTeX' style
48 \bibliographystyle{elsarticle-num}
49 %%%%%%%%%%%%%%%%%%%%%%%
50
51 \begin{document}
52
53 \begin{frontmatter}
54
55 \title{A parallel  root finding polynomial on GPU}
56
57 %% Group authors per affiliation:
58 \author{Elsevier\fnref{myfootnote}}
59 \address{Radarweg 29, Amsterdam}
60 \fntext[myfootnote]{Since 1880.}
61
62 %% or include affiliations in footnotes:
63 \author[mymainaddress]{Ghidouche Kahina\corref{mycorrespondingauthor}}
64 %%\ead[url]{kahina.ghidouche@gmail.com}
65 \cortext[mycorrespondingauthor]{Corresponding author}
66 \ead{kahina.ghidouche@gmail.com}
67
68 \author[mysecondaryaddress]{Couturier Raphael\corref{mycorrespondingauthor}}
69 %%\cortext[mycorrespondingauthor]{Corresponding author}
70 \ead{raphael.couturier@univ-fcomte.fr}
71
72 \author[mymainaddress]{Abderrahmane Sider\corref{mycorrespondingauthor}}
73 %%\cortext[mycorrespondingauthor]{Corresponding author}
74 \ead{ar.sider@univ-bejaia.dz}
75
76 \address[mymainaddress]{Department of informatics,University of Bejaia,Algeria}
77 \address[mysecondaryaddress]{FEMTO-ST Institute, University of Franche-Compté }
78
79 \begin{abstract}
80 in this article we present a parallel implementation
81 of the Aberth algorithm for the problem root finding for
82 high degree polynomials on GPU architecture (Graphics
83 Processing Unit).
84 \end{abstract}
85
86 \begin{keyword}
87 root finding of polynomials, high degree, iterative methods, Durant-Kerner, GPU, CUDA, CPU , Parallelization
88 \end{keyword}
89
90 \end{frontmatter}
91
92 \linenumbers
93
94 \section{Root finding problem}
95 We consider a polynomial of degree \textit{n} having coefficients
96 in the complex \textit{C} and zeros $\alpha_{i},\textit{i=1,...,n}$. 
97 %%\begin{center}
98 \begin{equation}
99      {\Large p(x)=\sum{a_{i}x^{i}}=a_{n}\prod(x-\alpha_{i}),a_{0} a_{n}\neq 0}
100 \end{equation}
101 %%\end{center}
102
103  The root finding problem consist to find
104 all n root of \textit{p(x)}. the problem of finding a root is
105 equivalent to the problem of finding a fixed-point. To see this
106 consider the fixed-point problem of finding the n-dimensional
107 vector x such that
108 \begin{center}
109 $x=g(x).  $
110 \end{center}
111 Where $g : C^{n}\longrightarrow C^{n}$. Note that we can easily
112 rewrite this fixed-point problem as a root-finding problem by
113 setting $f (x) = x-g(x)$ and likewise we can recast the
114 root-finding problem into a fixed-point problem by setting
115 \begin{center}
116 $g(x)= f(x)-x$
117 \end{center}
118 Often it will not be possible to solve such nonlinear equation
119 root-finding problems analytically. When this occurs we turn to
120 numerical methods to approximate the solution. Generally speaking,
121 algorithms for solving problems numerically can be divided into
122 two main groups: direct methods and iterative methods.
123 \\
124  Direct methods exist only for $n \leq 4$,solved in closed form by G. Cardano
125 in the mid-16th century. However, N.H. Abel in the early 19th
126 century showed that polynomials of degree five or more could not
127 be solved by  directs methods. Since then researchers have
128 concentrated on numerical (iterative) methods such as the famous
129 Newton's method, Bernoulli's method of the 18th, and Graeffe's.
130 With the advent of electronic computers, different methods has
131 been developed such as the Jenkins-Traub method, Larkin s method,
132 Muller's method, and several methods for simultaneous
133 approximation of all the roots, starting with the Durand-Kerner
134 method:
135 %%\begin{center}
136 \begin{equation}
137  Z_{i}=Z_{i}-\frac{P(Z_{i})}{\prod_{i\neq j}(z_{i}-z_{j})}
138 \end{equation}
139 %%\end{center}
140
141 This formula is mentioned for the first time from
142 Weiestrass~\cite{Weierstrass03} as part of the fundamental theorem
143 of Algebra and is rediscovered from Ilieff~\cite{Ilie50},
144 Docev~\cite{Docev62}, Durand~\cite{Durand60},
145 Kerner~\cite{Kerner66}. Another method discovered from
146 Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
147 in the following form from Ehrlich~\cite{Ehrlich67} and
148 Aberth~\cite{Aberth73}.
149 %%\begin{center}
150 \begin{equation}
151  Z_{i}=Z_{i}-\frac{1}{{\frac {P'(Z_{i})} {P(Z_{i})}}-{\sum_{i\neq j}(z_{i}-z_{j})}}
152 \end{equation}
153 %%\end{center}
154
155 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizon83} have proved that
156 the above method has cubic order of convergence for simple roots.
157
158
159 Iterative methods raise several problem when implemented e.g.
160 specific sizes of numbers must be used to deal with this
161 difficulty.Moreover,the convergence time of iterative methods
162 drastically increase like the degrees of high polynomials. The
163 parallelization of these algorithms will improve the convergence
164 time.
165
166 Many authors have treated the problem of parallelization of
167 simultaneous methods. Freeman~\cite{Freeman89} has tested the DK
168 method, EA method and another method of the fourth order proposed
169 from Farmer and Loizou~\cite{Loizon83},on a 8- processor linear
170 chain, for polynomial of degree up to 8. The third method often
171 diverges, but the first two methods have speed-up 5.5
172 (speed-up=(Time on one processor)/(Time on p processors)). Later
173 Freeman and Bane~\cite{Freemanall90}  consider asynchronous
174 algorithms, in which each processor continues to update its
175 approximations even although the latest values of other $z_i((k))$
176 have not received from the other processors, in difference with
177 the synchronous version where it would wait.
178 in~\cite{Raphaelall01}proposed two methods of parallelization for
179 architecture with shared memory and distributed memory,it able to
180 compute the root of polynomial degree  10000 on 430 s with only 8
181 pc and 2 communications per iteration. Compare to the sequential
182 it take 3300 s to obtain the same results.
183
184 After this few works discuses this problem until the apparition of
185 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10},a
186 parallel computing platform and a programming model invented by
187 NVIDIA. The computing ability of GPU has exceeded the counterpart
188 of CPU. It is a waste of resource to be just a graphics card for
189 GPU. CUDA adopts a totally new computing architecture to use the
190 hardware resources provided by GPU in order to offer a stronger
191 computing ability to the massive data computing.
192
193
194 Indeed,~\cite{Kahinall14}proposed the implementation of the
195 Durand-Kerner method on GPU (Graphics Processing Unit). The main
196 result prove that a parallel implementation is 10 times as fast as
197 the sequential implementation on a single CPU for high degree
198 polynomials that is greater than about 48000.
199 \paragraph{}
200 The mean part of our work is to implement the Aberth method for the problem root finding for
201 high degree polynomials on GPU architecture (Graphics Processing Unit). Initially we present the Aberth method in section 1. Amelioration of Aberth method was proposed in section 2. A related works for the implementation of simultaneous methods in a parallel computer was discuss in section 3. Section 4 we propose a parallel implementation of Aberth method on GPU. Section 5, we present our result and discuss it. Finally, in Section 6, we present our conclusions and future research directions.  
202
203 \section{Aberth method}
204 A cubically convergent iteration method for finding zeros of
205 polynomials was proposed by O.Aberth~\cite{Aberth73}. The Aberth
206 method is a purely algebraic derivation.To illustrate the
207 derivation, we let $w_{i}(z)$ be the product of linear factor 
208
209 \begin{equation}
210 w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
211 \end{equation}
212
213 And rational function $R_{i}(z)$ be the correction term of
214 Weistrass method~\cite{Weierstrass03}:
215
216 \begin{equation}
217 R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n
218 \end{equation}
219
220 Differentiating the rational function $R_{i}(z)$ and applying the
221 Newton method, we have:
222
223 \begin{equation}
224 \frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{i}}}, i=1,2,...,n
225 \end{equation}
226
227 Substituting $x_{j}$ for z we obtain the Aberth iteration method
228
229 Let present the means stages of Aberth method.
230
231 \subsection{Polynomials Initialization}
232  The initialization of polynomial P(z) with complex coefficients
233  are given by:
234
235 \begin{equation}
236   p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
237 \end{equation}
238
239
240 \subsection{Vector $Z^{(0)}$ Initialization}
241
242 The choice of the initial points $z^{(0)}_{i}, i = 1, . . . , n.$
243 from which starting the iteration  (2) or (3), is rather delicate
244 since the number of steps needed by the iterative method to reach
245 a given approximation strongly depends on it.
246 In~\cite{Aberth73}the Aberth iteration is started by selecting n
247 equispaced points on a circle of center 0 and radius r, where r is
248 an upper bound to the moduli of the zeros. After,~\cite{Bini96}
249 performs this choice by selecting complex numbers along different
250 circles and relies on the result of~\cite{Ostrowski41}.
251
252 \begin{equation}
253 %%\begin{align}
254 \sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
255 v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
256 %%\end{align}
257 \end{equation}
258 Where:
259 \begin{equation}
260 u_{i}=2.|a_{i}|^{\frac{1}{i}};
261 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
262 \end{equation}
263
264 \subsection{Iterative Function $H_{i}$}
265 The operator used with Aberth method is corresponding to the
266 following equation which will enable the convergence towards
267 polynomial solutions, provided all the roots are distinct.
268
269 \begin{equation}
270 H_{i}(z)=z_{i}-\frac{1}{\frac{P^{'}(z_{i})}{P(z_{i})}-\sum_{j\neq
271 i}{\frac{1}{z_{i}-z_{j}}}}
272 \end{equation}
273
274 \subsection{Convergence condition}
275 Determines the success of the termination. It consists in stopping
276 the iterative function $H_{i}(z)$ when the root are stable, the method
277 converge sufficiently:
278
279 \begin{equation}
280 \forall i \in
281 [1,n];\frac{z_{i}^{(k)}-z_{i}^{(k-1)}}{z_{i}^{(k)}}<\xi
282 \end{equation}
283
284
285 \section{Amelioration of Aberth method }
286 The Aberth method implementation suffer of overflow problems. This
287 situation occurs, for instance, in the case where a polynomial
288 having positive coefficients and large degree is computed at a
289 point $\xi$ where $|\xi| > 1$. Indeed the limited number in the
290 mantissa of floating takings the computation of P(z) wrong when z
291 is large. for example $(10^{50}) +1+ (- 10^{50})$ will give result
292 0 instead of 1 in reality. Consequently we can not compute the roots
293 for large polynomial's degree. This problem was discuss in
294 ~\cite{Karimall98} for the Durand-Kerner method, the authors
295 propose to use the logarithm and the exponential of a complex:
296
297 \begin{equation}
298  \forall(x,y)\in R^{*2}; \ln (x+i.y)=\ln(x^{2}+y^{2})
299 2+i.\arcsin(y\sqrt{x^{2}+y^{2}})_{\left] -\pi, \pi\right[ }
300 \end{equation}
301 %%\begin{equation}
302 \begin{align}
303  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
304                                      & =\exp(x).\cos(y)+i.\exp(x).\sin(y)
305 \end{align}
306 %%\end{equation}
307
308 The application of logarithm can replace any multiplications and
309 divisions with additions and subtractions. Consequently, it
310 manipulates lower absolute values and can be compute the roots for
311 large polynomial's degree exceed~\cite{Karimall98}.
312
313 Applying this solution for the Aberth method we obtain the
314 iteration function with logarithm:
315 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
316 \begin{equation}
317 H_{i}(z)=z_{i}^{k}-\exp \left(\ln \left(
318 p(z_{k})\right)-\ln\left(p(z_{k}^{'})\right)- \ln
319 \left(1-Q(z_{k})\right)\right)
320 \end{equation}
321 Where:
322
323 \begin{equation}
324 Q(z_{k})=\exp\left( \ln (p(z_{k}))-\ln(p(z_{k}^{'}))+\ln \left(
325 \sum_{k\neq j}^{n}\frac{1}{z_{k}-z_{j}}\right)\right)
326 \end{equation}
327
328 This solution is applying when it is necessary
329
330 \section{The implementation of simultaneous methods in a parallel computer}
331     The main problem of the simultaneous methods is that the necessary
332 time needed for the convergence is increased with the increasing
333 of the degree of the polynomial. The parallelization of these
334 algorithms will improve the convergence time. Researchers usually
335 adopt one of the two following approaches to parallelize root
336 finding algorithms. One approach is to reduce the total number of
337 iterations as implemented by Miranker
338 ~\cite{Mirankar68,Mirankar71}, Schedler~\cite{Schedler72} and
339 Winogard~\cite{Winogard72}. Another approach is to reduce the
340 computation time per iteration, as reported
341 in~\cite{Benall68,Jana06,Janall99,Riceall06}. There are many
342 schemes for simultaneous approximations of all roots of a given
343 polynomial. Several works on different methods and issues of root
344 finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Skachek08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich methods are the most practical choices among
345 them~\cite{Bini04}. These two methods have been extensively
346 studied for parallelization due to their following advantages. The
347 computation involved in these methods has some inherent
348 parallelism that can be suitably exploited by SIMD machines.
349 Moreover, they have fast rate of convergence (quadratic for the
350 Durand-Kerner method and cubic for the Ehrlich). Various parallel
351 algorithms reported for these methods can be found
352 in~\cite{Cosnard90, Freeman89,Freemanall90,,Jana99,Janall99}.
353 Freeman and Bane~\cite{Freemanall90} presented two parallel
354 algorithms on a local memory MIMD computer with the compute-to
355 communication time ratio O(n). However, their algorithms require
356 each processor to communicate its current approximation to all
357 other processors at the end of each iteration. Therefore they
358 cause a high degree of memory conflict. Recently the author
359 in~\cite{Mirankar71} proposed two versions of parallel algorithm
360 for the Durand-Kerner method, and Aberth method on model of
361 Optoelectronic Transpose Interconnection System (OTIS).The
362 algorithms are mapped on an OTIS-2D torus using N processors. This
363 solution need N processors to compute N roots, that it is not
364 practical (is not suitable to compute large polynomial's degrees).
365 Until then, the related works are not able to compute the root of
366 the large polynomial's degrees (higher then 1000) and with small
367 time.
368
369     Finding polynomial roots rapidly and accurately it is our
370 objective, with the apparition of the CUDA(Compute Unified Device
371 Architecture), finding the roots of polynomials becomes rewarding
372 and very interesting, CUDA adopts a totally new computing
373 architecture to use the hardware resources provided by GPU in
374 order to offer a stronger computing ability to the massive data
375 computing. In~\cite{Kahinall14} we proposed the first implantation
376 of the root finding polynomials method on GPU (Graphics Processing
377 Unit),which is the Durand-Kerner method. The main result prove
378 that a parallel implementation is 10 times as fast as the
379 sequential implementation on a single CPU for high degree
380 polynomials that is greater than about 48000. Indeed, in this
381 paper we present a parallel implementation of Aberth method on
382 GPU, more details are discussed in the following of this paper.
383
384
385 \section {A parallel implementation of Aberth method}
386
387 \subsection{Background on the GPU architecture}
388 A GPU is viewed as an accelerator for the data-parallel and
389 intensive arithmetic computations. It draws its computing power
390 from the parallel nature of its hardware and software
391 architectures. A GPU is composed of hundreds of Streaming
392 Processors (SPs) organized in several blocks called Streaming
393 Multiprocessors (SMs). It also has a memory hierarchy. It has a
394 private read-write local memory per SP, fast shared memory and
395 read-only constant and texture caches per SM and a read-write
396 global memory shared by all its SPs~\cite{NVIDIA10}
397
398     On a CPU equipped with a GPU, all the data-parallel and intensive
399 functions of an application running on the CPU are off-loaded onto
400 the GPU in order to accelerate their computations. A similar
401 data-parallel function is executed on a GPU as a kernel by
402 thousands or even millions of parallel threads, grouped together
403 as a grid of thread blocks. Therefore, each SM of the GPU executes
404 one or more thread blocks in SIMD fashion (Single  Instruction,
405 Multiple Data) and in turn each SP of a GPU SM runs one or more
406 threads within a block in SIMT fashion (Single Instruction,
407 Multiple threads). Indeed at any given clock cycle, the threads
408 execute the same instruction of a kernel, but each of them
409 operates on different data.
410  GPUs only work on data filled in their
411 global memories and the final results of their kernel executions
412 must be communicated to their CPUs. Hence, the data must be
413 transferred in and out of the GPU. However, the speed of memory
414 copy between the GPU and the CPU is slower than the memory
415 bandwidths of the GPU memories and, thus, it dramatically affects
416 the performances of GPU computations. Accordingly, it is necessary
417 to limit data transfers between the GPU and its CPU during the
418 computations.
419 \subsection{Background on the CUDA Programming Model}
420
421 The CUDA programming model is similar in style to a single program
422 multiple-data (SPMD) softwaremodel. The GPU is treated as a
423 coprocessor that executes data-parallel kernel functions. CUDA
424 provides three key abstractions, a hierarchy of thread groups,
425 shared memories, and barrier synchronization. Threads have a three
426 level hierarchy. A grid is a set of thread blocks that execute a
427 kernel function. Each grid consists of blocks of threads. Each
428 block is composed of hundreds of threads. Threads within one block
429 can share data using shared memory and can be synchronized at a
430 barrier. All threads within a block are executed concurrently on a
431 multithreaded architecture.The programmer specifies the number of
432 threads per block, and the number of blocks per grid. A thread in
433 the CUDA programming language is much lighter weight than a thread
434 in traditional operating systems. A thread in CUDA typically
435 processes one data element at a time. The CUDA programming model
436 has two shared read-write memory spaces, the shared memory space
437 and the global memory space. The shared memory is local to a block
438 and the global memory space is accessible by all blocks. CUDA also
439 provides two read-only memory spaces, the constant space and the
440 texture space, which reside in external DRAM, and are accessed via
441 read-only caches.
442
443 \subsection{ The implementation of Aberth method on GPU}
444 %%\subsection{A CUDA implementation of the Aberth's method }
445 %%\subsection{A GPU implementation of the Aberth's method }
446
447
448
449 \subsubsection{A sequential Aberth algorithm}
450 The means steps of Aberth method can expressed as an algorithm
451 like:
452   
453 \begin{algorithm}[H]
454 \LinesNumbered
455 \caption{Algorithm to find root polynomial with Aberth method}
456
457 \KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
458 tolerance threshold),P(Polynomial to solve)}
459
460 \KwOut {Z(The solution root's vector)}
461
462 \BlankLine
463
464 Initialization of the parameter of the polynomial to solve\;
465 Initialization of the solution vector $Z^{0}$\;
466
467 \While {$\Delta z_{max}\succ \epsilon$}{
468  Let $\Delta z_{max}=0$\;
469 \For{$j \gets 0 $ \KwTo $n$}{
470 $ZPrec\left[j\right]=Z\left[j\right]$\;
471 $Z\left[j\right]=H\left(j,Z\right)$\;
472 }
473
474 \For{$i \gets 0 $ \KwTo $n-1$}{
475 $c=\frac{\left|Z\left[i\right]-ZPrec\left[i\right]\right|}{Z\left[i\right]}$\;
476 \If{$c\succ\Delta z_{max}$ }{
477 $\Delta z_{max}$=c\;}
478 }
479 }
480 \end{algorithm}
481
482 ~\\ 
483 In this sequential algorithm one thread CPU execute all steps. Let see the step 3 the execution of the iterative function, 2 instructions are needed, the first instruction \textit{save} the solution vector for the previous iteration, the second instruction \textit{update} or compute a new values of the roots.
484 We have two manner to execute the iterative function, taking a Jacobi iteration who need all the previous value $z^{(k)}_{i}$ to compute the new value $z^{(k+1)}_{i}$we have:
485
486 \begin{equation}
487 H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}}}, i=1,...,n.
488 \end{equation}
489
490 Or with the Gauss-seidel iteration, we have:
491 \begin{equation}
492 H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})\sum^{i-1}_{j=1}\frac{1}{z^{(k)}_{i}-z^{(k+1)}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}}}, i=1,...,n.
493 \end{equation}
494
495 In formula(16), the Gauss-seidel iteration converge more quickly because they used the most fresh computed root $z^{k+1}_{i}$ , at this reason we used Gauss-seidel iteration.
496
497 The steps 4 of the Aberth method compute the convergence of the roots, using(9) formula.
498 Both steps 3 and 4 use 1 thread to compute N roots on CPU, which is harmful for the large polynomial's roots finding.
499
500 \paragraph{The execution time}
501 Let $T_{i}(N)$: the time to compute one new root's value of the step 3,$T_{i}$ depend on the polynomial's degrees N, when N increase $T_{i}$ increase to. We need $N.T_{i}(N)$ to compute all the new root's value in one iteration on the step 3.
502
503 Let $T_{j}$: the time to compute one root's convergence value of the step 4, we need $N.T_{j}$ to compute all the root's convergence value in one iteration on the step 4.
504
505 The execution time for both steps 3 and 4 can see like:
506 \begin{equation}
507 T_{exe}=N(T_{i}(N)+T_{j})+O(n).
508 \end{equation}
509 Let Nbr\_iter the number of iteration necessary to compute all the roots, so the total execution time $Total\_time_{exe}$ can give like:
510
511 \begin{equation}
512 Total\_time_{exe}=\left[N\left(T_{i}(N)+T_{j}\right)+O(n)\right].Nbr\_iter
513 \end{equation}
514 The execution time increase with the increasing of the polynomial's root, which take necessary to parallelize this step to reduce the execution time. In the following paper you explain how we parrallelize  this step using GPU architecture with CUDA platform.
515
516 \subsubsection{Parallelize the steps on GPU }
517 On the CPU Aberth algorithm both steps 3 and 4 contain the loop \verb=for=, it use one thread to execute all the instruction in the loop N times. Here we explain how the GPU architecture can compute this loop and reduce the execution time.
518 The GPU architecture assign the execution of this loop to a groups of parallel threads organized as a grid of blocks each block contain a number of threads. All threads within a block are executed concurrently in parallel. The instruction are executed as a kernel.
519
520 Let nbr\_thread be the number of threads executed in parallel, so you can easily transform the (18)formula like this: 
521
522 \begin{equation}
523 Total\_time_{exe}=\left[\frac{N}{nbr\_thread}\left(T_{i}(N)+T_{j}\right)+O(n)\right].Nbr\_iter.
524 \end{equation}
525
526 In theory, the $Total\_time_{exe}$ on GPU is speed up nbr\_thread times as a $Total\_time_{exe}$ on CPU. We show more details in the experiment part. 
527 ~\\
528 ~\\
529 In CUDA platform, All the instruction of the loop \verb=for= are executed by the GPU as a kernel form. A kernel is a procedure written in CUDA and defined by a heading \verb=__global__=, which means that it is to be executed by the GPU. The following algorithm see the Aberth algorithm on GPU:
530
531 \begin{algorithm}[H]
532 \LinesNumbered
533 \caption{Algorithm to find root polynomial with Aberth method}
534
535 \KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
536 tolerance threshold),P(Polynomial to solve)}
537
538 \KwOut {Z(The solution root's vector)}
539
540 \BlankLine
541
542 Initialization of the parameter of the polynomial to solve\;
543 Initialization of the solution vector $Z^{0}$\;
544 Allocate and fill the data in the global memory GPU\;
545
546 \While {$\Delta z_{max}\succ \epsilon$}{
547  Let $\Delta z_{max}=0$\;
548 $ kernel\_save(d\_Z^{k-1})$\;
549 $ kernel\_update(d\_z^{k})$\;
550 $kernel\_testConverge (d_?z_{max},d_Z^{k},d_Z^{k-1})$\;
551 }
552 \end{algorithm}
553 ~\\ 
554
555 After the initialization step, all data of the root finding problem to be solved must be copied from the CPU memory to the GPU global memory, because the GPUs only work on the data filled in their memories. Next, all the data-parallel arithmetic operations inside the main loop \verb=(do ... while(...))= are executed as kernels by the GPU. The first kernel \textit{save} in line( 6, Algorithm 2) consist to save the vector of polynomial's root found at the previous time step on GPU memory, in order to test the convergence of the root at each iteration in line (8, Algorithm 2).
556
557 The second kernel executes the iterative function and update Z(k),as formula (), we notice that the kernel update are called in two forms,  separated with  the value of \emph{R} which determines the radius beyond which we apply the logarithm formula like this: 
558
559 \begin{algorithm}[H]
560 \LinesNumbered
561 \caption{A global Algorithm for the iterative function}
562
563 \eIf{$(\left|Z^{(k)}\right|<= R)$}{
564 $kernel\_update(d\_z^{k})$\;}
565 {
566 $kernel\_update\_Log(d\_z^{k})$\;
567 }
568 \end{algorithm}
569
570 The first form execute the formula(8) if all the module's $( |Z(k)|<= R)$, else the kernel execute the formulas(13,14).the radius R was computed like:
571
572 $$R = \exp( \log(DBL\_MAX) / (2*(double)P.degrePolynome) )$$
573
574 The last kernel verify the convergence of the root after each update of $Z^{(k)}$, as formula(), we used the function of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
575
576 The kernels terminates its computations when all the root are converged. Finally, the solution of the  root finding problem is copied back from the GPU global memory to the CPU memory. We use the communication functions of CUDA for the memory allocations in the GPU \verb=(cudaMalloc())= and the data transfers from the CPU memory to the GPU memory \verb=(cudaMemcpyHostToDevice)=
577 or from the GPU memory to the CPU memory \verb=(cudaMemcpyDeviceToHost))=. 
578 \subsection{Experimental study}
579
580 \subsubsection{Definition of the polynomial used}
581 We use a polynomial of the following form for which the
582 roots are distributed on 2 distinct circles:
583 \begin{equation}
584         \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n^{1}}-\alpha_{1})(z^{n^{2}}-\alpha_{2})
585 \end{equation}
586
587 This form makes it possible to associate roots having two
588 different modules and thus to work on a polynomial constitute
589 of four non zero terms.
590 \\
591  An other form of the polynomial to obtain  a full polynomial is:
592 %%\begin{equation}
593         %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
594 %%\end{equation}
595
596 \begin{equation}
597      {\Large \forall a_{i} \in C; p(x)=\sum^{n-1}_{i=1} a_{i}.x^{i}} 
598 \end{equation}
599 with this formula, we can have until \textit{n} non zero terms.
600
601 \subsubsection{The study condition} 
602 In order to have representative average values, for each
603 point of our curves we measured the roots finding of 10
604 different polynomials.
605
606 The our experiences results concern two parameters which are
607 the polynomial degree and the execution time of our program
608 to converge on the solution. The polynomial degree allows us
609 to validate that our algorithm is powerful with high degree
610 polynomials. The execution time remains the
611 element-key which justifies our work of parallelization.
612         For our tests we used a CPU Intel(R) Xeon(R) CPU
613 E5620@2.40GHz and a GPU Tesla C2070 (with 6 Go of ram)
614
615 \subsubsection{Comparative study}
616 We initially carried out the convergence of Aberth algorithm with various sizes of polynomial, in second we evaluate the influence of the size of the threads per block....
617
618 \paragraph{Aberth algorithm on CPU and GPU}
619
620 \begin{table}[!ht]
621         \centering
622                 \begin{tabular} {|R{2cm}|L{2.5cm}|L{2.5cm}|L{1.5cm}|L{1.5cm}|}
623                         \hline Polynomial's degrees & $T_{exe}$ on CPU & $T_{exe}$ on GPU & CPU iteration & GPU iteration\\
624                                 \hline 5000 & 1.90 & 0.40 & 18 & 17\\
625                                 \hline 10000 & 172.723 & 0.59 & 21 & 24\\
626                                 \hline 20000 & 172.723 & 1.52 & 21 & 25\\
627                                 \hline 30000 & 172.723 & 2.77 & 21 & 33\\
628                                 \hline 50000 & 172.723 & 3.92 & 21 & 18\\
629                                 \hline 500000 & $>$1h & 497.109 &  & 24\\
630                                 \hline 1000000 & $>$1h & 1,524.51& & 24\\
631                                 \hline 
632                 \end{tabular}
633         \caption{the convergence of Aberth algorithm}
634         \label{tab:theConvergenceOfAberthAlgorithm}
635 \end{table}
636  
637 \paragraph{The impact of the thread's number into the convergence of Aberth  algorithm}
638
639 \begin{table}[!h]
640         \centering
641                 \begin{tabular} {|R{2.5cm}|L{2.5cm}|L{2.5cm}|}
642                         \hline Thread's numbers & Execution time &Number of iteration\\
643                                 \hline 1024 & 523 & 27\\
644                                 \hline 512 & 449.426 & 24\\
645                                 \hline 256 & 440.805 & 24\\
646                                 \hline 128 & 456.175 & 22\\
647                                 \hline 64 & 472.862 & 23\\
648                                 \hline 32 & 830.152 & 24\\
649                                 \hline 8 & 2632.78 & 23 \\
650                                 \hline
651                                 \end{tabular}
652                                 \caption{The impact of the thread's number into the convergence of Aberth  algorithm}
653         \label{tab:Theimpactofthethread'snumberintotheconvergenceofAberthalgorithm}
654                 
655 \end{table}
656
657 \paragraph{A comparative study between Aberth and Durand-kerner algorithm}
658 \begin{table}[htbp]
659         \centering
660                 \begin{tabular} {|R{2cm}|L{2.5cm}|L{2.5cm}|L{1.5cm}|L{1.5cm}|}
661                         \hline Polynomial's degrees & Aberth $T_{exe}$ & D-Kerner $T_{exe}$ & Aberth iteration & D-Kerner iteration\\
662                         \hline 5000 &  0.40 & 3.42 & 17 & 138 \\
663                         \hline 50000 & 3.92 & 385.266 & 17 & 823\\
664                         \hline 500000 & 497.109 & 4677.36 & 24 & 214\\
665                         \hline                                  
666                                         \end{tabular}
667         \caption{Aberth algorithm compare to Durand-Kerner algorithm}
668         \label{tab:AberthAlgorithCompareToDurandKernerAlgorithm}
669 \end{table}
670
671
672
673 \bibliography{mybibfile}
674
675 \end{document}