1 @InCollection{newt1670,
2 author = "Isaac Newton",
4 title = "Tractatus de Methodis Serierum et Fluxionum",
5 booktitle = "The Mathematical Papers of Isaac Newton, III",
6 editor = "D. T. Whiteside",
8 publisher = "Cambridge University Press, Cambridge",
9 kwds = "na, history, Newton's method",
13 author = "Girolamo Cardano",
14 title = "Ars Magna or The Rules of Algebra, 1545",
15 editor = "T. Richard Witmer",
21 title = "Beweis der Unmöglichkeit, algebraische Gleichungen von höheren Graden als dem vierten allgemein aufzulösen",
22 journal = "J. reine angew, Math",
27 author = "Niels Henrik Abel",
33 title = "Iteration Methods for Finding all Zeros of a Polynomial Simultaneously",
34 journal = "Mathematics of Computation",
44 title = "On the approximations of Newton",
45 journal = "Annual Sofia Univ",
55 title = "An alternative method of Newton for simultaneous calculation of all the roots of a given algebraic equation",
56 journal = "Phys. Math. J",
65 author = "\'E. Durand",
66 publisher = "Masson, Paris",
67 title = "Solutions num\'eriques des \'equations alg\'ebriques.
68 {T}ome {I}: \'{E}quations du type {$F(x)=0$}; racines
74 author = "Immo O. Kerner",
75 title = "{Ein Gesamtschrittverfahren zur Berechnung der
76 Nullstellen von Polynomen}. ({German}) [{A} Complete
77 Step Method for the Computation of Zeros of
79 journal = "Numerische Mathematik",
86 ISSN = "0029-599X (print), 0945-3245 (electronic)",
87 bibdate = "Mon Oct 18 01:28:20 MDT 1999",
88 bibsource = "http://www.math.utah.edu/pub/tex/bib/nummath.bib",
89 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
90 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
91 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
92 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
93 \path|beebe@acm.org|, \path|beebe@computer.org|
95 \path|http://www.math.utah.edu/~beebe/|",
96 fjournal = "Numerische Mathematik",
97 journal-url = "http://link.springer.com/journal/211",
101 @Article{Borch-Supan63,
102 author = "W. Boersch-Supan",
103 title = "A Posteriori Error Bounds for the Zeros of
105 journal = "Numerische Mathematik",
111 bibdate = "Fri Jan 12 11:37:56 1996",
112 acknowledgement = "Jon Rokne, Department of Computer Science, The
113 University of Calgary, 2500 University Drive N.W.,
114 Calgary, Alberta T2N 1N4, Canada",
118 title = "A modified Newton method for polynomials",
119 author = "Louis W. Ehrlich",
120 journal = "Commun. ACM",
124 bibdate = "2003-11-20",
126 http://dblp.uni-trier.de/db/journals/cacm/cacm10.html#Ehrlich67",
128 URL = "http://doi.acm.org/10.1145/363067.363115",
131 title = "Higher-order iteration functions for simultaneously approximating polynomial zeros",
132 journal = " Intern. J. Computer Math",
137 author = "G. Loizou",
141 title = "Calculating polynomial zeros on a local memory
143 author = "T. L. Freeman",
144 journal = "Parallel Computing",
148 bibdate = "2011-09-09",
150 http://dblp.uni-trier.de/db/journals/pc/pc12.html#Freeman89",
152 URL = "http://dx.doi.org/10.1016/0167-8191(89)90093-8",
154 @Article{Freemanall90,
155 title = " Asynchronous polynomial zero-finding algorithms",
156 journal = " Parallel Computing",
161 author = "T.L. Freeman AND R.K. Brankin",
164 @Article{Raphaelall01,
165 title = " Extraction de racines dans des polynômes creux de degrées élevés. {RSRCP} (Réseaux et Systèmes Répartis, Calculateurs Parallèles)",
166 journal = " Algorithmes itératifs paralléles et distribués",
171 author = "R. Couturier AND F. Spies",
174 @Article{Ostrowski41,
175 title = " On a Theorem by {J. L. Walsh} Concerning the Moduli of Roots of Algebraic Equations. A.M.S.",
176 journal = " Algorithmes itératifs paralléles et distribués",
181 author = "A. Ostrowski",
186 title = {Compute Unified Device Architecture Programming Guide Version 3.0},
187 OPTkey = {NVIDIA CUDA},
189 OPTorganization = {NVIDIA CUDA},
194 OPTnote = {http://www.nvidia.com/object/cuda_develop.html},
199 title = "Parallel implementation of the {D}urand-{K}erner algorithm for polynomial root-finding on {GPU}",
200 journal = "IEEE. Conf. on advanced Networking, Distributed Systems and Applications",
205 author = "K. Ghidouche AND R. Couturier AND A. Sider",
210 title = " Perfectionnements de la méthode asynchrone de {D}urand-{K}erner pour les polynômes complexes",
211 journal = " Calculateurs Parallèles",
216 author = "K. Rhofir AND F. Spies AND Jean-Claude Miellou",
220 title = "Numerical computation of polynomial zeros by means of
223 journal = "Numerical Algorithms",
227 bibdate = "2015-09-27",
229 http://dblp.uni-trier.de/db/journals/na/na13.html#Bini96",
231 URL = "http://dx.doi.org/10.1007/BF02207694",
234 title = " Parallel methods for approximating the roots of a function",
235 journal = " IBM Res Dev",
240 author = "WL. Mirankar",
244 title = " A survey of parallelism in numerical analysis",
245 journal = " SIAM Rev",
250 author = "WL. Mirankar",
254 title = " Parallel Numerical Methods for Solution of Equations",
255 journal = " Commun ACM ",
260 author = "GS. Schedler",
263 @InProceedings{Winogard72,
264 title = "Parallel Iteration Methods",
265 author = "S. Winograd",
266 bibdate = "2011-09-13",
268 http://dblp.uni-trier.de/db/conf/coco/cocc1972.html#Winograd72",
269 booktitle = "Complexity of Computer Computations",
270 publisher = "Plenum Press, New York",
272 editor = "Raymond E. Miller and James W. Thatcher",
273 ISBN = "0-306-30707-3",
275 series = "The IBM Research Symposia Series",
279 title = " A fast parallel algorithm for determining all roots of a polynomial with real roots",
280 journal = " Int: Proc of ACM",
285 author = "M. Ben-Or AND E. Feig AND D. Kozzen AND P. Tiwary",
289 title = " A highly parallel algorithm for root extraction",
290 journal = " IEEE Trans Comp",
295 author = "TA. Rice AND LH. Jamieson",
299 title = " Finding the roots of a polynomial on an MIMD multicomputer",
300 journal = " Parallel Comput",
305 author = "M. Cosnard AND P. Fraigniaud",
309 title = " Efficient parallel algorithms for finding polynomial zeroes",
310 journal = "Proc of the 6th int conference on advance computing, CDAC, Pune University Campus,India",
315 author = "PK. Jana AND BP. Sinha AND R. Datta Gupta",
319 title = " Polynomial interpolation and polynomial root finding on OTIS-Mesh",
320 journal = " Parallel Comput",
330 author = {B. Kalantari},
331 title = {Polynomial root finding and polynomiography},
332 publisher = {World Scientifict},
339 OPTmonth = {December},
345 title = " Structured matrix methods for polynomial root finding",
346 journal = " n: Proc of the 2007 Intl symposium on symbolic and algebraic computation",
351 author = "V. Skachek",
356 @InProceedings{Gemignani07,
357 author = "L. Gemignani",
358 title = "Structured matrix methods for polynomial
360 editor = "C. W. Brown",
361 booktitle = "Proceedings of the 2007 International Symposium on
362 Symbolic and Algebraic Computation, July 29--August 1,
363 2007, University of Waterloo, Waterloo, Ontario,
365 publisher = "ACM Press",
366 address = "pub-ACM:adr",
367 ISBN = "1-59593-743-9 (print), 1-59593-742-0 (CD-ROM)",
368 isbn-13 = "978-1-59593-743-8 (print), 978-1-59593-742-1
372 doi = "http://doi.acm.org/10.1145/1277548.1277573",
373 bibdate = "Fri Jun 20 08:46:50 MDT 2008",
374 bibsource = "http://portal.acm.org/;
375 http://www.math.utah.edu/pub/tex/bib/issac.bib",
376 abstract = "In this paper we discuss the use of structured matrix
377 methods for the numerical approximation of the zeros of
378 a univariate polynomial. In particular, it is shown
379 that root-finding algorithms based on floating-point
380 eigenvalue computation can benefit from the structure
381 of the matrix problem to reduce their complexity and
382 memory requirements by an order of magnitude.",
383 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
384 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
385 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
386 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
387 \path|beebe@acm.org|, \path|beebe@computer.org|
389 \path|http://www.math.utah.edu/~beebe/|",
390 keywords = "complexity; eigenvalue computation; polynomial
391 root-finding; rank-structured matrices",
392 doi-url = "http://dx.doi.org/10.1145/1277548.1277573",
396 title = "Probabilistic algorithm for finding roots of
397 linearized polynomials",
398 author = "V. Skachek AND M. Roth",
399 journal = "Des. Codes Cryptography",
403 bibdate = "2008-03-11",
405 http://dblp.uni-trier.de/db/journals/dcc/dcc46.html#SkachekR08",
407 URL = "http://dx.doi.org/10.1007/s10623-007-9125-y",
411 title = " A constrained learning algorithm for finding multiple real roots of polynomial",
412 journal = " In: Proc of the 2008 intl symposium on computational intelligence and design",
417 author = "X. Zhanc AND M. Wan,Z.Yi",
421 @InProceedings{Zhuall08,
422 title = "An Adaptive Algorithm Finding Multiple Roots of Polynomials",
423 author = "W. Zhu AND Z. Zeng AND Dm. Lin",
424 bibdate = "2008-09-25",
426 http://dblp.uni-trier.de/db/conf/isnn/isnn2008-2.html#ZhuZL08",
427 booktitle = "ISNN (2)",
428 publisher = "Springer",
431 editor = "Fuchun Sun and Jianwei Zhang 0001 and Ying Tan and
432 Jinde Cao and Wen Yu 0001",
433 ISBN = "978-3-540-87733-2",
435 series = "Lecture Notes in Computer Science",
436 URL = "http://dx.doi.org/10.1007/978-3-540-87734-9_77",
440 title = " The performance of synchronous parallel polynomial root extraction on a ring multicomputer",
441 journal = " Clust Comput ",
453 title = " Inverse power and Durand Kerner iterations for univariate polynomial root finding",
454 journal = " Comput Math Appl ",
459 author = "DA. Bini AND L. Gemignani",
463 title = " Finding polynomial zeroes on a Multi-mesh of trees (MMT)",
464 journal = " In: Proc of the 2nd int conference on information technology",
472 @Article{Weierstrass03,
473 title = " Neuer Beweis des Satzes, dass jede ganze rationale function einer veranderlichen dagestellt werden kann als ein product aus linearen functionen derselben veranderlichen",
474 journal = " Ges. Werke",
479 author = "K. Weierstrass",
482 title = {NVIDIA CUDA C Programming Guide},
484 OPTauthor = {NVIDIA Corporation},
485 OPTorganization = {Design Guide},