2 title = "Iteration Methods for Finding all Zeros of a Polynomial Simultaneously",
3 journal = "Mathematics of Computation",
13 title = "On the approximations of Newton",
14 journal = "Annual Sofia Univ",
24 title = "An alternative method of Newton for simultaneous calculation of all the roots of a given algebraic equation",
25 journal = "Phys. Math. J",
34 author = "\'E. Durand",
35 publisher = "Masson, Paris",
36 title = "Solutions num\'eriques des \'equations alg\'ebriques.
37 {T}ome {I}: \'{E}quations du type {$F(x)=0$}; racines
43 author = "Immo O. Kerner",
44 title = "{Ein Gesamtschrittverfahren zur Berechnung der
45 Nullstellen von Polynomen}. ({German}) [{A} Complete
46 Step Method for the Computation of Zeros of
48 journal = "Numerische Mathematik",
55 ISSN = "0029-599X (print), 0945-3245 (electronic)",
56 bibdate = "Mon Oct 18 01:28:20 MDT 1999",
57 bibsource = "http://www.math.utah.edu/pub/tex/bib/nummath.bib",
58 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
59 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
60 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
61 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
62 \path|beebe@acm.org|, \path|beebe@computer.org|
64 \path|http://www.math.utah.edu/~beebe/|",
65 fjournal = "Numerische Mathematik",
66 journal-url = "http://link.springer.com/journal/211",
70 @Article{Borch-Supan63,
71 author = "W. Boersch-Supan",
72 title = "A Posteriori Error Bounds for the Zeros of
74 journal = "Numerische Mathematik",
80 bibdate = "Fri Jan 12 11:37:56 1996",
81 acknowledgement = "Jon Rokne, Department of Computer Science, The
82 University of Calgary, 2500 University Drive N.W.,
83 Calgary, Alberta T2N 1N4, Canada",
87 title = "A modified Newton method for polynomials",
88 author = "Louis W. Ehrlich",
89 journal = "Commun. ACM",
93 bibdate = "2003-11-20",
95 http://dblp.uni-trier.de/db/journals/cacm/cacm10.html#Ehrlich67",
97 URL = "http://doi.acm.org/10.1145/363067.363115",
100 title = "Higher-order iteration functions for simultaneously approximating polynomial zeros",
101 journal = " Intern. J. Computer Math",
106 author = "G. Loizou",
110 title = "Calculating polynomial zeros on a local memory
112 author = "T. L. Freeman",
113 journal = "Parallel Computing",
117 bibdate = "2011-09-09",
119 http://dblp.uni-trier.de/db/journals/pc/pc12.html#Freeman89",
121 URL = "http://dx.doi.org/10.1016/0167-8191(89)90093-8",
123 @Article{Freemanall90,
124 title = " Asynchronous polynomial zero-finding algorithms",
125 journal = " Parallel Computing",
130 author = "T.L. Freeman AND R.K. Brankin",
133 @Article{Raphaelall01,
134 title = " Extraction de racines dans des polynômes creux de degrées élevés. {RSRCP} (Réseaux et Systèmes Répartis, Calculateurs Parallèles)",
135 journal = " Algorithmes itératifs paralléles et distribués",
140 author = "R. Couturier AND F. Spies",
143 @Article{Ostrowski41,
144 title = " On a Theorem by {J. L. Walsh} Concerning the Moduli of Roots of Algebraic Equations. A.M.S.",
145 journal = " Algorithmes itératifs paralléles et distribués",
150 author = "A. Ostrowski",
155 title = {Compute Unified Device Architecture Programming Guide Version 3.0},
156 OPTkey = {NVIDIA CUDA},
158 OPTorganization = {NVIDIA CUDA},
163 OPTnote = {http://www.nvidia.com/object/cuda_develop.html},
168 title = "Parallel implementation of the {D}urand-{K}erner algorithm for polynomial root-finding on {GPU}",
169 journal = "IEEE. Conf. on advanced Networking, Distributed Systems and Applications",
174 author = "K. Ghidouche AND R. Couturier AND A. Sider",
179 title = " Perfectionnements de la méthode asynchrone de Durand-Kerner pour les polynômes complexes",
180 journal = " Calculateurs Parallèles",
185 author = "K. Rhofir AND F. Spies AND Jean-Claude Miellou",
189 title = "Numerical computation of polynomial zeros by means of
192 journal = "Numerical Algorithms",
196 bibdate = "2015-09-27",
198 http://dblp.uni-trier.de/db/journals/na/na13.html#Bini96",
200 URL = "http://dx.doi.org/10.1007/BF02207694",
203 title = " Parallel methods for approximating the roots of a function",
204 journal = " IBM Res Dev",
209 author = "WL. Mirankar",
213 title = " A survey of parallelism in numerical analysis",
214 journal = " SIAM Rev",
219 author = "WL. Mirankar",
223 title = " Parallel Numerical Methods for Solution of Equations",
224 journal = " Commun ACM ",
229 author = "GS. Schedler",
232 @InProceedings{Winogard72,
233 title = "Parallel Iteration Methods",
234 author = "S. Winograd",
235 bibdate = "2011-09-13",
237 http://dblp.uni-trier.de/db/conf/coco/cocc1972.html#Winograd72",
238 booktitle = "Complexity of Computer Computations",
239 publisher = "Plenum Press, New York",
241 editor = "Raymond E. Miller and James W. Thatcher",
242 ISBN = "0-306-30707-3",
244 series = "The IBM Research Symposia Series",
248 title = " A fast parallel algorithm for determining all roots of a polynomial with real roots",
249 journal = " Int: Proc of ACM",
254 author = "M. Ben-Or AND E. Feig AND D. Kozzen AND P. Tiwary",
258 title = " A highly parallel algorithm for root extraction",
259 journal = " IEEE Trans Comp",
264 author = "TA. Rice AND LH. Jamieson",
268 title = " Finding the roots of a polynomial on an MIMD multicomputer",
269 journal = " Parallel Comput",
274 author = "M. Cosnard AND P. Fraigniaud",
278 title = " Efficient parallel algorithms for finding polynomial zeroes",
279 journal = "Proc of the 6th int conference on advance computing, CDAC, Pune University Campus,India",
284 author = "PK. Jana AND BP. Sinha AND R. Datta Gupta",
288 title = " Polynomial interpolation and polynomial root finding on OTIS-Mesh",
289 journal = " Parallel Comput",
299 author = {B. Kalantari},
300 title = {Polynomial root finding and polynomiography},
301 publisher = {World Scientifict},
308 OPTmonth = {December},
314 title = " Structured matrix methods for polynomial root finding",
315 journal = " n: Proc of the 2007 Intl symposium on symbolic and algebraic computation",
320 author = "V. Skachek",
325 @InProceedings{Gemignani07,
326 author = "Luca Gemignani",
327 title = "Structured matrix methods for polynomial
329 editor = "C. W. Brown",
330 booktitle = "Proceedings of the 2007 International Symposium on
331 Symbolic and Algebraic Computation, July 29--August 1,
332 2007, University of Waterloo, Waterloo, Ontario,
334 publisher = "ACM Press",
335 address = "pub-ACM:adr",
336 ISBN = "1-59593-743-9 (print), 1-59593-742-0 (CD-ROM)",
337 isbn-13 = "978-1-59593-743-8 (print), 978-1-59593-742-1
341 doi = "http://doi.acm.org/10.1145/1277548.1277573",
342 bibdate = "Fri Jun 20 08:46:50 MDT 2008",
343 bibsource = "http://portal.acm.org/;
344 http://www.math.utah.edu/pub/tex/bib/issac.bib",
345 abstract = "In this paper we discuss the use of structured matrix
346 methods for the numerical approximation of the zeros of
347 a univariate polynomial. In particular, it is shown
348 that root-finding algorithms based on floating-point
349 eigenvalue computation can benefit from the structure
350 of the matrix problem to reduce their complexity and
351 memory requirements by an order of magnitude.",
352 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
353 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
354 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
355 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
356 \path|beebe@acm.org|, \path|beebe@computer.org|
358 \path|http://www.math.utah.edu/~beebe/|",
359 keywords = "complexity; eigenvalue computation; polynomial
360 root-finding; rank-structured matrices",
361 doi-url = "http://dx.doi.org/10.1145/1277548.1277573",
365 title = "Probabilistic algorithm for finding roots of
366 linearized polynomials",
367 author = "Vitaly Skachek and Ron M. Roth",
368 journal = "Des. Codes Cryptography",
372 bibdate = "2008-03-11",
374 http://dblp.uni-trier.de/db/journals/dcc/dcc46.html#SkachekR08",
376 URL = "http://dx.doi.org/10.1007/s10623-007-9125-y",
380 title = " A constrained learning algorithm for finding multiple real roots of polynomial",
381 journal = " In: Proc of the 2008 intl symposium on computational intelligence and design",
386 author = "X. Zhanc AND M. Wan,Z.Yi",
390 @InProceedings{Zhuall08,
391 title = "An Adaptive Algorithm Finding Multiple Roots of Polynomials",
392 author = "Wei Zhu AND Zhe-zhao Zeng AND Dong-mei Lin",
393 bibdate = "2008-09-25",
395 http://dblp.uni-trier.de/db/conf/isnn/isnn2008-2.html#ZhuZL08",
396 booktitle = "ISNN (2)",
397 publisher = "Springer",
400 editor = "Fuchun Sun and Jianwei Zhang 0001 and Ying Tan and
401 Jinde Cao and Wen Yu 0001",
402 ISBN = "978-3-540-87733-2",
404 series = "Lecture Notes in Computer Science",
405 URL = "http://dx.doi.org/10.1007/978-3-540-87734-9_77",
409 title = " The performance of synchronous parallel polynomial root extraction on a ring multicomputer",
410 journal = " Clust Comput ",
422 title = " Inverse power and Durand Kerner iterations for univariate polynomial root finding",
423 journal = " Comput Math Appl ",
428 author = "DA. Bini AND L. Gemignani",
432 title = " Finding polynomial zeroes on a Multi-mesh of trees (MMT)",
433 journal = " In: Proc of the 2nd int conference on information technology",
441 @Article{Weierstrass03,
442 title = " Neuer Beweis des Satzes, dass jede ganze rationale function einer veranderlichen dagestellt werden kann als ein product aus linearen functionen derselben veranderlichen",
443 journal = " Ges. Werke",
448 author = "K. Weierstrass",
451 title = {NVIDIA CUDA C Programming Guide},
453 OPTauthor = {NVIDIA Corporation},
454 OPTorganization = {Design Guide},