]> AND Private Git Repository - kahina_paper1.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
b6e1d7f7bd89d73f870b2b9119674de5095896e3
[kahina_paper1.git] / paper.tex
1 \documentclass[review]{elsarticle}
2
3 \usepackage{lineno,hyperref}
4 \usepackage[utf8]{inputenc}
5 %%\usepackage[T1]{fontenc}
6 %%\usepackage[french]{babel}
7 \usepackage{float} 
8 \usepackage{amsmath,amsfonts,amssymb}
9 \usepackage[ruled,vlined]{algorithm2e}
10 %\usepackage[french,boxed,linesnumbered]{algorithm2e}
11 \usepackage{array,multirow,makecell}
12 \setcellgapes{1pt}
13 \makegapedcells
14 \newcolumntype{R}[1]{>{\raggedleft\arraybackslash }b{#1}}
15 \newcolumntype{L}[1]{>{\raggedright\arraybackslash }b{#1}}
16 \newcolumntype{C}[1]{>{\centering\arraybackslash }b{#1}}
17 \modulolinenumbers[5]
18
19 \journal{Journal of \LaTeX\ Templates}
20
21 %%%%%%%%%%%%%%%%%%%%%%%
22 %% Elsevier bibliography styles
23 %%%%%%%%%%%%%%%%%%%%%%%
24 %% To change the style, put a % in front of the second line of the current style and
25 %% remove the % from the second line of the style you would like to use.
26 %%%%%%%%%%%%%%%%%%%%%%%
27
28 %% Numbered
29 %\bibliographystyle{model1-num-names}
30
31 %% Numbered without titles
32 %\bibliographystyle{model1a-num-names}
33
34 %% Harvard
35 %\bibliographystyle{model2-names.bst}\biboptions{authoryear}
36
37 %% Vancouver numbered
38 %\usepackage{numcompress}\bibliographystyle{model3-num-names}
39
40 %% Vancouver name/year
41 %\usepackage{numcompress}\bibliographystyle{model4-names}\biboptions{authoryear}
42
43 %% APA style
44 %\bibliographystyle{model5-names}\biboptions{authoryear}
45
46 %% AMA style
47 %\usepackage{numcompress}\bibliographystyle{model6-num-names}
48
49 %% `Elsevier LaTeX' style
50 \bibliographystyle{elsarticle-num}
51 %%%%%%%%%%%%%%%%%%%%%%%
52
53 \begin{document}
54
55 \begin{frontmatter}
56
57 \title{Efficient high degree polynomial root finding using GPU}
58
59 %% Group authors per affiliation:
60 %\author{Elsevier\fnref{myfootnote}}
61 %\address{Radarweg 29, Amsterdam}
62 %\fntext[myfootnote]{Since 1880.}
63
64 %% or include affiliations in footnotes:
65 \author[mymainaddress]{Kahina Ghidouche}
66 %%\ead[url]{kahina.ghidouche@univ-bejaia.dz}
67 \cortext[mycorrespondingauthor]{Corresponding author}
68 \ead{kahina.ghidouche@univ-bejaia.dz}
69
70 \author[mysecondaryaddress]{Raphaël Couturier\corref{mycorrespondingauthor}}
71 %%\cortext[mycorrespondingauthor]{Corresponding author}
72 \ead{raphael.couturier@univ-fcomte.fr}
73
74 \author[mymainaddress]{Abderrahmane Sider}
75 %%\cortext[mycorrespondingauthor]{Corresponding author}
76 \ead{ar.sider@univ-bejaia.dz}
77
78 \address[mymainaddress]{Laboratoire LIMED, Faculté des sciences
79   exactes, Université de Bejaia, 06000, Algeria}
80 \address[mysecondaryaddress]{FEMTO-ST Institute, University of
81   Bourgogne Franche-Comte, France }
82
83 \begin{abstract}
84 Polynomials are mathematical algebraic structures that play a great
85 role in science and engineering. Finding roots of high degree
86 polynomials is computationally demanding. In this paper, we present
87 the results of a parallel implementation of the Ehrlich-Aberth
88 algorithm for the root finding problem for high degree polynomials on
89 GPU architectures. The main result of this
90 work is to be able to solve high degree polynomials (up
91 to 1,000,000) very efficiently. We also compare the results with a
92 sequential implementation and the Durand-Kerner method on full and
93 sparse polynomials.
94 \end{abstract}
95
96 \begin{keyword}
97 Polynomial root finding, Iterative methods, Ehrlich-Aberth, Durand-Kerner, GPU
98 \end{keyword}
99
100 \end{frontmatter}
101
102 \linenumbers
103
104 \section{The problem of finding roots of a polynomial}
105 Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomenons and to express any outcome in the form of a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
106 %%\begin{center}
107 \begin{equation}
108      {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
109 \end{equation}
110 %%\end{center}
111
112 The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeroes of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
113 \begin{equation}
114      {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
115 \end{equation}
116
117 The problem of finding a root is equivalent to that of solving a fixed-point problem. To see this, consider the fixed-point problem of finding the $n$-dimensional
118 vector $x$ such that :
119 \begin{center}
120 $x=g(x)$
121 \end{center}
122 where $g : C^{n}\longrightarrow C^{n}$. Usually, we can easily
123 rewrite this fixed-point problem as a root-finding problem by
124 setting $f(x) = x-g(x)$ and likewise we can recast the
125 root-finding problem into a fixed-point problem by setting :
126 \begin{center}
127 $g(x)= f(x)-x$.
128 \end{center}
129
130 Often it is not be possible to solve such nonlinear equation
131 root-finding problems analytically. When this occurs we turn to
132 numerical methods to approximate the solution. 
133 Generally speaking, algorithms for solving problems can be divided into
134 two main groups: direct methods and iterative methods.
135 \\
136 Direct methods exist only for $n \leq 4$, solved in closed form by G. Cardano
137 in the mid-16th century. However, N. H. Abel in the early 19th
138 century showed that polynomials of degree five or more could not
139 be solved by  direct methods. Since then, mathematicians have
140 focussed on numerical (iterative) methods such as the famous
141 Newton method, the Bernoulli method of the 18th, and the Graeffe method.
142
143 Later on, with the advent of electronic computers, other methods have
144 been developed such as the Jenkins-Traub method, the Larkin method,
145 the Muller method, and several methods for simultaneous
146 approximation of all the roots, starting with the Durand-Kerner (DK)
147 method:
148 %%\begin{center}
149 \begin{equation}
150 \label{DK}
151  DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, . . . , n,
152 \end{equation}
153 %%\end{center}
154 where $z_i^k$ is the $i^{th}$ root of the polynomial $p$ at the
155 iteration $k$.
156
157
158 This formula is mentioned for the first time by
159 Weiestrass~\cite{Weierstrass03} as part of the fundamental theorem
160 of Algebra and is rediscovered by Ilieff~\cite{Ilie50},
161 Docev~\cite{Docev62}, Durand~\cite{Durand60},
162 Kerner~\cite{Kerner66}. Another method discovered by
163 Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
164 in the following form by Ehrlich~\cite{Ehrlich67} and
165 Aberth~\cite{Aberth73} uses a different iteration formula given as:
166 %%\begin{center}
167 \begin{equation}
168 \label{Eq:EA}
169  EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, . . . , n,
170 \end{equation}
171 %%\end{center}
172 where $p'(z)$ is the polynomial derivative of $p$ evaluated in the
173 point $z$.
174
175 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
176 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
177
178
179 Iterative methods raise several problem when implemented e.g.
180 specific sizes of numbers must be used to deal with this
181 difficulty. Moreover, the convergence time of iterative methods
182 drastically increases like the degrees of high polynomials. It is expected that the
183 parallelization of these algorithms will improve the convergence
184 time.
185
186 Many authors have dealt with the parallelization of
187 simultaneous methods, i.e. that find all the zeros simultaneously. 
188 Freeman~\cite{Freeman89} implemented and compared DK, EA and another method of the fourth order proposed
189 by Farmer and Loizou~\cite{Loizou83}, on a 8-processor linear
190 chain, for polynomials of degree up to 8. The third method often
191 diverges, but the first two methods have speed-up equal to 5.5. Later,
192 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
193 algorithms, in which each processor continues to update its
194 approximations even though the latest values of other $z_i^{k}$
195 have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration.
196 Couturier and al.~\cite{Raphaelall01} proposed two methods of parallelization for
197 a shared memory architecture and for distributed memory one. They were able to
198 compute the roots of sparse polynomials of degree 10,000 in 430 seconds with only 8
199 personal computers and 2 communications per iteration. Comparing to the sequential implementation
200 where it takes up to 3,300 seconds to obtain the same results, the authors show an interesting speedup.
201
202 Very few works had been performed since this last work until the appearing of
203 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
204 parallel computing platform and a programming model invented by
205 NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the
206 hardware resources provided by GPU in order to offer a stronger
207 computing ability to the massive data computing.
208
209
210 Ghidouche and al~\cite{Kahinall14} proposed an implementation of the
211 Durand-Kerner method on GPU. Their main
212 result showed that a parallel CUDA implementation is about 10 times faster than
213 the sequential implementation on a single CPU for  sparse
214 polynomials of degree 48,000. 
215
216
217 In this paper, we focus on the implementation of the Ehrlich-Aberth
218 method for high degree polynomials on GPU. We propose an adaptation of
219 the exponential logarithm in order to be able to solve sparse and full
220 polynomial of degree up to $1,000,000$. The paper is organized as
221 follows. Initially, we recall the Ehrlich-Aberth method in
222 Section~\ref{sec1}. Improvements for the Ehrlich-Aberth method are
223 proposed in Section \ref{sec2}. Related work to the implementation of
224 simultaneous methods using a parallel approach is presented in Section
225 \ref{secStateofArt}.  In Section~\ref{sec5} we propose a parallel
226 implementation of the Ehrlich-Aberth method on GPU and discuss
227 it. Section~\ref{sec6} presents and investigates our implementation
228 and experimental study results. Finally, Section~\ref{sec7} concludes
229 this paper and gives some hints for future research directions in this
230 topic.
231
232 \section{Ehrlich-Aberth method}
233 \label{sec1}
234 A cubically convergent iteration method for finding zeros of
235 polynomials was proposed by O. Aberth~\cite{Aberth73}. The Ehrlich-Aberth method contain 4 main steps, presented in the following. 
236 %The Aberth method is a purely algebraic derivation. 
237 %To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors 
238
239 %\begin{equation}
240 %w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
241 %\end{equation}
242
243 %And let a rational function $R_{i}(z)$ be the correction term of the
244 %Weistrass method~\cite{Weierstrass03}
245
246 %\begin{equation}
247 %R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
248 %\end{equation}
249
250 %Differentiating the rational function $R_{i}(z)$ and applying the
251 %Newton method, we have:
252
253 %\begin{equation}
254 %\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
255 %\end{equation}
256 %where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z 
257 %Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.% 
258
259
260 \subsection{Polynomials Initialization}
261 The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients $a_{i}$:
262
263 \begin{equation}
264 \label{eq:SimplePolynome}
265   p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
266 \end{equation}
267
268
269 \subsection{Vector $Z^{(0)}$ Initialization}
270 \label{sec:vec_initialization}
271 As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , n.$
272 The initial guess is very important since the number of steps needed by the iterative method to reach
273 a given approximation strongly depends on it.
274 In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
275 equi-spaced points on a circle of center 0 and radius r, where r is
276 an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
277 performed this choice by selecting complex numbers along different
278 circles and relies on the result of~\cite{Ostrowski41}.
279
280 \begin{equation}
281 \label{eq:radiusR}
282 %%\begin{align}
283 \sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
284 v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
285 %%\end{align}
286 \end{equation}
287 Where:
288 \begin{equation}
289 u_{i}=2.|a_{i}|^{\frac{1}{i}};
290 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
291 \end{equation}
292
293 \subsection{Iterative Function}
294 %The operator used by the Aberth method is corresponding to the
295 %following equation~\ref{Eq:EA} which will enable the convergence towards
296 %polynomial solutions, provided all the roots are distinct.
297
298 Here we give a second form of the iterative function used by Ehrlich-Aberth method: 
299
300 \begin{equation}
301 \label{Eq:Hi}
302 EA2: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
303 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=0,. . . .,n
304 \end{equation}
305 It can be noticed that this equation is equivalent to Eq.~\ref{Eq:EA},
306 but we prefer the latter one because we can use it to improve the
307 Ehrlich-Aberth method and find the roots of very high degrees polynomials. More
308 details are given in Section~\ref{sec2}.
309 \subsection{Convergence Condition}
310 The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
311
312 \begin{equation}
313 \label{eq:Aberth-Conv-Cond}
314 \forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
315 \end{equation}
316
317
318 \section{Improving the Ehrlich-Aberth Method for high degree polynomials with exp-log formulation}
319 \label{sec2}
320 With high degree polynomial, the Ehrlich-Aberth method implementation,
321 as well as the Durand-Kerner implement, suffers from overflow problems. This
322 situation occurs, for instance, in the case where a polynomial
323 having positive coefficients and a large degree is computed at a
324 point $\xi$ where $|\xi| > 1$, where $|z|$ stands for the modolus of a complex $z$. Indeed, the limited number in the
325 mantissa of floating points representations makes the computation of $p(z)$ wrong when z
326 is large. For example $(10^{50}) +1+ (- 10^{50})$ will give the wrong result
327 of $0$ instead of $1$. Consequently, we can not compute the roots
328 for large degrees. This problem was early discussed in
329 ~\cite{Karimall98} for the Durand-Kerner method, the authors
330 propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent.
331
332 \begin{equation}
333 \label{deflncomplex}
334  \forall(x,y)\in R^{*2}; \ln (x+i.y)=\ln(x^{2}+y^{2})
335 2+i.\arcsin(y\sqrt{x^{2}+y^{2}})_{\left] -\pi, \pi\right[ }
336 \end{equation}
337 %%\begin{equation}
338 \begin{align}
339 \label{defexpcomplex}
340  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
341                                      & =\exp(x).\cos(y)+i.\exp(x).\sin(y)\label{defexpcomplex1}
342 \end{align}
343 %%\end{equation}
344
345 Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
346 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
347
348 Applying this solution for the Ehrlich-Aberth method we obtain the
349 iteration function with exponential and logarithm:
350 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
351 \begin{equation}
352 \label{Log_H2}
353 EA.EL: z^{k+1}_{i}=z_{i}^{k}-\exp \left(\ln \left(
354 p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln
355 \left(1-Q(z^{k}_{i})\right)\right),
356 \end{equation}
357
358 where:
359
360 \begin{equation}
361 \label{Log_H1}
362 Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
363 \sum_{i\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right)i=1,...,n,
364 \end{equation}
365
366 This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as:
367
368 \begin{verbatim}
369 R = exp(log(DBL_MAX)/(2*n) );
370 \end{verbatim} 
371
372 %\begin{equation}
373
374 %R = \exp( \log(DBL\_MAX) / (2*n) )
375 %\end{equation}
376  where \verb=DBL_MAX= stands for the maximum representable \verb=double= value.
377
378 \section{Implementation of simultaneous methods in a parallel computer}
379 \label{secStateofArt}   
380 The main problem of simultaneous methods is that the necessary
381 time needed for convergence is increased when we increase
382 the degree of the polynomial. The parallelization of these
383 algorithms is expected to improve the convergence time.
384 Authors usually adopt one of the two following approaches to parallelize root
385 finding algorithms. The first approach aims at reducing the total number of
386 iterations as by Miranker
387 ~\cite{Mirankar68,Mirankar71}, Schedler~\cite{Schedler72} and
388 Winogard~\cite{Winogard72}. The second approach aims at reducing the
389 computation time per iteration, as reported
390 in~\cite{Benall68,Jana06,Janall99,Riceall06}. 
391
392 There are many schemes for the simultaneous approximation of all roots of a given
393 polynomial. Several works on different methods and issues of root
394 finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich-Aberth methods are the most practical choices among
395 them~\cite{Bini04}. These two methods have been extensively
396 studied for parallelization due to their intrinsics parallelism, i.e. the
397 computations involved in both methods has some inherent
398 parallelism that can be suitably exploited by SIMD machines.
399 Moreover, they have fast rate of convergence (quadratic for the
400 Durand-Kerner and cubic for the Ehrlich-Aberth). Various parallel
401 algorithms reported for these methods can be found
402 in~\cite{Cosnard90, Freeman89,Freemanall90,Jana99,Janall99}.
403 Freeman and Bane~\cite{Freemanall90} presented two parallel
404 algorithms on a local memory MIMD computer with the compute-to
405 communication time ratio O(n). However, their algorithms require
406 each processor to communicate its current approximation to all
407 other processors at the end of each iteration (synchronous). Therefore they
408 cause a high degree of memory conflict. Recently the author
409 in~\cite{Mirankar71} proposed two versions of parallel algorithm
410 for the Durand-Kerner method, and Ehrlich-Aberth method on a model of
411 Optoelectronic Transpose Interconnection System (OTIS).The
412 algorithms are mapped on an OTIS-2D torus using N processors. This
413 solution needs N processors to compute N roots, which is not
414 practical for solving polynomials with large degrees.
415 %Until very recently, the literature did not mention implementations
416 %able to compute the roots of large degree polynomials (higher then
417 %1000) and within small or at least tractable times.
418
419 Finding polynomial roots rapidly and accurately is the main objective of our work. 
420 With the advent of CUDA (Compute Unified Device
421 Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time. 
422 In~\cite{Kahinall14} we already proposed the first implementation
423 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
424 that a parallel CUDA implementation is 10 times as fast as the
425 sequential implementation on a single CPU for high degree
426 polynomials of 48000.
427 %In this paper we present a parallel implementation of Ehrlich-Aberth
428 %method on GPUs for sparse and full polynomials with high degree (up
429 %to $1,000,000$).
430
431
432 %% \section {A CUDA parallel Ehrlich-Aberth method}
433 %% In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
434 %% for solving high degree polynomials (up to $1,000,000$). First, the hardware and software of the GPUs are presented. Then, the CUDA parallel Ehrlich-Aberth method is presented.
435
436 %% \subsection{Background on the GPU architecture}
437 %% A GPU is viewed as an accelerator for the data-parallel and
438 %% intensive arithmetic computations. It draws its computing power
439 %% from the parallel nature of its hardware and software
440 %% architectures. A GPU is composed of hundreds of Streaming
441 %% Processors (SPs) organized in several blocks called Streaming
442 %% Multiprocessors (SMs). It also has a memory hierarchy. It has a
443 %% private read-write local memory per SP, fast shared memory and
444 %% read-only constant and texture caches per SM and a read-write
445 %% global memory shared by all its SPs~\cite{NVIDIA10}.
446
447 %% On a CPU equipped with a GPU, all the data-parallel and intensive
448 %% functions of an application running on the CPU are off-loaded onto
449 %% the GPU in order to accelerate their computations. A similar
450 %% data-parallel function is executed on a GPU as a kernel by
451 %% thousands or even millions of parallel threads, grouped together
452 %% as a grid of thread blocks. Therefore, each SM of the GPU executes
453 %% one or more thread blocks in SIMD fashion (Single  Instruction,
454 %% Multiple Data) and in turn each SP of a GPU SM runs one or more
455 %% threads within a block in SIMT fashion (Single Instruction,
456 %% Multiple threads). Indeed at any given clock cycle, the threads
457 %% execute the same instruction of a kernel, but each of them
458 %% operates on different data.
459 %%  GPUs only work on data filled in their
460 %% global memories and the final results of their kernel executions
461 %% must be communicated to their CPUs. Hence, the data must be
462 %% transferred in and out of the GPU. However, the speed of memory
463 %% copy between the GPU and the CPU is slower than the memory
464 %% bandwidths of the GPU memories and, thus, it dramatically affects
465 %% the performances of GPU computations. Accordingly, it is necessary
466 %% to limit as much as possible, data transfers between the GPU and its CPU during the
467 %% computations.
468 %% \subsection{Background on the CUDA Programming Model}
469
470 %% The CUDA programming model is similar in style to a single program
471 %% multiple-data (SPMD) software model. The GPU is viewed as a
472 %% coprocessor that executes data-parallel kernel functions. CUDA
473 %% provides three key abstractions, a hierarchy of thread groups,
474 %% shared memories, and barrier synchronization. Threads have a three
475 %% level hierarchy. A grid is a set of thread blocks that execute a
476 %% kernel function. Each grid consists of blocks of threads. Each
477 %% block is composed of hundreds of threads. Threads within one block
478 %% can share data using shared memory and can be synchronized at a
479 %% barrier. All threads within a block are executed concurrently on a
480 %% multithreaded architecture.The programmer specifies the number of
481 %% threads per block, and the number of blocks per grid. A thread in
482 %% the CUDA programming language is much lighter weight than a thread
483 %% in traditional operating systems. A thread in CUDA typically
484 %% processes one data element at a time. The CUDA programming model
485 %% has two shared read-write memory spaces, the shared memory space
486 %% and the global memory space. The shared memory is local to a block
487 %% and the global memory space is accessible by all blocks. CUDA also
488 %% provides two read-only memory spaces, the constant space and the
489 %% texture space, which reside in external DRAM, and are accessed via
490 %% read-only caches.
491
492 \section{ Implementation of Ehrlich-Aberth method on GPU}
493 \label{sec5}
494 %%\subsection{A CUDA implementation of the Aberth's method }
495 %%\subsection{A GPU implementation of the Aberth's method }
496
497
498
499 %% \subsection{Sequential Ehrlich-Aberth algorithm}
500 %% The main steps of Ehrlich-Aberth method are shown in Algorithm.~\ref{alg1-seq} :
501 %% %\LinesNumbered  
502 %% \begin{algorithm}[H]
503 %% \label{alg1-seq}
504
505 %% \caption{A sequential algorithm to find roots with the Ehrlich-Aberth method}
506
507 %% \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (error tolerance
508 %%   threshold), $P$ (Polynomial to solve),$Pu$ (the derivative of P) $\Delta z_{max}$ (maximum value
509 %%   of stop condition), k (number of iteration), n (Polynomial's degrees)}
510 %% \KwOut {$Z$ (The solution root's vector), $ZPrec$ (the previous solution root's vector)}
511
512 %% \BlankLine
513
514 %% Initialization of $P$\;
515 %% Initialization of $Pu$\;
516 %% Initialization of the solution vector $Z^{0}$\;
517 %% $\Delta z_{max}=0$\;
518 %%  k=0\;
519
520 %% \While {$\Delta z_{max} > \varepsilon$}{
521 %%  Let $\Delta z_{max}=0$\;
522 %% \For{$j \gets 0 $ \KwTo $n$}{
523 %% $ZPrec\left[j\right]=Z\left[j\right]$;// save Z at the iteration k.\
524
525 %% $Z\left[j\right]=H\left(j, Z, P, Pu\right)$;//update Z with the iterative function.\
526 %% }
527 %% k=k+1\;
528
529 %% \For{$i \gets 0 $ \KwTo $n-1$}{
530 %% $c= testConverge(\Delta z_{max},ZPrec\left[j\right],Z\left[j\right])$\;
531 %% \If{$c > \Delta z_{max}$ }{
532 %% $\Delta z_{max}$=c\;}
533 %% }
534
535 %% }
536 %% \end{algorithm}
537
538 %% ~\\ 
539 %% In this sequential algorithm, one CPU thread  executes all the steps. Let us look to the $3^{rd}$ step i.e. the execution of the iterative function, 2 sub-steps are needed. The first sub-step \textit{save}s the solution vector of the previous iteration, the second sub-step \textit{update}s or computes the new values of the roots vector.
540
541 \subsection{Parallel implementation with CUDA }
542
543 In order to implement the Ehrlich-Aberth method in CUDA, it is
544 possible to use the Jacobi scheme or the Gauss Seidel one.  With the
545 Jacobi iteration, at iteration $k+1$ we need all the previous values
546 $z^{(k)}_{i}$ to compute the new values $z^{(k+1)}_{i}$, that is :
547
548 \begin{equation}
549 EAJ: z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{k}_{i}-z^{k}_{j}}}, i=1,...,n.
550 \end{equation}
551
552 With the Gauss-Seidel iteration, we have:
553 \begin{equation}
554 \label{eq:Aberth-H-GS}
555 EAGS: z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{k}_{i}-z^{k}_{j}})}, i=1,...,n.
556 \end{equation}
557 %%Here a finiched my revision %%
558 Using Eq.~\ref{eq:Aberth-H-GS} to update the vector solution
559 \textit{Z}, we expect the Gauss-Seidel iteration to converge more
560 quickly because, just as any Jacobi algorithm (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
561
562 %The $4^{th}$ step of the algorithm checks the convergence condition using Eq.~\ref{eq:Aberth-Conv-Cond}.
563 %Both steps 3 and 4 use 1 thread to compute all the $n$ roots on CPU, which is very harmful for performance in case of the large degree polynomials.
564
565
566
567 %On the CPU,  both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
568 %In the GPU, the scheduler assigns the execution of this loop to a
569 %group of threads organised as a grid of blocks with block containing a
570 %number of threads. All threads within a block are executed
571 %concurrently in parallel. The instructions run on the GPU are grouped
572 %in special function called kernels. With CUDA, a programmer must
573 %describe the kernel execution context:  the size of the Grid, the number of blocks and the number of threads per block.
574
575 %In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual \verb=C= function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
576
577 Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth algorithm using CUDA.
578
579 \begin{algorithm}[H]
580 \label{alg2-cuda}
581 %\LinesNumbered
582 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
583
584 \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (error tolerance
585   threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial's degrees), $\Delta z_{max}$ (Maximum value of stop condition)}
586
587 \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
588
589 \BlankLine
590
591 Initialization of the of P\;
592 Initialization of the of Pu\;
593 Initialization of the solution vector $Z^{0}$\;
594 Allocate and copy initial data to the GPU global memory\;
595 k=0\;
596 \While {$\Delta z_{max} > \epsilon$}{
597  Let $\Delta z_{max}=0$\;
598 $ kernel\_save(ZPrec,Z)$\;
599 k=k+1\;
600 $ kernel\_update(Z,P,Pu)$\;
601 $kernel\_testConverge(\Delta z_{max},Z,ZPrec)$\;
602
603 }
604 Copy results from GPU memory to CPU memory\;
605 \end{algorithm}
606 ~\\ 
607
608 After the initialization step, all data of the root finding problem
609 must be copied from the CPU memory to the GPU global memory. Next, all
610 the data-parallel arithmetic operations inside the main loop
611 \verb=(while(...))= are executed as kernels by the GPU. The
612 first kernel named \textit{save} in line 6 of
613 Algorithm~\ref{alg2-cuda} consists in saving the vector of
614 polynomial's root found at the previous time-step in GPU memory, in
615 order to check the convergence of the roots after each iteration (line
616 8, Algorithm~\ref{alg2-cuda}).
617
618 The second kernel executes the iterative function $H$ and updates
619 Z, according to Algorithm~\ref{alg3-update}. We notice that the
620 update kernel is called in two forms, according to the value
621 \emph{R} which determines the radius beyond which we apply the
622 exponential logarithm algorithm. 
623
624 \begin{algorithm}[H]
625 \label{alg3-update}
626 %\LinesNumbered
627 \caption{Kernel update}
628
629 \eIf{$(\left|Z\right|<= R)$}{
630 $kernel\_update(Z,P,Pu)$\;}
631 {
632 $kernel\_update\_ExpoLog(Z,P,Pu)$\;
633 }
634 \end{algorithm}
635
636 The first form executes formula the EA function Eq.~\ref{Eq:Hi} if the modulus
637 of the current complex is less than the a certain value called the
638 radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes the EA.EL
639 function Eq.~\ref{Log_H2}
640 (with Eq.~\ref{deflncomplex}, Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as :
641
642 $$R = \exp( \log(DBL\_MAX) / (2*n) )$$ where $DBL\_MAX$ stands for the maximum representable double value.
643
644 The last kernel checks the convergence of the roots after each update
645 of $Z^{(k)}$, according to formula Eq.~\ref{eq:Aberth-Conv-Cond}. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
646
647 The kernel terminates its computations when all the roots have
648 converged. It should be noticed that, as blocks of threads are
649 scheduled automatically by the GPU, we have absolutely no control on
650 the order of the blocks. Consequently, our algorithm is executed more
651 or less in an asynchronous iteration model, where blocks of roots are
652 updated in a non deterministic way. As the Durand-Kerner method has
653 been proved to converge with asynchronous iterations, we think it is
654 similar with the Ehrlich-Aberth method, but we did not try to prove
655 this in that paper. Another consequence of that, is that several
656 executions of our algorithm with the same polynomial do no give
657 necessarily the same result (but roots have the same accuracy) and the
658 same number of iterations (even if the variation is not very
659 significant).
660
661
662
663
664
665 %%HIER END MY REVISIONS (SIDER)
666 \section{Experimental study}
667 \label{sec6}
668 %\subsection{Definition of the used polynomials }
669 We study two categories of polynomials: sparse polynomials and the full polynomials.\\
670 {\it A sparse polynomial} is a polynomial for which only some
671 coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles:
672 \begin{equation}
673         \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
674 \end{equation}\noindent
675 {\it A full polynomial} is, in contrast, a polynomial for which
676 all the coefficients are not null. A full polynomial is defined by:
677 %%\begin{equation}
678         %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
679 %%\end{equation}
680
681 \begin{equation}
682      {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
683 \end{equation}
684 %With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
685
686 %\subsection{The study condition} 
687 %Two parameters are studied are
688 %the polynomial degree and the execution time of our program
689 %to converge on the solution. The polynomial degree allows us
690 %to validate that our algorithm is powerful with high degree
691 %polynomials. The execution time remains the
692 %element-key which justifies our work of parallelization.
693 For our tests, a CPU Intel(R) Xeon(R) CPU
694 E5620@2.40GHz and a GPU K40 (with 6 Go of ram) is used. 
695
696
697 %\subsection{Comparative study}
698 %First, performances of the Ehrlich-Aberth method  of root finding polynomials
699 %implemented on CPUs and on GPUs are studied.
700
701 We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution times, the  polynomial size and the number of threads per block performed by sum or each experiment on CPU and on GPU.
702
703 All experimental results obtained from the simulations are made in
704 double precision data, the convergence threshold of the methods is set
705 to $10^{-7}$.
706 %Since we were more interested in the comparison of the
707 %performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on
708 %CPUs versus on GPUs.
709 The initialization values of the vector solution
710 of the methods are given in Section~\ref{sec:vec_initialization}.
711
712 \subsection{Comparison of execution times of the Ehrlich-Aberth method
713   on a CPU with OpenMP (1 core and 4 cores) vs. on a Tesla GPU}
714
715 \begin{figure}[htbp]
716 \centering
717   \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
718 \caption{Comparison of execution times  of the Ehrlich-Aberth method
719   on a CPU with OpenMP (1 core, 4 cores) and on a Tesla GPU}
720 \label{fig:01}
721 \end{figure}
722 %%Figure 1 %%show a comparison of execution time between the parallel
723 %%and sequential version of the Ehrlich-Aberth algorithm with sparse
724 %%polynomial exceed 100000,
725
726 In Figure~\ref{fig:01}, we report the execution times of the
727 Ehrlich-Aberth method on one core of a Quad-Core Xeon E5620 CPU, on
728 four cores on the same machine with \textit{OpenMP} and on a Nvidia
729 Tesla K40c GPU.  We chose different sparse polynomials with degrees
730 ranging from 100,000 to 1,000,000. We can see that the implementation
731 on the GPU is faster than those implemented on the CPU.
732 However, the execution time for the
733 CPU (4 cores) implementation exceed 5,000s for 250,000 degrees
734 polynomials. In counterpart, the GPU implementation for the same
735 polynomials do not take more 100s. With the GPU
736 we can solve high degrees polynomials very quickly up to degree
737  of 1,000,000. We can also notice that the GPU implementation are
738  almost 40 faster then those implementation on the CPU (4 cores).
739
740
741  
742
743 %This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
744  
745  %We notice that the convergence precision is a round $10^{-7}$ for the both implementation on CPU and GPU. Consequently, we can conclude that Ehrlich-Aberth on GPU are faster and accurately then CPU implementation.
746
747 \subsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
748 To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel). In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. 
749 For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40 GPU is 1,024, so we varied the number of threads per block from 8 to 1,024. We took into account the execution time for both sparse and full of 10 different polynomials of size 50,000 and 10 different polynomials of size 500,000 degrees.
750
751 \begin{figure}[htbp]
752 \centering
753   \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
754 \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
755 \label{fig:02}
756 \end{figure}
757
758 The figure 2 show that, the best execution time for both sparse and full polynomial are given when the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the best number of threads per block is 64, Whereas, the large polynomials the best number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256.
759
760 \subsection{Influence of exp-log solution to compute high degree polynomials}
761
762 In this experiment we report the performance of the exp-log solution described in Section~\ref{sec2} to compute very high degrees polynomials.   
763 \begin{figure}[htbp]
764 \centering
765   \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog}
766 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
767 \label{fig:03}
768 \end{figure}
769
770
771 Figure~\ref{fig:03} shows a comparison between the execution time of
772 the Ehrlich-Aberth method using the exp-log solution and the
773 execution time of the Ehrlich-Aberth method without this solution,
774 with full and sparse polynomials degrees. We can see that the
775 execution times for both algorithms are the same with full polynomials
776 degrees less than 4,000 and sparse polynomials less than 150,000. We
777 also clearly show that the classical version (without exp-log) of
778 Ehrlich-Aberth algorithm do not converge after these degree with
779 sparse and full polynomials. In counterpart, the new version of
780 Ehrlich-Aberth algorithm with the exp-log solution can solve very
781 high degree polynomials.
782
783 %in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying exp-log solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees . 
784
785
786
787
788 \subsection{Comparison of the Durand-Kerner and the Ehrlich-Aberth methods}
789
790 In this part, we  compare the Durand-Kerner and the Ehrlich-Aberth
791 methods on GPU. We took into account the execution times, the number of iterations and the polynomials size for the both sparse and full polynomials.  
792
793 \begin{figure}[htbp]
794 \centering
795   \includegraphics[width=0.8\textwidth]{figures/EA_DK}
796 \caption{Execution times of the  Durand-Kerner and the Ehrlich-Aberth methods on GPU}
797 \label{fig:04}
798 \end{figure}
799
800 Figure~\ref{fig:04} shows the execution times of both methods with
801 sparse polynomial degrees ranging from 1,000 to 1,000,000. We can see
802 that the Ehrlich-Aberth algorithm is faster than Durand-Kerner
803 algorithm, with an average of 25 times faster. Then, when degrees of
804 polynomial exceed 500,000 the execution times with DK are very long.
805
806 %with double precision not exceed $10^{-5}$.
807
808 \begin{figure}[htbp]
809 \centering
810   \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
811 \caption{The number of iterations to converge for the Ehrlich-Aberth
812   and the Durand-Kerner methods}
813 \label{fig:05}
814 \end{figure}
815
816 Figure~\ref{fig:05} show the evaluation of the number of iteration according
817 to degree of polynomial from both EA and DK algorithms, we can see
818 that the iteration number of DK is of order 100 while EA is of order
819 10. Indeed the computing of the derivative of P (the polynomial to
820 resolve) in the iterative function (Eq.~\ref{Eq:Hi}) executed by EA
821 allows the algorithm to converge more quickly. In counterpart, the
822 DK operator (Eq.~\ref{DK}) needs low operation, consequently low
823 execution time per iteration, but it needs more iterations to converge.
824
825
826  \section{Conclusion and perspectives}
827 \label{sec7}
828 In this paper we have presented the parallel implementation
829 Ehrlich-Aberth method on GPU for the problem of finding roots
830 polynomial. Moreover, we have improved the classical Ehrlich-Aberth
831 method which suffers from overflow problems, the exp-log solution
832 applied to the iterative function allows to solve high degree
833 polynomials.
834
835 We have performed many experiments with the Ehrlich-Aberth method in
836 GPU. These experiments highlight that this method is very efficient in
837 GPU compared to all the other implementations. The improvement with
838 the exponential logarithm solution allows us to solve sparse and full
839 high degree polynomials up to 1,000,000 degree. Hence, it may be
840 possible to consider to use polynomial root finding methods in other
841 numerical applications on GPU.
842
843
844 In future works, we plan to investigate the possibility of using
845 several multiple GPUs simultaneously, either with multi-GPU machine or
846 with cluster of GPUs. It may also be interesting to study the
847 implementation of other root finding polynomial methods on GPU.
848
849
850
851 \bibliography{mybibfile}
852
853 \end{document}