]> AND Private Git Repository - kahina_paper1.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
bfbbc31349c304500abb364668186d5df10ad28a
[kahina_paper1.git] / paper.tex
1 \documentclass[review]{elsarticle}
2
3 \usepackage{lineno,hyperref}
4 \usepackage[utf8]{inputenc}
5 %%\usepackage[T1]{fontenc}
6 %%\usepackage[french]{babel}
7 \usepackage{float} 
8 \usepackage{amsmath,amsfonts,amssymb}
9 \usepackage[ruled,vlined]{algorithm2e}
10 %\usepackage[french,boxed,linesnumbered]{algorithm2e}
11 \usepackage{array,multirow,makecell}
12 \setcellgapes{1pt}
13 \makegapedcells
14 \newcolumntype{R}[1]{>{\raggedleft\arraybackslash }b{#1}}
15 \newcolumntype{L}[1]{>{\raggedright\arraybackslash }b{#1}}
16 \newcolumntype{C}[1]{>{\centering\arraybackslash }b{#1}}
17 \modulolinenumbers[5]
18
19 \journal{Journal of \LaTeX\ Templates}
20
21 %%%%%%%%%%%%%%%%%%%%%%%
22 %% Elsevier bibliography styles
23 %%%%%%%%%%%%%%%%%%%%%%%
24 %% To change the style, put a % in front of the second line of the current style and
25 %% remove the % from the second line of the style you would like to use.
26 %%%%%%%%%%%%%%%%%%%%%%%
27
28 %% Numbered
29 %\bibliographystyle{model1-num-names}
30
31 %% Numbered without titles
32 %\bibliographystyle{model1a-num-names}
33
34 %% Harvard
35 %\bibliographystyle{model2-names.bst}\biboptions{authoryear}
36
37 %% Vancouver numbered
38 %\usepackage{numcompress}\bibliographystyle{model3-num-names}
39
40 %% Vancouver name/year
41 %\usepackage{numcompress}\bibliographystyle{model4-names}\biboptions{authoryear}
42
43 %% APA style
44 %\bibliographystyle{model5-names}\biboptions{authoryear}
45
46 %% AMA style
47 %\usepackage{numcompress}\bibliographystyle{model6-num-names}
48
49 %% `Elsevier LaTeX' style
50 \bibliographystyle{elsarticle-num}
51 %%%%%%%%%%%%%%%%%%%%%%%
52
53 \begin{document}
54
55 \begin{frontmatter}
56
57 \title{Efficient high degree polynomial root finding using GPU}
58
59 %% Group authors per affiliation:
60 %\author{Elsevier\fnref{myfootnote}}
61 %\address{Radarweg 29, Amsterdam}
62 %\fntext[myfootnote]{Since 1880.}
63
64 %% or include affiliations in footnotes:
65 \author[mymainaddress]{Kahina Ghidouche}
66 %%\ead[url]{kahina.ghidouche@univ-bejaia.dz}
67 \cortext[mycorrespondingauthor]{Corresponding author}
68 \ead{kahina.ghidouche@univ-bejaia.dz}
69
70 \author[mysecondaryaddress]{Raphaël Couturier\corref{mycorrespondingauthor}}
71 %%\cortext[mycorrespondingauthor]{Corresponding author}
72 \ead{raphael.couturier@univ-fcomte.fr}
73
74 \author[mymainaddress]{Abderrahmane Sider}
75 %%\cortext[mycorrespondingauthor]{Corresponding author}
76 \ead{ar.sider@univ-bejaia.dz}
77
78 \address[mymainaddress]{Laboratoire LIMED, Faculté des sciences
79   exactes, Université de Bejaia, 06000, Algeria}
80 \address[mysecondaryaddress]{FEMTO-ST Institute, University of
81   Bourgogne Franche-Comte, France }
82
83 \begin{abstract}
84 Polynomials are mathematical algebraic structures that play a great
85 role in science and engineering. Finding the roots of high degree
86 polynomials is computationally demanding. In this paper, we present
87 the results of a parallel implementation of the Ehrlich-Aberth
88 algorithm for the root finding problem for high degree polynomials on
89 GPU architectures. The main result of this
90 work is to be able to solve high degree polynomials (up
91 to 1,000,000) very efficiently. We also compare the results with a
92 sequential implementation and the Durand-Kerner method on full and
93 sparse polynomials.
94 \end{abstract}
95
96 \begin{keyword}
97 Polynomial root finding, Iterative methods, Ehrlich-Aberth, Durand-Kerner, GPU
98 \end{keyword}
99
100 \end{frontmatter}
101
102 \linenumbers
103
104 \section{The problem of finding the roots of a polynomial}
105 Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomena and to express any outcome in the form of a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
106 %%\begin{center}
107 \begin{equation}
108      {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
109 \end{equation}
110 %%\end{center}
111
112 The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeros of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
113 \begin{equation}
114      {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
115 \end{equation}
116
117 The problem of finding a root is equivalent to that of solving a fixed-point problem. To see this, consider the fixed-point problem of finding the $n$-dimensional
118 vector $x$ such that :
119 \begin{center}
120 $x=g(x)$
121 \end{center}
122 where $g : C^{n}\longrightarrow C^{n}$. Usually, we can easily
123 rewrite this fixed-point problem as a root-finding problem by
124 setting $f(x) = x-g(x)$ and likewise we can recast the
125 root-finding problem into a fixed-point problem by setting :
126 \begin{center}
127 $g(x)= f(x)-x$.
128 \end{center}
129
130 It is often impossible to solve such nonlinear equation
131 root-finding problems analytically. When this occurs, we turn to
132 numerical methods to approximate the solution. 
133 Generally speaking, algorithms for solving problems can be divided into
134 two main groups: direct methods and iterative methods.
135
136 Direct methods only exist for $n \leq 4$, solved in closed form
137 by G. Cardano in the mid-16th century. However, N. H. Abel in the early 19th
138 century proved that polynomials of degree five or more could not
139 be solved by  direct methods. Since then, mathematicians have
140 focussed on numerical (iterative) methods such as the famous
141 Newton method, the Bernoulli method of the 18th century, and the Graeffe method.
142
143 Later on, with the advent of electronic computers, other methods have
144 been developed such as the Jenkins-Traub method, the Larkin method,
145 the Muller method, and several other methods for the simultaneous
146 approximation of all the roots, starting with the Durand-Kerner (DK)
147 method:
148 %%\begin{center}
149 \begin{equation}
150 \label{DK}
151  DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, . . . , n,
152 \end{equation}
153 %%\end{center}
154 where $z_i^k$ is the $i^{th}$ root of the polynomial $p$ at the
155 iteration $k$.
156
157
158 This formula is mentioned for the first time by
159 Weiestrass~\cite{Weierstrass03} as part of the fundamental theorem
160 of Algebra and is rediscovered by Ilieff~\cite{Ilie50},
161 Docev~\cite{Docev62}, Durand~\cite{Durand60},
162 Kerner~\cite{Kerner66}. Another method discovered by
163 Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
164 in the following form by Ehrlich~\cite{Ehrlich67} and
165 Aberth~\cite{Aberth73} uses a different iteration formula given as:
166 %%\begin{center}
167 \begin{equation}
168 \label{Eq:EA}
169  EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, . . . , n,
170 \end{equation}
171 %%\end{center}
172 where $p'(z)$ is the polynomial derivative of $p$ evaluated in the
173 point $z$.
174
175 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
176 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
177
178
179 Moreover, the convergence times of iterative methods
180 drastically increases like the degrees of high polynomials. It is expected that the
181 parallelization of these algorithms will reduce the execution times.
182
183 Many authors have dealt with the parallelization of
184 simultaneous methods, i.e. that find all the zeros simultaneously. 
185 Freeman~\cite{Freeman89} implemented and compared DK, EA and another method of the fourth order proposed
186 by Farmer and Loizou~\cite{Loizou83}, on an 8-processor linear
187 chain, for polynomials of degree 8. The third method often
188 diverges, but the first two methods have speed-ups equal to 5.5. Later,
189 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
190 algorithms, in which each processor continues to update its
191 approximations even though the latest values of other roots
192 have not yet been received from the other processors.  In contrast,
193 synchronous algorithms   wait the computation of all roots at a given
194 iterations  before making a new one.
195 Couturier and al.~\cite{Raphaelall01} proposed two methods of parallelization for
196 a shared memory architecture and for distributed memory one. They were able to
197 compute the roots of sparse polynomials of degree 10,000 in 430 seconds with only 8
198 personal computers and 2 communications per iteration. Comparing to the sequential implementation
199 where it takes up to 3,300 seconds to obtain the same results, the authors show an interesting speedup.
200
201 Very few works had been performed since this last work until the appearing of
202 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
203 parallel computing platform and a programming model invented by
204 NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the
205 hardware resources provided by GPU in order to offer a stronger
206 computing ability to the massive data computing.
207
208
209 Ghidouche and al~\cite{Kahinall14} proposed an implementation of the
210 Durand-Kerner method on GPU. Their main
211 result showed that a parallel CUDA implementation is about 10 times faster than
212 the sequential implementation on a single CPU for  sparse
213 polynomials of degree 48,000. 
214
215
216 In this paper, we focus on the implementation of the Ehrlich-Aberth
217 method for high degree polynomials on GPU. We propose an adaptation of
218 the exponential logarithm in order to be able to solve sparse and full
219 polynomial of degree up to $1,000,000$. The paper is organized as
220 follows. Initially, we recall the Ehrlich-Aberth method in
221 Section~\ref{sec1}. Improvements for the Ehrlich-Aberth method are
222 proposed in Section \ref{sec2}. Related work to the implementation of
223 simultaneous methods using a parallel approach is presented in Section
224 \ref{secStateofArt}.  In Section~\ref{sec5} we propose a parallel
225 implementation of the Ehrlich-Aberth method on GPU and discuss
226 it. Section~\ref{sec6} presents and investigates our implementation
227 and experimental study results. Finally, Section~\ref{sec7} concludes
228 this paper and gives some hints for future research directions in this
229 topic.
230
231 \section{Ehrlich-Aberth method}
232 \label{sec1}
233 A cubically convergent iteration method for finding zeros of
234 polynomials was proposed by O. Aberth~\cite{Aberth73}. The Ehrlich-Aberth method contain 4 main steps, presented in the following. 
235 %The Aberth method is a purely algebraic derivation. 
236 %To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors 
237
238 %\begin{equation}
239 %w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
240 %\end{equation}
241
242 %And let a rational function $R_{i}(z)$ be the correction term of the
243 %Weistrass method~\cite{Weierstrass03}
244
245 %\begin{equation}
246 %R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
247 %\end{equation}
248
249 %Differentiating the rational function $R_{i}(z)$ and applying the
250 %Newton method, we have:
251
252 %\begin{equation}
253 %\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
254 %\end{equation}
255 %where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z 
256 %Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.% 
257
258
259 \subsection{Polynomials Initialization}
260 The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients $a_{i}$:
261
262 \begin{equation}
263 \label{eq:SimplePolynome}
264   p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
265 \end{equation}
266
267
268 \subsection{Vector $Z^{(0)}$ Initialization}
269 \label{sec:vec_initialization}
270 As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , n.$
271 The initial guess is very important since the number of steps needed by the iterative method to reach
272 a given approximation strongly depends on it.
273 In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
274 equi-spaced points on a circle of center 0 and radius r, where r is
275 an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
276 performed this choice by selecting complex numbers along different
277 circles and relies on the result of~\cite{Ostrowski41}.
278
279 \begin{equation}
280 \label{eq:radiusR}
281 %%\begin{align}
282 \sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
283 v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
284 %%\end{align}
285 \end{equation}
286 Where:
287 \begin{equation}
288 u_{i}=2.|a_{i}|^{\frac{1}{i}};
289 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
290 \end{equation}
291
292 \subsection{Iterative Function}
293 %The operator used by the Aberth method is corresponding to the
294 %following equation~\ref{Eq:EA} which will enable the convergence towards
295 %polynomial solutions, provided all the roots are distinct.
296
297 Here we give a second form of the iterative function used by Ehrlich-Aberth method: 
298
299 \begin{equation}
300 \label{Eq:Hi}
301 EA2: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
302 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n
303 \end{equation}
304 It can be noticed that this equation is equivalent to Eq.~\ref{Eq:EA},
305 but we prefer the latter one because we can use it to improve the
306 Ehrlich-Aberth method and find the roots of very high degrees polynomials. More
307 details are given in Section~\ref{sec2}.
308 \subsection{Convergence Condition}
309 The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
310
311 \begin{equation}
312 \label{eq:Aberth-Conv-Cond}
313 \forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
314 \end{equation}
315
316
317 \section{Improving the Ehrlich-Aberth Method for high degree polynomials with exp-log formulation}
318 \label{sec2}
319 With high degree polynomial, the Ehrlich-Aberth method implementation,
320 as well as the Durand-Kerner implement, suffers from overflow problems. This
321 situation occurs, for instance, in the case where a polynomial
322 having positive coefficients and a large degree is computed at a
323 point $\xi$ where $|\xi| > 1$, where $|z|$ stands for the modolus of a complex $z$. Indeed, the limited number in the
324 mantissa of floating points representations makes the computation of $p(z)$ wrong when z
325 is large. For example $(10^{50}) +1+ (- 10^{50})$ will give the wrong result
326 of $0$ instead of $1$. Consequently, we can not compute the roots
327 for large degrees. This problem was early discussed in
328 ~\cite{Karimall98} for the Durand-Kerner method, the authors
329 propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent.
330
331 \begin{equation}
332 \label{deflncomplex}
333  \forall(x,y)\in R^{*2}; \ln (x+i.y)=\ln(x^{2}+y^{2})
334 2+i.\arcsin(y\sqrt{x^{2}+y^{2}})_{\left] -\pi, \pi\right[ }
335 \end{equation}
336 %%\begin{equation}
337 \begin{align}
338 \label{defexpcomplex}
339  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
340                                      & =\exp(x).\cos(y)+i.\exp(x).\sin(y)\label{defexpcomplex1}
341 \end{align}
342 %%\end{equation}
343
344 Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
345 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
346
347 Applying this solution for the iteration function Eq.~\ref{Eq:Hi} of Ehrlich-Aberth method, we obtain the iteration function with exponential and logarithm:
348 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
349 \begin{equation}
350 \label{Log_H2}
351 EA.EL: z^{k+1}_{i}=z_{i}^{k}-\exp \left(\ln \left(
352 p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln\left(1-Q(z^{k}_{i})\right)\right),
353 \end{equation}
354
355 where:
356
357 \begin{equation}
358 \label{Log_H1}
359 Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
360 \sum_{i\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right)i=1,...,n,
361 \end{equation}
362
363 This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as :
364 \begin{equation}
365 \label{R.EL}
366 R = exp(log(DBL\_MAX)/(2*n) );
367 \end{equation}
368
369
370 %\begin{equation}
371
372 %R = \exp( \log(DBL\_MAX) / (2*n) )
373 %\end{equation}
374  where \verb=DBL_MAX= stands for the maximum representable \verb=double= value.
375
376 \section{Implementation of simultaneous methods in a parallel computer}
377 \label{secStateofArt}   
378 The main problem of simultaneous methods is that the necessary
379 time needed for convergence is increased when we increase
380 the degree of the polynomial. The parallelization of these
381 algorithms is expected to improve the convergence time.
382 Authors usually adopt one of the two following approaches to parallelize root
383 finding algorithms. The first approach aims at reducing the total number of
384 iterations as by Miranker
385 ~\cite{Mirankar68,Mirankar71}, Schedler~\cite{Schedler72} and
386 Winograd~\cite{Winogard72}. The second approach aims at reducing the
387 computation time per iteration, as reported
388 in~\cite{Benall68,Jana06,Janall99,Riceall06}. 
389
390 There are many schemes for the simultaneous approximation of all roots of a given
391 polynomial. Several works on different methods and issues of root
392 finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich-Aberth methods are the most practical choices among
393 them~\cite{Bini04}. These two methods have been extensively
394 studied for parallelization due to their intrinsics parallelism, i.e. the
395 computations involved in both methods has some inherent
396 parallelism that can be suitably exploited by SIMD machines.
397 Moreover, they have fast rate of convergence (quadratic for the
398 Durand-Kerner and cubic for the Ehrlich-Aberth). Various parallel
399 algorithms reported for these methods can be found
400 in~\cite{Cosnard90, Freeman89,Freemanall90,Jana99,Janall99}.
401 Freeman and Bane~\cite{Freemanall90} presented two parallel
402 algorithms on a local memory MIMD computer with the compute-to
403 communication time ratio O(n). However, their algorithms require
404 each processor to communicate its current approximation to all
405 other processors at the end of each iteration (synchronous). Therefore they
406 cause a high degree of memory conflict. Recently the author
407 in~\cite{Mirankar71} proposed two versions of parallel algorithm
408 for the Durand-Kerner method, and Ehrlich-Aberth method on a model of
409 Optoelectronic Transpose Interconnection System (OTIS). The
410 algorithms are mapped on an OTIS-2D torus using $N$ processors. This
411 solution needs $N$ processors to compute $N$ roots, which is not
412 practical for solving polynomials with large degrees.
413 %Until very recently, the literature did not mention implementations
414 %able to compute the roots of large degree polynomials (higher then
415 %1000) and within small or at least tractable times.
416
417 Finding polynomial roots rapidly and accurately is the main objective of our work. 
418 With the advent of CUDA (Compute Unified Device
419 Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time. 
420 In~\cite{Kahinall14} we already proposed the first implementation
421 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
422 that a parallel CUDA implementation is 10 times as fast as the
423 sequential implementation on a single CPU for high degree
424 polynomials of 48,000.
425 %In this paper we present a parallel implementation of Ehrlich-Aberth
426 %method on GPUs for sparse and full polynomials with high degree (up
427 %to $1,000,000$).
428
429
430 %% \section {A CUDA parallel Ehrlich-Aberth method}
431 %% In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
432 %% for solving high degree polynomials (up to $1,000,000$). First, the hardware and software of the GPUs are presented. Then, the CUDA parallel Ehrlich-Aberth method is presented.
433
434 %% \subsection{Background on the GPU architecture}
435 %% A GPU is viewed as an accelerator for the data-parallel and
436 %% intensive arithmetic computations. It draws its computing power
437 %% from the parallel nature of its hardware and software
438 %% architectures. A GPU is composed of hundreds of Streaming
439 %% Processors (SPs) organized in several blocks called Streaming
440 %% Multiprocessors (SMs). It also has a memory hierarchy. It has a
441 %% private read-write local memory per SP, fast shared memory and
442 %% read-only constant and texture caches per SM and a read-write
443 %% global memory shared by all its SPs~\cite{NVIDIA10}.
444
445 %% On a CPU equipped with a GPU, all the data-parallel and intensive
446 %% functions of an application running on the CPU are off-loaded onto
447 %% the GPU in order to accelerate their computations. A similar
448 %% data-parallel function is executed on a GPU as a kernel by
449 %% thousands or even millions of parallel threads, grouped together
450 %% as a grid of thread blocks. Therefore, each SM of the GPU executes
451 %% one or more thread blocks in SIMD fashion (Single  Instruction,
452 %% Multiple Data) and in turn each SP of a GPU SM runs one or more
453 %% threads within a block in SIMT fashion (Single Instruction,
454 %% Multiple threads). Indeed at any given clock cycle, the threads
455 %% execute the same instruction of a kernel, but each of them
456 %% operates on different data.
457 %%  GPUs only work on data filled in their
458 %% global memories and the final results of their kernel executions
459 %% must be communicated to their CPUs. Hence, the data must be
460 %% transferred in and out of the GPU. However, the speed of memory
461 %% copy between the GPU and the CPU is slower than the memory
462 %% bandwidths of the GPU memories and, thus, it dramatically affects
463 %% the performances of GPU computations. Accordingly, it is necessary
464 %% to limit as much as possible, data transfers between the GPU and its CPU during the
465 %% computations.
466 %% \subsection{Background on the CUDA Programming Model}
467
468 %% The CUDA programming model is similar in style to a single program
469 %% multiple-data (SPMD) software model. The GPU is viewed as a
470 %% coprocessor that executes data-parallel kernel functions. CUDA
471 %% provides three key abstractions, a hierarchy of thread groups,
472 %% shared memories, and barrier synchronization. Threads have a three
473 %% level hierarchy. A grid is a set of thread blocks that execute a
474 %% kernel function. Each grid consists of blocks of threads. Each
475 %% block is composed of hundreds of threads. Threads within one block
476 %% can share data using shared memory and can be synchronized at a
477 %% barrier. All threads within a block are executed concurrently on a
478 %% multithreaded architecture.The programmer specifies the number of
479 %% threads per block, and the number of blocks per grid. A thread in
480 %% the CUDA programming language is much lighter weight than a thread
481 %% in traditional operating systems. A thread in CUDA typically
482 %% processes one data element at a time. The CUDA programming model
483 %% has two shared read-write memory spaces, the shared memory space
484 %% and the global memory space. The shared memory is local to a block
485 %% and the global memory space is accessible by all blocks. CUDA also
486 %% provides two read-only memory spaces, the constant space and the
487 %% texture space, which reside in external DRAM, and are accessed via
488 %% read-only caches.
489
490 \section{ Implementation of Ehrlich-Aberth method on GPU}
491 \label{sec5}
492 %%\subsection{A CUDA implementation of the Aberth's method }
493 %%\subsection{A GPU implementation of the Aberth's method }
494
495
496
497 %% \subsection{Sequential Ehrlich-Aberth algorithm}
498 %% The main steps of Ehrlich-Aberth method are shown in Algorithm.~\ref{alg1-seq} :
499 %% %\LinesNumbered  
500 %% \begin{algorithm}[H]
501 %% \label{alg1-seq}
502
503 %% \caption{A sequential algorithm to find roots with the Ehrlich-Aberth method}
504
505 %% \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (error tolerance
506 %%   threshold), $P$ (Polynomial to solve),$Pu$ (the derivative of P) $\Delta z_{max}$ (maximum value
507 %%   of stop condition), k (number of iteration), n (Polynomial's degrees)}
508 %% \KwOut {$Z$ (The solution root's vector), $ZPrec$ (the previous solution root's vector)}
509
510 %% \BlankLine
511
512 %% Initialization of $P$\;
513 %% Initialization of $Pu$\;
514 %% Initialization of the solution vector $Z^{0}$\;
515 %% $\Delta z_{max}=0$\;
516 %%  k=0\;
517
518 %% \While {$\Delta z_{max} > \varepsilon$}{
519 %%  Let $\Delta z_{max}=0$\;
520 %% \For{$j \gets 0 $ \KwTo $n$}{
521 %% $ZPrec\left[j\right]=Z\left[j\right]$;// save Z at the iteration k.\
522
523 %% $Z\left[j\right]=H\left(j, Z, P, Pu\right)$;//update Z with the iterative function.\
524 %% }
525 %% k=k+1\;
526
527 %% \For{$i \gets 0 $ \KwTo $n-1$}{
528 %% $c= testConverge(\Delta z_{max},ZPrec\left[j\right],Z\left[j\right])$\;
529 %% \If{$c > \Delta z_{max}$ }{
530 %% $\Delta z_{max}$=c\;}
531 %% }
532
533 %% }
534 %% \end{algorithm}
535
536 %% ~\\ 
537 %% In this sequential algorithm, one CPU thread  executes all the steps. Let us look to the $3^{rd}$ step i.e. the execution of the iterative function, 2 sub-steps are needed. The first sub-step \textit{save}s the solution vector of the previous iteration, the second sub-step \textit{update}s or computes the new values of the roots vector.
538
539 \subsection{Parallel implementation with CUDA }
540
541 In order to implement the Ehrlich-Aberth method in CUDA, it is
542 possible to use the Jacobi scheme or the Gauss-Seidel one.  With the
543 Jacobi iteration, at iteration $k+1$ we need all the previous values
544 $z^{k}_{i}$ to compute the new values $z^{k+1}_{i}$, that is :
545
546 \begin{equation}
547 EAJ: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
548 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n.
549 \end{equation}
550
551 With the Gauss-Seidel iteration, we have:
552 %\begin{equation}
553 %\label{eq:Aberth-H-GS}
554 %EAGS: z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{k}_{i}-z^{k}_{j}})}, i=1,...,n.
555 %\end{equation}
556
557 \begin{equation}
558 \label{eq:Aberth-H-GS}
559 EAGS: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
560 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum_{j=i+1}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}})}, i=1,. . . .,n
561 \end{equation}
562
563 Using Eq.~\ref{eq:Aberth-H-GS} to update the vector solution
564 \textit{Z}, we expect the Gauss-Seidel iteration to converge more
565 quickly because, just as any Jacobi algorithm (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
566
567 %The $4^{th}$ step of the algorithm checks the convergence condition using Eq.~\ref{eq:Aberth-Conv-Cond}.
568 %Both steps 3 and 4 use 1 thread to compute all the $n$ roots on CPU, which is very harmful for performance in case of the large degree polynomials.
569
570
571
572 %On the CPU,  both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
573 %In the GPU, the scheduler assigns the execution of this loop to a
574 %group of threads organised as a grid of blocks with block containing a
575 %number of threads. All threads within a block are executed
576 %concurrently in parallel. The instructions run on the GPU are grouped
577 %in special function called kernels. With CUDA, a programmer must
578 %describe the kernel execution context:  the size of the Grid, the number of blocks and the number of threads per block.
579
580 %In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual \verb=C= function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
581
582 Algorithm~\ref{alg2-cuda} shows sketch of the Ehrlich-Aberth method using CUDA.
583
584 \begin{enumerate}
585 \begin{algorithm}[H]
586 \label{alg2-cuda}
587 %\LinesNumbered
588 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
589
590 \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
591   threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial's degrees), $\Delta z_{max}$ (Maximum value of stop condition)}
592
593 \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
594
595 \BlankLine
596
597 \item Initialization of the of P\;
598 \item Initialization of the of Pu\;
599 \item Initialization of the solution vector $Z^{0}$\;
600 \item Allocate and copy initial data to the GPU global memory\;
601 \item k=0\;
602 \While {$\Delta z_{max} > \epsilon$}{
603 \item Let $\Delta z_{max}=0$\;
604 \item $ kernel\_save(ZPrec,Z)$\;
605 \item  k=k+1\;
606 \item $ kernel\_update(Z,P,Pu)$\;
607 \item $kernel\_testConverge(\Delta z_{max},Z,ZPrec)$\;
608
609 }
610 \item Copy results from GPU memory to CPU memory\;
611 \end{algorithm}
612 \end{enumerate}
613 ~\\ 
614
615 After the initialization step, all data of the root finding problem
616 must be copied from the CPU memory to the GPU global memory. Next, all
617 the data-parallel arithmetic operations inside the main loop
618 \verb=(while(...))= are executed as kernels by the GPU. The
619 first kernel named \textit{save} in line 7 of
620 Algorithm~\ref{alg2-cuda} consists in saving the vector of
621 polynomial's root found at the previous time-step in GPU memory, in
622 order to check the convergence of the roots after each iteration (line
623 10, Algorithm~\ref{alg2-cuda}).
624
625 The second kernel executes the iterative function and updates
626 $Z$, according to Algorithm~\ref{alg3-update}. We notice that the
627 update kernel is called in two forms, according to the value
628 \emph{R} which determines the radius beyond which we apply the
629 exponential logarithm algorithm. 
630
631 \begin{algorithm}[H]
632 \label{alg3-update}
633 %\LinesNumbered
634 \caption{Kernel update}
635
636 \eIf{$(\left|Z\right|<= R)$}{
637 $kernel\_update(Z,P,Pu)$\;}
638 {
639 $kernel\_update\_ExpoLog(Z,P,Pu)$\;
640 }
641 \end{algorithm}
642
643 The first form executes formula the EA function Eq.~\ref{Eq:Hi} if the modulus
644 of the current complex is less than the a certain value called the
645 radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes the EA.EL
646 function Eq.~\ref{Log_H2}
647 (with Eq.~\ref{deflncomplex}, Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as in Eq.~\ref{R.EL}.
648
649 The last kernel checks the convergence of the roots after each update
650 of $Z^{k}$, according to formula Eq.~\ref{eq:Aberth-Conv-Cond}. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
651
652 The kernel terminates its computations when all the roots have
653 converged. It should be noticed that, as blocks of threads are
654 scheduled automatically by the GPU, we have absolutely no control on
655 the order of the blocks. Consequently, our algorithm is executed more
656 or less in an asynchronous iteration model, where blocks of roots are
657 updated in a non deterministic way. As the Durand-Kerner method has
658 been proved to converge with asynchronous iterations, we think it is
659 similar with the Ehrlich-Aberth method, but we did not try to prove
660 this in that paper. Another consequence of that, is that several
661 executions of our algorithm with the same polynomial do no give
662 necessarily the same result (but roots have the same accuracy) and the
663 same number of iterations (even if the variation is not very
664 significant).
665
666
667
668
669
670 %%HIER END MY REVISIONS (SIDER)
671 \section{Experimental study}
672 \label{sec6}
673 %\subsection{Definition of the used polynomials }
674 We study two categories of polynomials: sparse polynomials and the full polynomials.\\
675 {\it A sparse polynomial} is a polynomial for which only some
676 coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles:
677 \begin{equation}
678         \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
679 \end{equation}\noindent
680 {\it A full polynomial} is, in contrast, a polynomial for which
681 all the coefficients are not null. A full polynomial is defined by:
682 %%\begin{equation}
683         %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
684 %%\end{equation}
685
686 \begin{equation}
687      {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
688 \end{equation}
689 %With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
690
691 %\subsection{The study condition} 
692 %Two parameters are studied are
693 %the polynomial degree and the execution time of our program
694 %to converge on the solution. The polynomial degree allows us
695 %to validate that our algorithm is powerful with high degree
696 %polynomials. The execution time remains the
697 %element-key which justifies our work of parallelization.
698 For our tests, a CPU Intel(R) Xeon(R) CPU
699 E5620@2.40GHz and a GPU K40 (with 6 Go of ram) are used. 
700
701
702 %\subsection{Comparative study}
703 %First, performances of the Ehrlich-Aberth method  of root finding polynomials
704 %implemented on CPUs and on GPUs are studied.
705
706 We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution times, the  polynomial size and the number of threads per block performed by sum or each experiment on CPU and on GPU.
707
708 All experimental results obtained from the simulations are made in
709 double precision data, the convergence threshold of the methods is set
710 to $10^{-7}$.
711 %Since we were more interested in the comparison of the
712 %performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on
713 %CPUs versus on GPUs.
714 The initialization values of the vector solution
715 of the methods are given in Section~\ref{sec:vec_initialization}.
716
717 \subsection{Comparison of execution times of the Ehrlich-Aberth method
718   on a CPU with OpenMP (1 core and 4 cores) vs. on a Tesla GPU}
719
720 \begin{figure}[htbp]
721 \centering
722   \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
723 \caption{Comparison of execution times  of the Ehrlich-Aberth method
724   on a CPU with OpenMP (1 core, 4 cores) and on a Tesla GPU}
725 \label{fig:01}
726 \end{figure}
727 %%Figure 1 %%show a comparison of execution time between the parallel
728 %%and sequential version of the Ehrlich-Aberth algorithm with sparse
729 %%polynomial exceed 100000,
730
731 In Figure~\ref{fig:01}, we report the execution times of the
732 Ehrlich-Aberth method on one core of a Quad-Core Xeon E5620 CPU, on
733 four cores on the same machine with \textit{OpenMP} and on a Nvidia
734 Tesla K40 GPU.  We chose different sparse polynomials with degrees
735 ranging from 100,000 to 1,000,000. We can see that the implementation
736 on the GPU is faster than those implemented on the CPU.
737 However, the execution time for the
738 CPU (4 cores) implementation exceed 5,000s for 250,000 degrees
739 polynomials. In counterpart, the GPU implementation for the same
740 polynomials do not take more 100s. With the GPU
741 we can solve high degrees polynomials very quickly up to degree
742  of 1,000,000. We can also notice that the GPU implementation are
743  almost 40 faster then those implementation on the CPU (4 cores).
744
745
746  
747
748 %This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
749  
750  %We notice that the convergence precision is a round $10^{-7}$ for the both implementation on CPU and GPU. Consequently, we can conclude that Ehrlich-Aberth on GPU are faster and accurately then CPU implementation.
751
752 \subsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
753 To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel). In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. 
754 For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40 GPU is 1,024, so we varied the number of threads per block from 8 to 1,024. We took into account the execution time for both sparse and full of 10 different polynomials of size 50,000 and 10 different polynomials of size 500,000 degrees.
755
756 \begin{figure}[htbp]
757 \centering
758   \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
759 \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
760 \label{fig:02}
761 \end{figure}
762
763 The figure 2 show that, the best execution time for both sparse and full polynomial are given when the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the best number of threads per block is 64, Whereas, the large polynomials the best number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256.
764
765 \subsection{Influence of exp-log solution to compute high degree polynomials}
766
767 In this experiment we report the performance of the exp-log solution described in Section~\ref{sec2} to compute very high degrees polynomials.   
768 \begin{figure}[htbp]
769 \centering
770   \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog}
771 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
772 \label{fig:03}
773 \end{figure}
774
775
776 Figure~\ref{fig:03} shows a comparison between the execution time of
777 the Ehrlich-Aberth method using the exp-log solution and the
778 execution time of the Ehrlich-Aberth method without this solution,
779 with full and sparse polynomials degrees. We can see that the
780 execution times for both algorithms are the same with full polynomials
781 degrees less than 4,000 and sparse polynomials less than 150,000. We
782 also clearly show that the classical version (without exp-log) of
783 Ehrlich-Aberth algorithm do not converge after these degree with
784 sparse and full polynomials. In counterpart, the new version of
785 Ehrlich-Aberth algorithm with the exp-log solution can solve very
786 high degree polynomials.
787
788 %in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying exp-log solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees . 
789
790
791
792
793 \subsection{Comparison of the Durand-Kerner and the Ehrlich-Aberth methods}
794
795 In this part, we  compare the Durand-Kerner and the Ehrlich-Aberth
796 methods on GPU. We took into account the execution times, the number of iterations and the polynomials size for the both sparse and full polynomials.  
797
798 \begin{figure}[htbp]
799 \centering
800   \includegraphics[width=0.8\textwidth]{figures/EA_DK}
801 \caption{Execution times of the  Durand-Kerner and the Ehrlich-Aberth methods on GPU}
802 \label{fig:04}
803 \end{figure}
804
805 Figure~\ref{fig:04} shows the execution times of both methods with
806 sparse polynomial degrees ranging from 1,000 to 1,000,000. We can see
807 that the Ehrlich-Aberth algorithm is faster than Durand-Kerner
808 algorithm, with an average of 25 times faster. Then, when degrees of
809 polynomial exceed 500,000 the execution times with DK are very long.
810
811 %with double precision not exceed $10^{-5}$.
812
813 \begin{figure}[htbp]
814 \centering
815   \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
816 \caption{The number of iterations to converge for the Ehrlich-Aberth
817   and the Durand-Kerner methods}
818 \label{fig:05}
819 \end{figure}
820
821 Figure~\ref{fig:05} show the evaluation of the number of iteration according
822 to degree of polynomial from both EA and DK algorithms, we can see
823 that the iteration number of DK is of order 100 while EA is of order
824 10. Indeed the computing of the derivative of P (the polynomial to
825 resolve) in the iterative function (Eq.~\ref{Eq:Hi}) executed by EA
826 allows the algorithm to converge more quickly. In counterpart, the
827 DK operator (Eq.~\ref{DK}) needs low operation, consequently low
828 execution time per iteration, but it needs more iterations to converge.
829
830
831  \section{Conclusion and perspectives}
832 \label{sec7}
833 In this paper we have presented the parallel implementation
834 Ehrlich-Aberth method on GPU for the problem of finding roots
835 polynomial. Moreover, we have improved the classical Ehrlich-Aberth
836 method which suffers from overflow problems, the exp-log solution
837 applied to the iterative function allows to solve high degree
838 polynomials.
839
840 We have performed many experiments with the Ehrlich-Aberth method in
841 GPU. These experiments highlight that this method is very efficient in
842 GPU compared to all the other implementations. The improvement with
843 the exponential logarithm solution allows us to solve sparse and full
844 high degree polynomials up to 1,000,000 degree. Hence, it may be
845 possible to consider to use polynomial root finding methods in other
846 numerical applications on GPU.
847
848
849 In future works, we plan to investigate the possibility of using
850 several multiple GPUs simultaneously, either with multi-GPU machine or
851 with cluster of GPUs. It may also be interesting to study the
852 implementation of other root finding polynomial methods on GPU.
853
854
855
856 \bibliography{mybibfile}
857
858 \end{document}