1 \begin{thebibliography}{10}
2 \expandafter\ifx\csname url\endcsname\relax
3 \def\url#1{\texttt{#1}}\fi
4 \expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi
5 \expandafter\ifx\csname href\endcsname\relax
6 \def\href#1#2{#2} \def\path#1{#1}\fi
8 \bibitem{Weierstrass03}
9 K.~Weierstrass, Neuer beweis des satzes, dass jede ganze rationale function
10 einer veranderlichen dagestellt werden kann als ein product aus linearen
11 functionen derselben veranderlichen, Ges. Werke 3 (1903) 251--269.
14 L.~Ilieff, On the approximations of newton, Annual Sofia Univ~(46) (1950)
16 \newblock \href {http://dx.doi.org/10.1016/0003-4916(63)90068-X}
17 {\path{doi:10.1016/0003-4916(63)90068-X}}.
20 K.~Docev, An alternative method of newton for simultaneous calculation of all
21 the roots of a given algebraic equation, Phys. Math. J~(5) (1962) 136--139.
24 E.~Durand, Solution numerique des equations algebriques, vol. 1, equations du
25 type f(x)=0, racines d'une polynome Vol.1.
28 I.~Kerner, Ein gesamtschritteverfahren zur berechnung der nullstellen von
29 polynomen~(8) (1966) 290--294.
31 \bibitem{Borch-Supan63}
32 W.~Borch-Supan, A posteriori error for the zeros of polynomials~(5) (1963)
36 L.~Ehrlich, A modified newton method for polynomials, Comm. Ass. Comput.
37 Mach.~(10) (1967) 107--108.
40 O.~Aberth, Iteration methods for finding all zeros of a polynomial
41 simultaneously, Mathematics of Computation 27~(122) (1973) 339--344.
42 \newblock \href {http://dx.doi.org/10.1016/0003-4916(63)90068-X}
43 {\path{doi:10.1016/0003-4916(63)90068-X}}.
46 G.~Loizon, Higher-order iteration functions for simultaneously approximating
47 polynomial zeros, Intern. J. Computer Math~(14) (1983) 45--58.
50 T.~Freeman, Calculating polynomial zeros on a local memory parallel computer,
51 Parallel Computing~(12) (1989) 351--358.
53 \bibitem{Freemanall90}
54 T.~Freeman, R.~Brankin, Asynchronous polynomial zero-finding algorithms,
55 Parallel Computing~(17) (1990) 673--681.
57 \bibitem{Raphaelall01}
58 R.~Couturier, F.~Spetiri, Extraction de racines dans des polynômes creux de
59 degrées élevés.rsrcp (réseaux et systèmes répartis, calculateurs
60 parallèles), Algorithmes itératifs paralléles et distribués 1~(13) (1990)
64 Compute Unified Device Architecture Programming Guide Version 3.0.
67 K.~Ghidouche, R.~Couturie, A.~Sider, parallel implementation of the
68 durand-kerner algorithm for polynomial root-finding on gpu, IEEE. Conf. on
69 advanced Networking, Distributed Systems and Applications (2014) 53--57.
72 D.~Bini, Numerical computation of polynomial zeros by means of aberth s method,
73 Numerical Algorithms 13~(4) (1996) 179--200.
76 A.~Ostrowski, On a theorem by j.l. walsh concerning the moduli of roots of
77 algebraic equations,bull. a.m.s., Algorithmes itératifs paralléles et
78 distribués 1~(47) (1941) 742--746.
81 K.~Rhofir, F.~Spies, J.-C. Miellou, Perfectionnements de la méthode asynchrone
82 de durand-kerner pour les polynômes complexes, Calculateurs Parallèles
83 10~(4) (1998) 449--458.
86 W.~Mirankar, Parallel methods for approximating the roots of a function, IBM
87 Res Dev 30 (1968) 297--301.
90 W.~Mirankar, A survey of parallelism in numerical analysis, SIAM Rev (1971)
94 G.~Schedler, Parallel iteration methods in complexity of computer
95 communications, Commun ACM (1967) 286--290.
98 S.~Winogard, Parallel iteration methods in complexity of computer
99 communications, Plenum, New York.
102 M.~Ben-Or, E.~Feig, D.~Kozzen, P.~Tiwary, A fast parallel algorithm for
103 determining all roots of a polynomial with real roots, Int: Proc of ACM
107 P.~Jana, Polynomial interpolation and polynomial root finding on otis-mesh,
108 Parallel Comput 32~(3) (2006) 301--312.
111 P.~Jana, B.~Sinha, R.~D. Gupta, Efficient parallel algorithms for finding
112 polynomial zeroes, Proc of the 6th int conference on advance computing, CDAC,
113 Pune University Campus,India 15~(3) (1999) 189--196.
116 T.~Rice, L.~Jamieson, A highly parallel algorithm for root extraction, IEEE
117 Trans Comp 38~(3) (2006) 443--449.
120 H.~Azad, The performance of synchronous parallel polynomial root extraction on
121 a ring multicomputer, Clust Comput 2~(10) (2007) 167--174.
123 \bibitem{Gemignani07}
124 L.~Gemignani, Structured matrix methods for polynomial root finding., n: Proc
125 of the 2007 Intl symposium on symbolic and algebraic computation (2007)
128 \bibitem{Kalantari08}
129 B.~Kalantari, Polynomial root finding and polynomiography., World
130 Scientifict,New Jersey.
133 V.~Skachek, Structured matrix methods for polynomial root finding., n: Proc of
134 the 2007 Intl symposium on symbolic and algebraic computation (2008)
138 X.~Zhanc, Z.~M.~Wan, A constrained learning algorithm for finding multiple real
139 roots of polynomial, In: Proc of the 2008 intl symposium on computational
140 intelligence and design (2008) 38--41.
143 W.~Zhu, w.~Zeng, D.~Lin, an adaptive algorithm finding multiple roots of
144 polynomials, Lect Notes Comput Sci~(5262) (2008) 674--681.
147 D.~Bini, L.~Gemignani, Inverse power and durand kerner iterations for
148 univariate polynomial root finding, Comput Math Appl~(47) (2004) 447--459.
151 M.~Cosnard, P.~Fraigniaud, Finding the roots of a polynomial on an mimd
152 multicomputer, Parallel Comput 15~(3) (1990) 75--85.
155 P.~Jana, Finding polynomial zeroes on a multi-mesh of trees (mmt), In: Proc of
156 the 2nd int conference on information technology (1999) 202--206.
159 NVIDIA, NVIDIA CUDA C Programming Guide, Vol.~7 of 001, PG, 2015.
161 \end{thebibliography}