]> AND Private Git Repository - kahina_paper1.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
MAJ eq:Aberth-Conv-Cond
[kahina_paper1.git] / paper.tex
1 \documentclass[review]{elsarticle}
2
3 \usepackage{lineno,hyperref}
4 \usepackage[utf8]{inputenc}
5 %%\usepackage[T1]{fontenc}
6 %%\usepackage[french]{babel}
7 \usepackage{float} 
8 \usepackage{amsmath,amsfonts,amssymb}
9 \usepackage[ruled,vlined]{algorithm2e}
10 %\usepackage[french,boxed,linesnumbered]{algorithm2e}
11 \usepackage{array,multirow,makecell}
12 \setcellgapes{1pt}
13 \makegapedcells
14 \newcolumntype{R}[1]{>{\raggedleft\arraybackslash }b{#1}}
15 \newcolumntype{L}[1]{>{\raggedright\arraybackslash }b{#1}}
16 \newcolumntype{C}[1]{>{\centering\arraybackslash }b{#1}}
17 \modulolinenumbers[5]
18
19 \journal{Journal of \LaTeX\ Templates}
20
21 %%%%%%%%%%%%%%%%%%%%%%%
22 %% Elsevier bibliography styles
23 %%%%%%%%%%%%%%%%%%%%%%%
24 %% To change the style, put a % in front of the second line of the current style and
25 %% remove the % from the second line of the style you would like to use.
26 %%%%%%%%%%%%%%%%%%%%%%%
27
28 %% Numbered
29 %\bibliographystyle{model1-num-names}
30
31 %% Numbered without titles
32 %\bibliographystyle{model1a-num-names}
33
34 %% Harvard
35 %\bibliographystyle{model2-names.bst}\biboptions{authoryear}
36
37 %% Vancouver numbered
38 %\usepackage{numcompress}\bibliographystyle{model3-num-names}
39
40 %% Vancouver name/year
41 %\usepackage{numcompress}\bibliographystyle{model4-names}\biboptions{authoryear}
42
43 %% APA style
44 %\bibliographystyle{model5-names}\biboptions{authoryear}
45
46 %% AMA style
47 %\usepackage{numcompress}\bibliographystyle{model6-num-names}
48
49 %% `Elsevier LaTeX' style
50 \bibliographystyle{elsarticle-num}
51 %%%%%%%%%%%%%%%%%%%%%%%
52
53 \begin{document}
54
55 \begin{frontmatter}
56
57 \title{Efficient high degree polynomial root finding using GPU}
58
59 %% Group authors per affiliation:
60 %\author{Elsevier\fnref{myfootnote}}
61 %\address{Radarweg 29, Amsterdam}
62 %\fntext[myfootnote]{Since 1880.}
63
64 %% or include affiliations in footnotes:
65 \author[mymainaddress]{Kahina Ghidouche}
66 %%\ead[url]{kahina.ghidouche@univ-bejaia.dz}
67 \cortext[mycorrespondingauthor]{Corresponding author}
68 \ead{kahina.ghidouche@univ-bejaia.dz}
69
70 \author[mysecondaryaddress]{Raphaël Couturier\corref{mycorrespondingauthor}}
71 %%\cortext[mycorrespondingauthor]{Corresponding author}
72 \ead{raphael.couturier@univ-fcomte.fr}
73
74 \author[mymainaddress]{Abderrahmane Sider}
75 %%\cortext[mycorrespondingauthor]{Corresponding author}
76 \ead{ar.sider@univ-bejaia.dz}
77
78 \address[mymainaddress]{Laboratoire LIMED, Faculté des sciences
79   exactes, Université de Bejaia, 06000, Algeria}
80 \address[mysecondaryaddress]{FEMTO-ST Institute, University of
81   Bourgogne Franche-Comte, France }
82
83 \begin{abstract}
84 Polynomials are mathematical algebraic structures that play a great
85 role in science and engineering. Finding roots of high degree
86 polynomials is computationally demanding. In this paper, we present
87 the results of a parallel implementation of the Ehrlich-Aberth
88 algorithm for the root finding problem for high degree polynomials on
89 GPU architectures. The main result of this
90 work is to be able to solve high degree polynomials (up
91 to 1,000,000) very efficiently. We also compare the results with a
92 sequential implementation and the Durand-Kerner method on full and
93 sparse polynomials.
94 \end{abstract}
95
96 \begin{keyword}
97 Polynomial root finding, Iterative methods, Ehrlich-Aberth, Durand-Kerner, GPU
98 \end{keyword}
99
100 \end{frontmatter}
101
102 \linenumbers
103
104 \section{The problem of finding roots of a polynomial}
105 Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomenons and to express any outcome in the form of a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
106 %%\begin{center}
107 \begin{equation}
108      {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
109 \end{equation}
110 %%\end{center}
111
112 The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeroes of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
113 \begin{equation}
114      {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
115 \end{equation}
116
117 The problem of finding a root is equivalent to that of solving a fixed-point problem. To see this, consider the fixed-point problem of finding the $n$-dimensional
118 vector $x$ such that :
119 \begin{center}
120 $x=g(x)$
121 \end{center}
122 where $g : C^{n}\longrightarrow C^{n}$. Usually, we can easily
123 rewrite this fixed-point problem as a root-finding problem by
124 setting $f(x) = x-g(x)$ and likewise we can recast the
125 root-finding problem into a fixed-point problem by setting :
126 \begin{center}
127 $g(x)= f(x)-x$.
128 \end{center}
129
130 Often it is not be possible to solve such nonlinear equation
131 root-finding problems analytically. When this occurs we turn to
132 numerical methods to approximate the solution. 
133 Generally speaking, algorithms for solving problems can be divided into
134 two main groups: direct methods and iterative methods.
135 \\
136 Direct methods exist only for $n \leq 4$, solved in closed form by G. Cardano
137 in the mid-16th century. However, N. H. Abel in the early 19th
138 century showed that polynomials of degree five or more could not
139 be solved by  direct methods. Since then, mathematicians have
140 focussed on numerical (iterative) methods such as the famous
141 Newton method, the Bernoulli method of the 18th, and the Graeffe method.
142
143 Later on, with the advent of electronic computers, other methods have
144 been developed such as the Jenkins-Traub method, the Larkin method,
145 the Muller method, and several methods for simultaneous
146 approximation of all the roots, starting with the Durand-Kerner (DK)
147 method:
148 %%\begin{center}
149 \begin{equation}
150 \label{DK}
151  DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, . . . , n,
152 \end{equation}
153 %%\end{center}
154 where $z_i^k$ is the $i^{th}$ root of the polynomial $P$ at the
155 iteration $k$.
156
157
158 This formula is mentioned for the first time by
159 Weiestrass~\cite{Weierstrass03} as part of the fundamental theorem
160 of Algebra and is rediscovered by Ilieff~\cite{Ilie50},
161 Docev~\cite{Docev62}, Durand~\cite{Durand60},
162 Kerner~\cite{Kerner66}. Another method discovered by
163 Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
164 in the following form by Ehrlich~\cite{Ehrlich67} and
165 Aberth~\cite{Aberth73} uses a different iteration formula given as:
166 %%\begin{center}
167 \begin{equation}
168 \label{Eq:EA}
169  EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, . . . , n,
170 \end{equation}
171 %%\end{center}
172 where $P'(z)$ is the polynomial derivative of $P$ evaluated in the
173 point $z$.
174
175 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizon83} have proved that
176 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
177
178
179 Iterative methods raise several problem when implemented e.g.
180 specific sizes of numbers must be used to deal with this
181 difficulty. Moreover, the convergence time of iterative methods
182 drastically increases like the degrees of high polynomials. It is expected that the
183 parallelization of these algorithms will improve the convergence
184 time.
185
186 Many authors have dealt with the parallelization of
187 simultaneous methods, i.e. that find all the zeros simultaneously. 
188 Freeman~\cite{Freeman89} implemented and compared DK, EA and another method of the fourth order proposed
189 by Farmer and Loizou~\cite{Loizon83}, on a 8-processor linear
190 chain, for polynomials of degree up to 8. The third method often
191 diverges, but the first two methods have speed-up equal to 5.5. Later,
192 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
193 algorithms, in which each processor continues to update its
194 approximations even though the latest values of other $z_i((k))$
195 have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration.
196 Couturier and al.~\cite{Raphaelall01} proposed two methods of parallelization for
197 a shared memory architecture and for distributed memory one. They were able to
198 compute the roots of sparse polynomials of degree 10000 in 430 seconds with only 8
199 personal computers and 2 communications per iteration. Comparing to the sequential implementation
200 where it takes up to 3300 seconds to obtain the same results, the authors show an interesting speedup.
201
202 Very few works had been performed since this last work until the appearing of
203 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
204 parallel computing platform and a programming model invented by
205 NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the
206 hardware resources provided by GPU in order to offer a stronger
207 computing ability to the massive data computing.
208
209
210 Ghidouche and al~\cite{Kahinall14} proposed an implementation of the
211 Durand-Kerner method on GPU. Their main
212 result showed that a parallel CUDA implementation is about 10 times faster than
213 the sequential implementation on a single CPU for  sparse
214 polynomials of degree 48000. 
215
216
217 In this paper, we focus on the implementation of the Ehrlich-Aberth
218 method for high degree polynomials on GPU. We propose an adaptation of
219 the exponential logarithm in order to be able to solve sparse and full
220 polynomial of degree up to $1,000,000$. The paper is organized as
221 follows. Initially, we recall the Ehrlich-Aberth method in Section
222 \ref{sec1}. Improvements for the Ehrlich-Aberth method are proposed in
223 Section \ref{sec2}. Related work to the implementation of simultaneous
224 methods using a parallel approach is presented in Section
225 \ref{secStateofArt}.  In Section \ref{sec5} we propose a parallel
226 implementation of the Ehrlich-Aberth method on GPU and discuss
227 it. Section \ref{sec6} presents and investigates our implementation
228 and experimental study results. Finally, Section\ref{sec7} 6 concludes
229 this paper and gives some hints for future research directions in this
230 topic.
231
232 \section{The Sequential Ehrlich-Aberth method}
233 \label{sec1}
234 A cubically convergent iteration method for finding zeros of
235 polynomials was proposed by O. Aberth~\cite{Aberth73}. In the
236 following we present the main stages of our implementation the Ehrlich-Aberth method.
237 %The Aberth method is a purely algebraic derivation. 
238 %To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors 
239
240 %\begin{equation}
241 %w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
242 %\end{equation}
243
244 %And let a rational function $R_{i}(z)$ be the correction term of the
245 %Weistrass method~\cite{Weierstrass03}
246
247 %\begin{equation}
248 %R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
249 %\end{equation}
250
251 %Differentiating the rational function $R_{i}(z)$ and applying the
252 %Newton method, we have:
253
254 %\begin{equation}
255 %\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
256 %\end{equation}
257 %where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z 
258 %Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.% 
259
260
261 \subsection{Polynomials Initialization}
262 The initialization of a polynomial p(z) is done by setting each of the $n$ complex coefficients $a_{i}$:
263
264 \begin{equation}
265 \label{eq:SimplePolynome}
266   p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
267 \end{equation}
268
269
270 \subsection{Vector $z^{(0)}$ Initialization}
271
272 As for any iterative method, we need to choose $n$ initial guess points $z^{(0)}_{i}, i = 1, . . . , n.$
273 The initial guess is very important since the number of steps needed by the iterative method to reach
274 a given approximation strongly depends on it.
275 In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
276 equi-spaced points on a circle of center 0 and radius r, where r is
277 an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
278 performed this choice by selecting complex numbers along different
279 circles and relies on the result of~\cite{Ostrowski41}.
280
281 \begin{equation}
282 \label{eq:radiusR}
283 %%\begin{align}
284 \sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
285 v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
286 %%\end{align}
287 \end{equation}
288 Where:
289 \begin{equation}
290 u_{i}=2.|a_{i}|^{\frac{1}{i}};
291 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
292 \end{equation}
293
294 \subsection{Iterative Function}
295 %The operator used by the Aberth method is corresponding to the
296 %following equation~\ref{Eq:EA} which will enable the convergence towards
297 %polynomial solutions, provided all the roots are distinct.
298
299 Here we give a second form of the iterative function used by Ehrlich-Aberth method: 
300
301 \begin{equation}
302 \label{Eq:Hi}
303 EA2: z^{k+1}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
304 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=0,. . . .,n
305 \end{equation}
306 It can be noticed that this equation is equivalent to Eq.~\ref{Eq:EA},
307 but we prefer the latter one because we can use it to improve the
308 Ehrlich-Aberth method and find the roots of very high degrees polynomials. More
309 details are given in Section ~\ref{sec2}.
310 \subsection{Convergence Condition}
311 The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
312
313 \begin{equation}
314 \label{eq:Aberth-Conv-Cond}
315 \forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
316 \end{equation}
317
318
319 \section{Improving the Ehrlich-Aberth Method for high degree polynomials with exp.log formulation}
320 \label{sec2}
321 With high degree polynomial, the Ehrlich-Aberth method implementation,
322 as well as the Durand-Kerner implement, suffers from overflow problems. This
323 situation occurs, for instance, in the case where a polynomial
324 having positive coefficients and a large degree is computed at a
325 point $\xi$ where $|\xi| > 1$, where $|x|$ stands for the modolus of a complex $x$. Indeed, the limited number in the
326 mantissa of floating points representations makes the computation of p(z) wrong when z
327 is large. For example $(10^{50}) +1+ (- 10^{50})$ will give the wrong result
328 of $0$ instead of $1$. Consequently, we can not compute the roots
329 for large degrees. This problem was early discussed in
330 ~\cite{Karimall98} for the Durand-Kerner method, the authors
331 propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent.
332
333 \begin{equation}
334 \label{deflncomplex}
335  \forall(x,y)\in R^{*2}; \ln (x+i.y)=\ln(x^{2}+y^{2})
336 2+i.\arcsin(y\sqrt{x^{2}+y^{2}})_{\left] -\pi, \pi\right[ }
337 \end{equation}
338 %%\begin{equation}
339 \begin{align}
340 \label{defexpcomplex}
341  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
342                                      & =\exp(x).\cos(y)+i.\exp(x).\sin(y)\label{defexpcomplex}
343 \end{align}
344 %%\end{equation}
345
346 Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
347 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
348
349 Applying this solution for the Ehrlich-Aberth method we obtain the
350 iteration function with exponential and logarithm:
351 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
352 \begin{equation}
353 \label{Log_H2}
354 EA.EL: z^{k+1}=z_{i}^{k}-\exp \left(\ln \left(
355 p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln
356 \left(1-Q(z^{k}_{i})\right)\right),
357 \end{equation}
358
359 where:
360
361 \begin{equation}
362 \label{Log_H1}
363 Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
364 \sum_{k\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right).
365 \end{equation}
366
367 This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as:
368 \begin{verbatim}
369 R = exp(log(DBL_MAX)/(2*n) );
370 \end{verbatim} 
371
372 %\begin{equation}
373
374 %R = \exp( \log(DBL\_MAX) / (2*n) )
375 %\end{equation}
376  where \verb=DBL_MAX= stands for the maximum representable \verb=double= value.
377
378 \section{Implementation of simultaneous methods in a parallel computer}
379 \label{secStateofArt}   
380 The main problem of simultaneous methods is that the necessary
381 time needed for convergence is increased when we increase
382 the degree of the polynomial. The parallelization of these
383 algorithms is expected to improve the convergence time.
384 Authors usually adopt one of the two following approaches to parallelize root
385 finding algorithms. The first approach aims at reducing the total number of
386 iterations as by Miranker
387 ~\cite{Mirankar68,Mirankar71}, Schedler~\cite{Schedler72} and
388 Winogard~\cite{Winogard72}. The second approach aims at reducing the
389 computation time per iteration, as reported
390 in~\cite{Benall68,Jana06,Janall99,Riceall06}. 
391
392 There are many schemes for the simultaneous approximation of all roots of a given
393 polynomial. Several works on different methods and issues of root
394 finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Skachek08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich-Aberth methods are the most practical choices among
395 them~\cite{Bini04}. These two methods have been extensively
396 studied for parallelization due to their intrinsics, i.e. the
397 computations involved in both methods has some inherent
398 parallelism that can be suitably exploited by SIMD machines.
399 Moreover, they have fast rate of convergence (quadratic for the
400 Durand-Kerner and cubic for the Ehrlich-Aberth). Various parallel
401 algorithms reported for these methods can be found
402 in~\cite{Cosnard90, Freeman89,Freemanall90,Jana99,Janall99}.
403 Freeman and Bane~\cite{Freemanall90} presented two parallel
404 algorithms on a local memory MIMD computer with the compute-to
405 communication time ratio O(n). However, their algorithms require
406 each processor to communicate its current approximation to all
407 other processors at the end of each iteration (synchronous). Therefore they
408 cause a high degree of memory conflict. Recently the author
409 in~\cite{Mirankar71} proposed two versions of parallel algorithm
410 for the Durand-Kerner method, and Ehrlich-Aberth method on a model of
411 Optoelectronic Transpose Interconnection System (OTIS).The
412 algorithms are mapped on an OTIS-2D torus using N processors. This
413 solution needs N processors to compute N roots, which is not
414 practical for solving polynomials with large degrees.
415 Until very recently, the literature doen not mention implementations able to compute the roots of
416 large degree polynomials (higher then 1000) and within small or at least tractable times. Finding polynomial roots rapidly and accurately is the main objective of our work. 
417 With the advent of CUDA (Compute Unified Device
418 Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time. 
419 In~\cite{Kahinall14} we already proposed the first implementation
420 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
421 that a parallel CUDA implementation is 10 times as fast as the
422 sequential implementation on a single CPU for high degree
423 polynomials of 48000. In this paper we present a parallel implementation of Ehlisch-Aberth method on
424 GPUs, which details are discussed in the sequel.
425
426
427 \section {A CUDA parallel Ehrlich-Aberth method}
428 In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
429 for solving high degree polynomials. First, the hardware and software of the GPUs are presented. Then, a CUDA parallel Ehrlich-Aberth method are presented.
430
431 \subsection{Background on the GPU architecture}
432 A GPU is viewed as an accelerator for the data-parallel and
433 intensive arithmetic computations. It draws its computing power
434 from the parallel nature of its hardware and software
435 architectures. A GPU is composed of hundreds of Streaming
436 Processors (SPs) organized in several blocks called Streaming
437 Multiprocessors (SMs). It also has a memory hierarchy. It has a
438 private read-write local memory per SP, fast shared memory and
439 read-only constant and texture caches per SM and a read-write
440 global memory shared by all its SPs~\cite{NVIDIA10}.
441
442 On a CPU equipped with a GPU, all the data-parallel and intensive
443 functions of an application running on the CPU are off-loaded onto
444 the GPU in order to accelerate their computations. A similar
445 data-parallel function is executed on a GPU as a kernel by
446 thousands or even millions of parallel threads, grouped together
447 as a grid of thread blocks. Therefore, each SM of the GPU executes
448 one or more thread blocks in SIMD fashion (Single  Instruction,
449 Multiple Data) and in turn each SP of a GPU SM runs one or more
450 threads within a block in SIMT fashion (Single Instruction,
451 Multiple threads). Indeed at any given clock cycle, the threads
452 execute the same instruction of a kernel, but each of them
453 operates on different data.
454  GPUs only work on data filled in their
455 global memories and the final results of their kernel executions
456 must be communicated to their CPUs. Hence, the data must be
457 transferred in and out of the GPU. However, the speed of memory
458 copy between the GPU and the CPU is slower than the memory
459 bandwidths of the GPU memories and, thus, it dramatically affects
460 the performances of GPU computations. Accordingly, it is necessary
461 to limit as much as possible, data transfers between the GPU and its CPU during the
462 computations.
463 \subsection{Background on the CUDA Programming Model}
464
465 The CUDA programming model is similar in style to a single program
466 multiple-data (SPMD) software model. The GPU is viewed as a
467 coprocessor that executes data-parallel kernel functions. CUDA
468 provides three key abstractions, a hierarchy of thread groups,
469 shared memories, and barrier synchronization. Threads have a three
470 level hierarchy. A grid is a set of thread blocks that execute a
471 kernel function. Each grid consists of blocks of threads. Each
472 block is composed of hundreds of threads. Threads within one block
473 can share data using shared memory and can be synchronized at a
474 barrier. All threads within a block are executed concurrently on a
475 multithreaded architecture.The programmer specifies the number of
476 threads per block, and the number of blocks per grid. A thread in
477 the CUDA programming language is much lighter weight than a thread
478 in traditional operating systems. A thread in CUDA typically
479 processes one data element at a time. The CUDA programming model
480 has two shared read-write memory spaces, the shared memory space
481 and the global memory space. The shared memory is local to a block
482 and the global memory space is accessible by all blocks. CUDA also
483 provides two read-only memory spaces, the constant space and the
484 texture space, which reside in external DRAM, and are accessed via
485 read-only caches.
486
487 \section{ The implementation of Ehrlich-Aberth method on GPU}
488 \label{sec5}
489 %%\subsection{A CUDA implementation of the Aberth's method }
490 %%\subsection{A GPU implementation of the Aberth's method }
491
492
493
494 \subsection{A sequential Ehrlich-Aberth algorithm}
495 The main steps of Ehrlich-Aberth method are shown in Algorithm.~\ref{alg1-seq} :
496   
497 \begin{algorithm}[H]
498 \label{alg1-seq}
499 %\LinesNumbered
500 \caption{A sequential algorithm to find roots with the Ehrlich-Aberth method}
501
502 \KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error tolerance threshold),P(Polynomial to solve)}
503 \KwOut {Z(The solution root's vector)}
504
505 \BlankLine
506
507 Initialization of the coefficients of the polynomial to solve\;
508 Initialization of the solution vector $Z^{0}$\;
509
510 \While {$\Delta z_{max}\succ \epsilon$}{
511  Let $\Delta z_{max}=0$\;
512 \For{$j \gets 0 $ \KwTo $n$}{
513 $ZPrec\left[j\right]=Z\left[j\right]$\;
514 $Z\left[j\right]=H\left(j,Z\right)$\;
515 }
516
517 \For{$i \gets 0 $ \KwTo $n-1$}{
518 $c=\frac{\left|Z\left[i\right]-ZPrec\left[i\right]\right|}{Z\left[i\right]}$\;
519 \If{$c > \Delta z_{max}$ }{
520 $\Delta z_{max}$=c\;}
521 }
522 }
523 \end{algorithm}
524
525 ~\\ 
526 In this sequential algorithm, one CPU thread  executes all the steps. Let us look to the $3^{rd}$ step i.e. the execution of the iterative function, 2 sub-steps are needed. The first sub-step \textit{save}s the solution vector of the previous iteration, the second sub-step \textit{update}s or computes the new values of the roots vector.
527 There exists two ways to execute the iterative function that we call a Jacobi one and a Gauss-Seidel one. With the Jacobi iteration, at iteration $k+1$ we need all the previous values $z^{(k)}_{i}$ to compute the new values $z^{(k+1)}_{i}$, that is :
528
529 \begin{equation}
530 EAJ: z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{k}_{i}-z^{k}_{j}}}, i=1,...,n.
531 \end{equation}
532
533 With the Gauss-Seidel iteration, we have:
534 \begin{equation}
535 \label{eq:Aberth-H-GS}
536 EAGS: z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{k}_{i}-z^{k}_{j}})}, i=1,...,n.
537 \end{equation}
538 %%Here a finiched my revision %%
539 Using Equation.~\ref{eq:Aberth-H-GS} to update the vector solution \textit{Z}, we expect the Gauss-Seidel iteration to converge more quickly because, just as its ancestor (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
540
541 The $4^{th}$ step of the algorithm checks the convergence condition using Equation.~\ref{eq:Aberth-Conv-Cond}.
542 Both steps 3 and 4 use 1 thread to compute all the $n$ roots on CPU, which is very harmful for performance in case of the large degree polynomials.
543
544
545 \subsection{A Parallel implementation with CUDA }
546 On the CPU,  both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
547 In the GPU, the schduler assigns the execution of this loop to a group of threads organised as a grid of blocks with block containing a number of threads. All threads within a block are executed concurrently in parallel. The instructions run on the GPU are grouped in special function called kernels. It's up to the programmer, to describe the execution context, that is the size of the Grid, the number of blocks and the number of threads per block upon the call of a given kernel, according to a special syntax defined by CUDA.
548
549 In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual \verb=C= function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
550
551 Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth algorithm using CUDA.
552
553 \begin{algorithm}[H]
554 \label{alg2-cuda}
555 %\LinesNumbered
556 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
557
558 \KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
559 tolerance threshold),P(Polynomial to solve)}
560
561 \KwOut {Z(The solution root's vector)}
562
563 \BlankLine
564
565 Initialization of the coeffcients of the polynomial to solve\;
566 Initialization of the solution vector $Z^{0}$\;
567 Allocate and copy initial data to the GPU global memory\;
568
569 \While {$\Delta z_{max}\succ \epsilon$}{
570  Let $\Delta z_{max}=0$\;
571 $ kernel\_save(d\_z^{k-1})$\;
572 $ kernel\_update(d\_z^{k})$\;
573 $kernel\_testConverge(\Delta z_{max},d_z^{k},d_z^{k-1})$\;
574 }
575 \end{algorithm}
576 ~\\ 
577
578 After the initialisation step, all data of the root finding problem to be solved must be copied from the CPU memory to the GPU global memory, because the GPUs only access data already present in their memories. Next, all the data-parallel arithmetic operations inside the main loop \verb=(do ... while(...))= are executed as kernels by the GPU. The first kernel named \textit{save} in line 6 of Algorithm~\ref{alg2-cuda} consists in saving the vector of polynomial's root found at the previous time-step in GPU memory, in order to check the convergence of the roots after each iteration (line 8, Algorithm~\ref{alg2-cuda}).
579
580 The second kernel executes the iterative function $H$ and updates $z^{k}$, according to Algorithm~\ref{alg3-update}. We notice that the update kernel is called in two forms, separated with the value of \emph{R} which determines the radius beyond which we apply the logarithm computation of the power of a complex. 
581
582 \begin{algorithm}[H]
583 \label{alg3-update}
584 %\LinesNumbered
585 \caption{Kernel update}
586
587 \eIf{$(\left|Z^{(k)}\right|<= R)$}{
588 $kernel\_update(d\_z^{k})$\;}
589 {
590 $kernel\_update\_Log(d\_z^{k})$\;
591 }
592 \end{algorithm}
593
594 The first form executes formula \ref{eq:SimplePolynome} if the modulus of the current complex is less than the a certain value called the radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes formulas (Eq.~\ref{deflncomplex},Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as :
595
596 $$R = \exp( \log(DBL\_MAX) / (2*n) )$$ where $DBL\_MAX$ stands for the maximum representable double value.
597
598 The last kernel verifies the convergence of the roots after each update of $Z^{(k)}$, according to formula. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
599
600 The kernels terminate it computations when all the roots converge. Finally, the solution of the root finding problem is copied back from GPU global memory to CPU memory. We use the communication functions of CUDA for the memory allocation in the GPU \verb=(cudaMalloc())= and for data transfers from the CPU memory to the GPU memory \verb=(cudaMemcpyHostToDevice)=
601 or from GPU memory to CPU memory \verb=(cudaMemcpyDeviceToHost))=. 
602 %%HIER END MY REVISIONS (SIDER)
603 \section{Experimental study}
604 \label{sec6}
605 %\subsection{Definition of the used polynomials }
606 We study two categories of polynomials : the sparse polynomials and the full polynomials.
607 \paragraph{A sparse polynomial}:is a polynomial for which only some coefficients are not null. We use in the following polynomial for which the roots are distributed on 2 distinct circles :
608 \begin{equation}
609         \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
610 \end{equation}
611
612
613 \paragraph{A full polynomial}:is in contrast, a polynomial for which all the coefficients are not null. the second form used to obtain a full polynomial is:
614 %%\begin{equation}
615         %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
616 %%\end{equation}
617
618 \begin{equation}
619      {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
620 \end{equation}
621 With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
622
623 %\subsection{The study condition} 
624 The our experiences results concern two parameters which are
625 the polynomial degree and the execution time of our program
626 to converge on the solution. The polynomial degree allows us
627 to validate that our algorithm is powerful with high degree
628 polynomials. The execution time remains the
629 element-key which justifies our work of parallelization.
630         For our tests we used a CPU Intel(R) Xeon(R) CPU
631 E5620@2.40GHz and a GPU K40 (with 6 Go of ram).
632
633
634 %\subsection{Comparative study}
635 In this section, we discuss the performance Ehrlich-Aberth method  of root finding polynomials implemented on CPUs and on GPUs.
636
637 We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution time, the  polynomial size and the number of threads per block performed by sum or each experiment on CPUs and on GPUs.
638
639 All experimental results obtained from the simulations are made in double precision data, for a convergence tolerance of the methods set to $10^{-7}$. Since we were more interested in the comparison of the performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on CPUs versus on GPUs. The initialization values of the vector solution of the Ehrlich-Aberth method are given in section 2.2. 
640 \subsection{The execution time in seconds of Ehrlich-Aberth algorithm on CPU OpenMP (1 core, 4 cores) vs. on a Tesla GPU}
641
642
643 %\begin{figure}[H]
644 %\centering
645  % \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU}
646 %\caption{The execution time in seconds of Ehrlich-Aberth algorithm on CPU core vs. on a Tesla GPU}
647 %\label{fig:01}
648 %\end{figure}
649
650 \begin{figure}[H]
651 \centering
652   \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
653 \caption{The execution time in seconds of Ehrlich-Aberth algorithm on CPU OpenMP (1 core, 4 cores) vs. on a Tesla GPU}
654 \label{fig:01}
655 \end{figure}
656 Figure 1 %%show a comparison of execution time between the parallel and sequential version of the Ehrlich-Aberth algorithm with sparse polynomial exceed 100000, 
657 We report respectively the execution time of the Ehrlich-Aberth method implemented initially on one core of the Quad-Core Xeon E5620 CPU than on four cores of the same machine with \textit{OpenMP} platform and the execution time of the same method implemented on one Nvidia Tesla K40c GPU, with sparse polynomial degrees ranging from 100,000 to 1,000,000. We can see that the method implemented on the GPU are faster than those implemented on the CPU (4 cores). This is due to the GPU ability to compute the data-parallel functions faster than its CPU counterpart. However, the execution time for the CPU(4 cores) implementation exceed 5,000 s for 250,000 degrees polynomials, in counterpart  the GPU implementation for the same polynomials not reach 100 s, more than again, with an execution time under to 2500 s CPU (4 cores) implementation can resolve polynomials degrees of only 200,000, whereas GPU implementation can resolve polynomials more than 1,000,000 degrees. We can also notice that the GPU implementation are almost 47 faster then those implementation on the CPU(4 cores). However the CPU(4 cores) implementation are almost 4 faster then his implementation on CPU (1 core). Furthermore, we verify that the number of iterations and the convergence precision is the same for the both CPU and GPU implementation. %This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
658  
659  %We notice that the convergence precision is a round $10^{-7}$ for the both implementation on CPU and GPU. Consequently, we can conclude that Ehrlich-Aberth on GPU are faster and accurately then CPU implementation.
660
661 \subsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
662 To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel) and to optimize the use of the various memoirs GPU. In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. 
663 For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40 GPU is 1024, so we varied the number of threads per block from 8 to 1024. We took into account the execution time for both sparse and full of 10 different polynomials of size 50000 and 10 different polynomials of size 500000 degrees.
664
665 \begin{figure}[H]
666 \centering
667   \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
668 \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
669 \label{fig:01}
670 \end{figure}
671
672 The figure 2 show that, the best execution time for both sparse and full polynomial are given when the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the best number of threads per block is 64, Whereas, the large polynomials the best number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256.
673
674 \subsection{The impact of exp-log solution to compute very high degrees of  polynomial}
675
676 In this experiment we report the performance of log.exp solution describe in ~\ref{sec2} to compute very high degrees polynomials.   
677 \begin{figure}[H]
678 \centering
679   \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog}
680 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
681 \label{fig:01}
682 \end{figure}
683
684 The figure 3, show a comparison between the execution time of the Ehrlich-Aberth algorithm applying exp.log solution and the execution time of the Ehrlich-Aberth algorithm without applying exp.log solution, with full and sparse polynomials degrees. We can see that the execution time for the both algorithms are the same while the full polynomials degrees are less than 4000 and full polynomials are less than 150,000. After,we show clearly that the classical version of Ehrlich-Aberth algorithm (without applying log.exp) stop to converge and can not solving any polynomial sparse or full. In counterpart, the new version of Ehrlich-Aberth algorithm (applying log.exp solution) can solve very high and large full polynomial exceed 100,000 degrees.
685
686 in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying log.exp solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees . 
687
688
689 %\begin{figure}[H]
690 \%centering
691   %\includegraphics[width=0.8\textwidth]{figures/log_exp_Sparse}
692 %\caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
693 %\label{fig:01}
694 %\end{figure}
695
696 %we report the performances of the exp.log for the Ehrlich-Aberth algorithm for solving very high degree of polynomial. 
697
698  
699 \subsection{A comparative study between Ehrlich-Aberth algorithm and Durand-kerner algorithm}
700 In this part, we are interesting to compare the simultaneous methods, Ehrlich-Aberth and Durand-Kerner in parallel computer using GPU. We took into account the execution time, the number of iteration and the polynomial's size. for the both sparse and full polynomials.  
701
702 \begin{figure}[H]
703 \centering
704   \includegraphics[width=0.8\textwidth]{figures/EA_DK}
705 \caption{The execution time of Ehrlich-Aberth versus Durand-Kerner algorithm on GPU}
706 \label{fig:01}
707 \end{figure}
708
709 This figure show the execution time of the both algorithm EA and DK with sparse polynomial degrees ranging from 1000 to 1000000. We can see that the Ehrlich-Aberth algorithm are faster than Durand-Kerner algorithm, with an average of 25 times as fast. Then, when degrees of polynomial exceed 500000 the execution time with EA is of the order 100 whereas DK passes in the order 1000. %with double precision not exceed $10^{-5}$.
710
711 \begin{figure}[H]
712 \centering
713   \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
714 \caption{The iteration number of Ehrlich-Aberth versus Durand-Kerner algorithm}
715 \label{fig:01}
716 \end{figure}
717
718 %\subsubsection{The execution time of Ehrlich-Aberth algorithm on OpenMP(1 core, 4 cores) vs. on a Tesla GPU}
719
720
721
722
723
724
725 \section{Conclusion and perspective}
726
727 \label{sec7}
728 \bibliography{mybibfile}
729
730 \end{document}