]> AND Private Git Repository - kahina_paper1.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[kahina_paper1.git] / paper.tex
1 \documentclass[review]{elsarticle}
2
3 %\usepackage{lineno,hyperref}
4 \usepackage[utf8]{inputenc}
5 %%\usepackage[T1]{fontenc}
6 %%\usepackage[french]{babel}
7
8 \usepackage{amsmath,amsfonts,amssymb}
9 \usepackage[ruled,vlined]{algorithm2e}
10 \usepackage{array,multirow,makecell}
11 \setcellgapes{1pt}
12 \makegapedcells
13 \newcolumntype{R}[1]{>{\raggedleft\arraybackslash }b{#1}}
14 \newcolumntype{L}[1]{>{\raggedright\arraybackslash }b{#1}}
15 \newcolumntype{C}[1]{>{\centering\arraybackslash }b{#1}}
16 \modulolinenumbers[5]
17
18 \journal{Journal of \LaTeX\ Templates}
19
20 %%%%%%%%%%%%%%%%%%%%%%%
21 %% Elsevier bibliography styles
22 %%%%%%%%%%%%%%%%%%%%%%%
23 %% To change the style, put a % in front of the second line of the current style and
24 %% remove the % from the second line of the style you would like to use.
25 %%%%%%%%%%%%%%%%%%%%%%%
26
27 %% Numbered
28 %\bibliographystyle{model1-num-names}
29
30 %% Numbered without titles
31 %\bibliographystyle{model1a-num-names}
32
33 %% Harvard
34 %\bibliographystyle{model2-names.bst}\biboptions{authoryear}
35
36 %% Vancouver numbered
37 %\usepackage{numcompress}\bibliographystyle{model3-num-names}
38
39 %% Vancouver name/year
40 %\usepackage{numcompress}\bibliographystyle{model4-names}\biboptions{authoryear}
41
42 %% APA style
43 %\bibliographystyle{model5-names}\biboptions{authoryear}
44
45 %% AMA style
46 %\usepackage{numcompress}\bibliographystyle{model6-num-names}
47
48 %% `Elsevier LaTeX' style
49 \bibliographystyle{elsarticle-num}
50 %%%%%%%%%%%%%%%%%%%%%%%
51
52 \begin{document}
53
54 \begin{frontmatter}
55
56 \title{A parallel  root finding polynomial on GPU}
57
58 %% Group authors per affiliation:
59 %\author{Elsevier\fnref{myfootnote}}
60 %\address{Radarweg 29, Amsterdam}
61 %\fntext[myfootnote]{Since 1880.}
62
63 %% or include affiliations in footnotes:
64 \author[mymainaddress]{Ghidouche Kahina\corref{mycorrespondingauthor}}
65 %%\ead[url]{kahina.ghidouche@gmail.com}
66 \cortext[mycorrespondingauthor]{Corresponding author}
67 \ead{kahina.ghidouche@gmail.com}
68
69 \author[mysecondaryaddress]{Couturier Raphaël\corref{mycorrespondingauthor}}
70 %%\cortext[mycorrespondingauthor]{Corresponding author}
71 \ead{raphael.couturier@univ-fcomte.fr}
72
73 \author[mymainaddress]{Abderrahmane Sider\corref{mycorrespondingauthor}}
74 %%\cortext[mycorrespondingauthor]{Corresponding author}
75 \ead{ar.sider@univ-bejaia.dz}
76
77 \address[mymainaddress]{Department of informatics, University of
78   Béjaia, Algeria}
79 \address[mysecondaryaddress]{FEMTO-ST Institute, University of
80   Bourgogne Franche-Comte }
81
82 \begin{abstract}
83 in this article we present a parallel implementation
84 of the Aberth algorithm for the problem root finding for
85 high degree polynomials on GPU architecture (Graphics
86 Processing Unit).
87 \end{abstract}
88
89 \begin{keyword}
90 root finding of polynomials, high degree, iterative methods, Durant-Kerner, GPU, CUDA, CPU , Parallelization
91 \end{keyword}
92
93 \end{frontmatter}
94
95 \linenumbers
96
97 \section{Root finding problem}
98 We consider a polynomial of degree \textit{n} having coefficients
99 in the complex \textit{C} and zeros $\alpha_{i},\textit{i=1,...,n}$. 
100 %%\begin{center}
101 \begin{equation}
102      {\Large p(x)=\sum{a_{i}x^{i}}=a_{n}\prod(x-\alpha_{i}),a_{0} a_{n}\neq 0}
103 \end{equation}
104 %%\end{center}
105
106  The root finding problem consist to find
107 all n root of \textit{p(x)}. the problem of finding a root is
108 equivalent to the problem of finding a fixed-point. To see this
109 consider the fixed-point problem of finding the n-dimensional
110 vector x such that
111 \begin{center}
112 $x=g(x).  $
113 \end{center}
114 Where $g : C^{n}\longrightarrow C^{n}$. Note that we can easily
115 rewrite this fixed-point problem as a root-finding problem by
116 setting $f (x) = x-g(x)$ and likewise we can recast the
117 root-finding problem into a fixed-point problem by setting
118 \begin{center}
119 $g(x)= f(x)-x$
120 \end{center}
121 Often it will not be possible to solve such nonlinear equation
122 root-finding problems analytically. When this occurs we turn to
123 numerical methods to approximate the solution. Generally speaking,
124 algorithms for solving problems numerically can be divided into
125 two main groups: direct methods and iterative methods.
126 \\
127  Direct methods exist only for $n \leq 4$,solved in closed form by G. Cardano
128 in the mid-16th century. However, N.H. Abel in the early 19th
129 century showed that polynomials of degree five or more could not
130 be solved by  directs methods. Since then researchers have
131 concentrated on numerical (iterative) methods such as the famous
132 Newton's method, Bernoulli's method of the 18th, and Graeffe's.
133 With the advent of electronic computers, different methods has
134 been developed such as the Jenkins-Traub method, Larkin s method,
135 Muller's method, and several methods for simultaneous
136 approximation of all the roots, starting with the Durand-Kerner
137 method:
138 %%\begin{center}
139 \begin{equation}
140  Z_{i}=Z_{i}-\frac{P(Z_{i})}{\prod_{i\neq j}(z_{i}-z_{j})}
141 \end{equation}
142 %%\end{center}
143
144 This formula is mentioned for the first time from
145 Weiestrass~\cite{Weierstrass03} as part of the fundamental theorem
146 of Algebra and is rediscovered from Ilieff~\cite{Ilie50},
147 Docev~\cite{Docev62}, Durand~\cite{Durand60},
148 Kerner~\cite{Kerner66}. Another method discovered from
149 Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
150 in the following form from Ehrlich~\cite{Ehrlich67} and
151 Aberth~\cite{Aberth73}.
152 %%\begin{center}
153 \begin{equation}
154  Z_{i}=Z_{i}-\frac{1}{{\frac {P'(Z_{i})} {P(Z_{i})}}-{\sum_{i\neq j}(z_{i}-z_{j})}}
155 \end{equation}
156 %%\end{center}
157
158 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizon83} have proved that
159 the above method has cubic order of convergence for simple roots.
160
161
162 Iterative methods raise several problem when implemented e.g.
163 specific sizes of numbers must be used to deal with this
164 difficulty.Moreover,the convergence time of iterative methods
165 drastically increase like the degrees of high polynomials. The
166 parallelization of these algorithms will improve the convergence
167 time.
168
169 Many authors have treated the problem of parallelization of
170 simultaneous methods. Freeman~\cite{Freeman89} has tested the DK
171 method, EA method and another method of the fourth order proposed
172 from Farmer and Loizou~\cite{Loizon83},on a 8- processor linear
173 chain, for polynomial of degree up to 8. The third method often
174 diverges, but the first two methods have speed-up 5.5
175 (speed-up=(Time on one processor)/(Time on p processors)). Later
176 Freeman and Bane~\cite{Freemanall90}  consider asynchronous
177 algorithms, in which each processor continues to update its
178 approximations even although the latest values of other $z_i((k))$
179 have not received from the other processors, in difference with
180 the synchronous version where it would wait.
181 in~\cite{Raphaelall01}proposed two methods of parallelization for
182 architecture with shared memory and distributed memory,it able to
183 compute the root of polynomial degree  10000 on 430 s with only 8
184 pc and 2 communications per iteration. Compare to the sequential
185 it take 3300 s to obtain the same results.
186
187 After this few works discuses this problem until the apparition of
188 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10},a
189 parallel computing platform and a programming model invented by
190 NVIDIA. The computing ability of GPU has exceeded the counterpart
191 of CPU. It is a waste of resource to be just a graphics card for
192 GPU. CUDA adopts a totally new computing architecture to use the
193 hardware resources provided by GPU in order to offer a stronger
194 computing ability to the massive data computing.
195
196
197 Indeed,~\cite{Kahinall14}proposed the implementation of the
198 Durand-Kerner method on GPU (Graphics Processing Unit). The main
199 result prove that a parallel implementation is 10 times as fast as
200 the sequential implementation on a single CPU for high degree
201 polynomials that is greater than about 48000.
202 \paragraph{}
203 The mean part of our work is to implement the Aberth method for the problem root finding for
204 high degree polynomials on GPU architecture (Graphics Processing Unit). Initially we present the Aberth method in section 1. Amelioration of Aberth method was proposed in section 2. A related works for the implementation of simultaneous methods in a parallel computer was discuss in section 3. Section 4 we propose a parallel implementation of Aberth method on GPU. Section 5, we present our result and discuss it. Finally, in Section 6, we present our conclusions and future research directions.  
205
206 \section{Aberth method}
207 A cubically convergent iteration method for finding zeros of
208 polynomials was proposed by O.Aberth~\cite{Aberth73}. The Aberth
209 method is a purely algebraic derivation.To illustrate the
210 derivation, we let $w_{i}(z)$ be the product of linear factor 
211
212 \begin{equation}
213 w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
214 \end{equation}
215
216 And rational function $R_{i}(z)$ be the correction term of
217 Weistrass method~\cite{Weierstrass03}:
218
219 \begin{equation}
220 R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n
221 \end{equation}
222
223 Differentiating the rational function $R_{i}(z)$ and applying the
224 Newton method, we have:
225
226 \begin{equation}
227 \frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{i}}}, i=1,2,...,n
228 \end{equation}
229
230 Substituting $x_{j}$ for z we obtain the Aberth iteration method
231
232 Let present the means stages of Aberth method.
233
234 \subsection{Polynomials Initialization}
235  The initialization of polynomial P(z) with complex coefficients
236  are given by:
237
238 \begin{equation}
239   p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
240 \end{equation}
241
242
243 \subsection{Vector $Z^{(0)}$ Initialization}
244
245 The choice of the initial points $z^{(0)}_{i}, i = 1, . . . , n.$
246 from which starting the iteration  (2) or (3), is rather delicate
247 since the number of steps needed by the iterative method to reach
248 a given approximation strongly depends on it.
249 In~\cite{Aberth73}the Aberth iteration is started by selecting n
250 equispaced points on a circle of center 0 and radius r, where r is
251 an upper bound to the moduli of the zeros. After,~\cite{Bini96}
252 performs this choice by selecting complex numbers along different
253 circles and relies on the result of~\cite{Ostrowski41}.
254
255 \begin{equation}
256 %%\begin{align}
257 \sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
258 v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
259 %%\end{align}
260 \end{equation}
261 Where:
262 \begin{equation}
263 u_{i}=2.|a_{i}|^{\frac{1}{i}};
264 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
265 \end{equation}
266
267 \subsection{Iterative Function $H_{i}$}
268 The operator used with Aberth method is corresponding to the
269 following equation which will enable the convergence towards
270 polynomial solutions, provided all the roots are distinct.
271
272 \begin{equation}
273 H_{i}(z)=z_{i}-\frac{1}{\frac{P^{'}(z_{i})}{P(z_{i})}-\sum_{j\neq
274 i}{\frac{1}{z_{i}-z_{j}}}}
275 \end{equation}
276
277 \subsection{Convergence condition}
278 Determines the success of the termination. It consists in stopping
279 the iterative function $H_{i}(z)$ when the root are stable, the method
280 converge sufficiently:
281
282 \begin{equation}
283 \forall i \in
284 [1,n];\frac{z_{i}^{(k)}-z_{i}^{(k-1)}}{z_{i}^{(k)}}<\xi
285 \end{equation}
286
287
288 \section{Amelioration of Aberth method }
289 The Aberth method implementation suffer of overflow problems. This
290 situation occurs, for instance, in the case where a polynomial
291 having positive coefficients and large degree is computed at a
292 point $\xi$ where $|\xi| > 1$. Indeed the limited number in the
293 mantissa of floating takings the computation of P(z) wrong when z
294 is large. for example $(10^{50}) +1+ (- 10^{50})$ will give result
295 0 instead of 1 in reality. Consequently we can not compute the roots
296 for large polynomial's degree. This problem was discuss in
297 ~\cite{Karimall98} for the Durand-Kerner method, the authors
298 propose to use the logarithm and the exponential of a complex:
299
300 \begin{equation}
301  \forall(x,y)\in R^{*2}; \ln (x+i.y)=\ln(x^{2}+y^{2})
302 2+i.\arcsin(y\sqrt{x^{2}+y^{2}})_{\left] -\pi, \pi\right[ }
303 \end{equation}
304 %%\begin{equation}
305 \begin{align}
306  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
307                                      & =\exp(x).\cos(y)+i.\exp(x).\sin(y)
308 \end{align}
309 %%\end{equation}
310
311 The application of logarithm can replace any multiplications and
312 divisions with additions and subtractions. Consequently, it
313 manipulates lower absolute values and can be compute the roots for
314 large polynomial's degree exceed~\cite{Karimall98}.
315
316 Applying this solution for the Aberth method we obtain the
317 iteration function with logarithm:
318 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
319 \begin{equation}
320 H_{i}(z)=z_{i}^{k}-\exp \left(\ln \left(
321 p(z_{k})\right)-\ln\left(p(z_{k}^{'})\right)- \ln
322 \left(1-Q(z_{k})\right)\right)
323 \end{equation}
324 Where:
325
326 \begin{equation}
327 Q(z_{k})=\exp\left( \ln (p(z_{k}))-\ln(p(z_{k}^{'}))+\ln \left(
328 \sum_{k\neq j}^{n}\frac{1}{z_{k}-z_{j}}\right)\right)
329 \end{equation}
330
331 This solution is applying when it is necessary
332
333 \section{The implementation of simultaneous methods in a parallel computer}
334     The main problem of the simultaneous methods is that the necessary
335 time needed for the convergence is increased with the increasing
336 of the degree of the polynomial. The parallelization of these
337 algorithms will improve the convergence time. Researchers usually
338 adopt one of the two following approaches to parallelize root
339 finding algorithms. One approach is to reduce the total number of
340 iterations as implemented by Miranker
341 ~\cite{Mirankar68,Mirankar71}, Schedler~\cite{Schedler72} and
342 Winogard~\cite{Winogard72}. Another approach is to reduce the
343 computation time per iteration, as reported
344 in~\cite{Benall68,Jana06,Janall99,Riceall06}. There are many
345 schemes for simultaneous approximations of all roots of a given
346 polynomial. Several works on different methods and issues of root
347 finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Skachek08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich methods are the most practical choices among
348 them~\cite{Bini04}. These two methods have been extensively
349 studied for parallelization due to their following advantages. The
350 computation involved in these methods has some inherent
351 parallelism that can be suitably exploited by SIMD machines.
352 Moreover, they have fast rate of convergence (quadratic for the
353 Durand-Kerner method and cubic for the Ehrlich). Various parallel
354 algorithms reported for these methods can be found
355 in~\cite{Cosnard90, Freeman89,Freemanall90,,Jana99,Janall99}.
356 Freeman and Bane~\cite{Freemanall90} presented two parallel
357 algorithms on a local memory MIMD computer with the compute-to
358 communication time ratio O(n). However, their algorithms require
359 each processor to communicate its current approximation to all
360 other processors at the end of each iteration. Therefore they
361 cause a high degree of memory conflict. Recently the author
362 in~\cite{Mirankar71} proposed two versions of parallel algorithm
363 for the Durand-Kerner method, and Aberth method on model of
364 Optoelectronic Transpose Interconnection System (OTIS).The
365 algorithms are mapped on an OTIS-2D torus using N processors. This
366 solution need N processors to compute N roots, that it is not
367 practical (is not suitable to compute large polynomial's degrees).
368 Until then, the related works are not able to compute the root of
369 the large polynomial's degrees (higher then 1000) and with small
370 time.
371
372     Finding polynomial roots rapidly and accurately it is our
373 objective, with the apparition of the CUDA(Compute Unified Device
374 Architecture), finding the roots of polynomials becomes rewarding
375 and very interesting, CUDA adopts a totally new computing
376 architecture to use the hardware resources provided by GPU in
377 order to offer a stronger computing ability to the massive data
378 computing. In~\cite{Kahinall14} we proposed the first implantation
379 of the root finding polynomials method on GPU (Graphics Processing
380 Unit),which is the Durand-Kerner method. The main result prove
381 that a parallel implementation is 10 times as fast as the
382 sequential implementation on a single CPU for high degree
383 polynomials that is greater than about 48000. Indeed, in this
384 paper we present a parallel implementation of Aberth method on
385 GPU, more details are discussed in the following of this paper.
386
387
388 \section {A parallel implementation of Aberth method}
389
390 \subsection{Background on the GPU architecture}
391 A GPU is viewed as an accelerator for the data-parallel and
392 intensive arithmetic computations. It draws its computing power
393 from the parallel nature of its hardware and software
394 architectures. A GPU is composed of hundreds of Streaming
395 Processors (SPs) organized in several blocks called Streaming
396 Multiprocessors (SMs). It also has a memory hierarchy. It has a
397 private read-write local memory per SP, fast shared memory and
398 read-only constant and texture caches per SM and a read-write
399 global memory shared by all its SPs~\cite{NVIDIA10}
400
401     On a CPU equipped with a GPU, all the data-parallel and intensive
402 functions of an application running on the CPU are off-loaded onto
403 the GPU in order to accelerate their computations. A similar
404 data-parallel function is executed on a GPU as a kernel by
405 thousands or even millions of parallel threads, grouped together
406 as a grid of thread blocks. Therefore, each SM of the GPU executes
407 one or more thread blocks in SIMD fashion (Single  Instruction,
408 Multiple Data) and in turn each SP of a GPU SM runs one or more
409 threads within a block in SIMT fashion (Single Instruction,
410 Multiple threads). Indeed at any given clock cycle, the threads
411 execute the same instruction of a kernel, but each of them
412 operates on different data.
413  GPUs only work on data filled in their
414 global memories and the final results of their kernel executions
415 must be communicated to their CPUs. Hence, the data must be
416 transferred in and out of the GPU. However, the speed of memory
417 copy between the GPU and the CPU is slower than the memory
418 bandwidths of the GPU memories and, thus, it dramatically affects
419 the performances of GPU computations. Accordingly, it is necessary
420 to limit data transfers between the GPU and its CPU during the
421 computations.
422 \subsection{Background on the CUDA Programming Model}
423
424 The CUDA programming model is similar in style to a single program
425 multiple-data (SPMD) softwaremodel. The GPU is treated as a
426 coprocessor that executes data-parallel kernel functions. CUDA
427 provides three key abstractions, a hierarchy of thread groups,
428 shared memories, and barrier synchronization. Threads have a three
429 level hierarchy. A grid is a set of thread blocks that execute a
430 kernel function. Each grid consists of blocks of threads. Each
431 block is composed of hundreds of threads. Threads within one block
432 can share data using shared memory and can be synchronized at a
433 barrier. All threads within a block are executed concurrently on a
434 multithreaded architecture.The programmer specifies the number of
435 threads per block, and the number of blocks per grid. A thread in
436 the CUDA programming language is much lighter weight than a thread
437 in traditional operating systems. A thread in CUDA typically
438 processes one data element at a time. The CUDA programming model
439 has two shared read-write memory spaces, the shared memory space
440 and the global memory space. The shared memory is local to a block
441 and the global memory space is accessible by all blocks. CUDA also
442 provides two read-only memory spaces, the constant space and the
443 texture space, which reside in external DRAM, and are accessed via
444 read-only caches.
445
446 \subsection{ The implementation of Aberth method on GPU}
447 %%\subsection{A CUDA implementation of the Aberth's method }
448 %%\subsection{A GPU implementation of the Aberth's method }
449
450
451
452 \subsubsection{A sequential Aberth algorithm}
453 The means steps of Aberth method can expressed as an algorithm
454 like:
455   
456 \begin{algorithm}[H]
457 \LinesNumbered
458 \caption{Algorithm to find root polynomial with Aberth method}
459
460 \KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
461 tolerance threshold),P(Polynomial to solve)}
462
463 \KwOut {Z(The solution root's vector)}
464
465 \BlankLine
466
467 Initialization of the parameter of the polynomial to solve\;
468 Initialization of the solution vector $Z^{0}$\;
469
470 \While {$\Delta z_{max}\succ \epsilon$}{
471  Let $\Delta z_{max}=0$\;
472 \For{$j \gets 0 $ \KwTo $n$}{
473 $ZPrec\left[j\right]=Z\left[j\right]$\;
474 $Z\left[j\right]=H\left(j,Z\right)$\;
475 }
476
477 \For{$i \gets 0 $ \KwTo $n-1$}{
478 $c=\frac{\left|Z\left[i\right]-ZPrec\left[i\right]\right|}{Z\left[i\right]}$\;
479 \If{$c\succ\Delta z_{max}$ }{
480 $\Delta z_{max}$=c\;}
481 }
482 }
483 \end{algorithm}
484
485 ~\\ 
486 In this sequential algorithm one thread CPU execute all steps. Let see the step 3 the execution of the iterative function, 2 instructions are needed, the first instruction \textit{save} the solution vector for the previous iteration, the second instruction \textit{update} or compute a new values of the roots.
487 We have two manner to execute the iterative function, taking a Jacobi iteration who need all the previous value $z^{(k)}_{i}$ to compute the new value $z^{(k+1)}_{i}$we have:
488
489 \begin{equation}
490 H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}}}, i=1,...,n.
491 \end{equation}
492
493 Or with the Gauss-seidel iteration, we have:
494 \begin{equation}
495 H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})\sum^{i-1}_{j=1}\frac{1}{z^{(k)}_{i}-z^{(k+1)}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}}}, i=1,...,n.
496 \end{equation}
497
498 In formula(16), the Gauss-seidel iteration converge more quickly because they used the most fresh computed root $z^{k+1}_{i}$ , at this reason we used Gauss-seidel iteration.
499
500 The steps 4 of the Aberth method compute the convergence of the roots, using(9) formula.
501 Both steps 3 and 4 use 1 thread to compute N roots on CPU, which is harmful for the large polynomial's roots finding.
502
503 \paragraph{The execution time}
504 Let $T_{i}(N)$: the time to compute one new root's value of the step 3,$T_{i}$ depend on the polynomial's degrees N, when N increase $T_{i}$ increase to. We need $N.T_{i}(N)$ to compute all the new root's value in one iteration on the step 3.
505
506 Let $T_{j}$: the time to compute one root's convergence value of the step 4, we need $N.T_{j}$ to compute all the root's convergence value in one iteration on the step 4.
507
508 The execution time for both steps 3 and 4 can see like:
509 \begin{equation}
510 T_{exe}=N(T_{i}(N)+T_{j})+O(n).
511 \end{equation}
512 Let Nbr\_iter the number of iteration necessary to compute all the roots, so the total execution time $Total\_time_{exe}$ can give like:
513
514 \begin{equation}
515 Total\_time_{exe}=\left[N\left(T_{i}(N)+T_{j}\right)+O(n)\right].Nbr\_iter
516 \end{equation}
517 The execution time increase with the increasing of the polynomial's root, which take necessary to parallelize this step to reduce the execution time. In the following paper you explain how we parrallelize  this step using GPU architecture with CUDA platform.
518
519 \subsubsection{Parallelize the steps on GPU }
520 On the CPU Aberth algorithm both steps 3 and 4 contain the loop \verb=for=, it use one thread to execute all the instruction in the loop N times. Here we explain how the GPU architecture can compute this loop and reduce the execution time.
521 The GPU architecture assign the execution of this loop to a groups of parallel threads organized as a grid of blocks each block contain a number of threads. All threads within a block are executed concurrently in parallel. The instruction are executed as a kernel.
522
523 Let nbr\_thread be the number of threads executed in parallel, so you can easily transform the (18)formula like this: 
524
525 \begin{equation}
526 Total\_time_{exe}=\left[\frac{N}{nbr\_thread}\left(T_{i}(N)+T_{j}\right)+O(n)\right].Nbr\_iter.
527 \end{equation}
528
529 In theory, the $Total\_time_{exe}$ on GPU is speed up nbr\_thread times as a $Total\_time_{exe}$ on CPU. We show more details in the experiment part. 
530 ~\\
531 ~\\
532 In CUDA platform, All the instruction of the loop \verb=for= are executed by the GPU as a kernel form. A kernel is a procedure written in CUDA and defined by a heading \verb=__global__=, which means that it is to be executed by the GPU. The following algorithm see the Aberth algorithm on GPU:
533
534 \begin{algorithm}[H]
535 \LinesNumbered
536 \caption{Algorithm to find root polynomial with Aberth method}
537
538 \KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
539 tolerance threshold),P(Polynomial to solve)}
540
541 \KwOut {Z(The solution root's vector)}
542
543 \BlankLine
544
545 Initialization of the parameter of the polynomial to solve\;
546 Initialization of the solution vector $Z^{0}$\;
547 Allocate and fill the data in the global memory GPU\;
548
549 \While {$\Delta z_{max}\succ \epsilon$}{
550  Let $\Delta z_{max}=0$\;
551 $ kernel\_save(d\_Z^{k-1})$\;
552 $ kernel\_update(d\_z^{k})$\;
553 $kernel\_testConverge (d_?z_{max},d_Z^{k},d_Z^{k-1})$\;
554 }
555 \end{algorithm}
556 ~\\ 
557
558 After the initialization step, all data of the root finding problem to be solved must be copied from the CPU memory to the GPU global memory, because the GPUs only work on the data filled in their memories. Next, all the data-parallel arithmetic operations inside the main loop \verb=(do ... while(...))= are executed as kernels by the GPU. The first kernel \textit{save} in line( 6, Algorithm 2) consist to save the vector of polynomial's root found at the previous time step on GPU memory, in order to test the convergence of the root at each iteration in line (8, Algorithm 2).
559
560 The second kernel executes the iterative function and update Z(k),as formula (), we notice that the kernel update are called in two forms,  separated with  the value of \emph{R} which determines the radius beyond which we apply the logarithm formula like this: 
561
562 \begin{algorithm}[H]
563 \LinesNumbered
564 \caption{A global Algorithm for the iterative function}
565
566 \eIf{$(\left|Z^{(k)}\right|<= R)$}{
567 $kernel\_update(d\_z^{k})$\;}
568 {
569 $kernel\_update\_Log(d\_z^{k})$\;
570 }
571 \end{algorithm}
572
573 The first form execute the formula(8) if all the module's $( |Z(k)|<= R)$, else the kernel execute the formulas(13,14).the radius R was computed like:
574
575 $$R = \exp( \log(DBL\_MAX) / (2*(double)P.degrePolynome) )$$
576
577 The last kernel verify the convergence of the root after each update of $Z^{(k)}$, as formula(), we used the function of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
578
579 The kernels terminates its computations when all the root are converged. Finally, the solution of the  root finding problem is copied back from the GPU global memory to the CPU memory. We use the communication functions of CUDA for the memory allocations in the GPU \verb=(cudaMalloc())= and the data transfers from the CPU memory to the GPU memory \verb=(cudaMemcpyHostToDevice)=
580 or from the GPU memory to the CPU memory \verb=(cudaMemcpyDeviceToHost))=. 
581 \subsection{Experimental study}
582
583 \subsubsection{Definition of the polynomial used}
584 We use a polynomial of the following form for which the
585 roots are distributed on 2 distinct circles:
586 \begin{equation}
587         \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n^{1}}-\alpha_{1})(z^{n^{2}}-\alpha_{2})
588 \end{equation}
589
590 This form makes it possible to associate roots having two
591 different modules and thus to work on a polynomial constitute
592 of four non zero terms.
593 \\
594  An other form of the polynomial to obtain  a full polynomial is:
595 %%\begin{equation}
596         %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
597 %%\end{equation}
598
599 \begin{equation}
600      {\Large \forall a_{i} \in C; p(x)=\sum^{n-1}_{i=1} a_{i}.x^{i}} 
601 \end{equation}
602 with this formula, we can have until \textit{n} non zero terms.
603
604 \subsubsection{The study condition} 
605 In order to have representative average values, for each
606 point of our curves we measured the roots finding of 10
607 different polynomials.
608
609 The our experiences results concern two parameters which are
610 the polynomial degree and the execution time of our program
611 to converge on the solution. The polynomial degree allows us
612 to validate that our algorithm is powerful with high degree
613 polynomials. The execution time remains the
614 element-key which justifies our work of parallelization.
615         For our tests we used a CPU Intel(R) Xeon(R) CPU
616 E5620@2.40GHz and a GPU Tesla C2070 (with 6 Go of ram)
617
618 \subsubsection{Comparative study}
619 We initially carried out the convergence of Aberth algorithm with various sizes of polynomial, in second we evaluate the influence of the size of the threads per block....
620
621 \paragraph{Aberth algorithm on CPU and GPU}
622
623 \begin{table}[!ht]
624         \centering
625                 \begin{tabular} {|R{2cm}|L{2.5cm}|L{2.5cm}|L{1.5cm}|L{1.5cm}|}
626                         \hline Polynomial's degrees & $T_{exe}$ on CPU & $T_{exe}$ on GPU & CPU iteration & GPU iteration\\
627                                 \hline 5000 & 1.90 & 0.40 & 18 & 17\\
628                                 \hline 10000 & 172.723 & 0.59 & 21 & 24\\
629                                 \hline 20000 & 172.723 & 1.52 & 21 & 25\\
630                                 \hline 30000 & 172.723 & 2.77 & 21 & 33\\
631                                 \hline 50000 & 172.723 & 3.92 & 21 & 18\\
632                                 \hline 500000 & $>$1h & 497.109 &  & 24\\
633                                 \hline 1000000 & $>$1h & 1,524.51& & 24\\
634                                 \hline 
635                 \end{tabular}
636         \caption{the convergence of Aberth algorithm}
637         \label{tab:theConvergenceOfAberthAlgorithm}
638 \end{table}
639  
640 \paragraph{The impact of the thread's number into the convergence of Aberth  algorithm}
641
642 \begin{table}[!h]
643         \centering
644                 \begin{tabular} {|R{2.5cm}|L{2.5cm}|L{2.5cm}|}
645                         \hline Thread's numbers & Execution time &Number of iteration\\
646                                 \hline 1024 & 523 & 27\\
647                                 \hline 512 & 449.426 & 24\\
648                                 \hline 256 & 440.805 & 24\\
649                                 \hline 128 & 456.175 & 22\\
650                                 \hline 64 & 472.862 & 23\\
651                                 \hline 32 & 830.152 & 24\\
652                                 \hline 8 & 2632.78 & 23 \\
653                                 \hline
654                                 \end{tabular}
655                                 \caption{The impact of the thread's number into the convergence of Aberth  algorithm}
656         \label{tab:Theimpactofthethread'snumberintotheconvergenceofAberthalgorithm}
657                 
658 \end{table}
659
660 \paragraph{A comparative study between Aberth and Durand-kerner algorithm}
661 \begin{table}[htbp]
662         \centering
663                 \begin{tabular} {|R{2cm}|L{2.5cm}|L{2.5cm}|L{1.5cm}|L{1.5cm}|}
664                         \hline Polynomial's degrees & Aberth $T_{exe}$ & D-Kerner $T_{exe}$ & Aberth iteration & D-Kerner iteration\\
665                         \hline 5000 &  0.40 & 3.42 & 17 & 138 \\
666                         \hline 50000 & 3.92 & 385.266 & 17 & 823\\
667                         \hline 500000 & 497.109 & 4677.36 & 24 & 214\\
668                         \hline                                  
669                                         \end{tabular}
670         \caption{Aberth algorithm compare to Durand-Kerner algorithm}
671         \label{tab:AberthAlgorithCompareToDurandKernerAlgorithm}
672 \end{table}
673
674
675
676 \bibliography{mybibfile}
677
678 \end{document}