]> AND Private Git Repository - kahina_paper1.git/blob - maj.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ebc8e860f4b4e2dc8105577a1d26c4d5dff2b1b9
[kahina_paper1.git] / maj.tex
1 \documentclass[review]{elsarticle}
2
3 \usepackage{lineno,hyperref}
4 \usepackage[utf8]{inputenc}
5 %%\usepackage[T1]{fontenc}
6 %%\usepackage[french]{babel}
7 \usepackage{float} 
8 \usepackage{amsmath,amsfonts,amssymb}
9 \usepackage[ruled,vlined]{algorithm2e}
10 %\usepackage[french,boxed,linesnumbered]{algorithm2e}
11 \usepackage{array,multirow,makecell}
12 \usepackage[textsize=footnotesize]{todonotes}
13 \newcommand{\RC}[2][inline]{%
14   \todo[color=blue!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
15 \newcommand{\KG}[2][inline]{%
16   \todo[color=green!10,#1]{\sffamily\textbf{KG:} #2}\xspace}
17   
18 \newcommand{\AS}[2][inline]{%
19   \todo[color=orange!10,#1]{\sffamily\textbf{AS:} #2}\xspace}
20
21
22 \setcellgapes{1pt}
23 \makegapedcells
24 \newcolumntype{R}[1]{>{\raggedleft\arraybackslash }b{#1}}
25 \newcolumntype{L}[1]{>{\raggedright\arraybackslash }b{#1}}
26 \newcolumntype{C}[1]{>{\centering\arraybackslash }b{#1}}
27 \modulolinenumbers[5]
28
29
30
31 \journal{Journal of \LaTeX\ Templates}
32
33 %%%%%%%%%%%%%%%%%%%%%%%
34 %% Elsevier bibliography styles
35 %%%%%%%%%%%%%%%%%%%%%%%
36 %% To change the style, put a % in front of the second line of the current style and
37 %% remove the % from the second line of the style you would like to use.
38 %%%%%%%%%%%%%%%%%%%%%%%
39
40 %% Numbered
41 %\bibliographystyle{model1-num-names}
42
43 %% Numbered without titles
44 %\bibliographystyle{model1a-num-names}
45
46 %% Harvard
47 %\bibliographystyle{model2-names.bst}\biboptions{authoryear}
48
49 %% Vancouver numbered
50 %\usepackage{numcompress}\bibliographystyle{model3-num-names}
51
52 %% Vancouver name/year
53 %\usepackage{numcompress}\bibliographystyle{model4-names}\biboptions{authoryear}
54
55 %% APA style
56 %\bibliographystyle{model5-names}\biboptions{authoryear}
57
58 %% AMA style
59 %\usepackage{numcompress}\bibliographystyle{model6-num-names}
60
61 %% `Elsevier LaTeX' style
62 \bibliographystyle{elsarticle-num}
63 %%%%%%%%%%%%%%%%%%%%%%%
64
65 \begin{document}
66
67 \begin{frontmatter}
68
69 \title{Efficient high degree polynomial root finding using GPU}
70
71 %% Group authors per affiliation:
72 %\author{Elsevier\fnref{myfootnote}}
73 %\address{Radarweg 29, Amsterdam}
74 %\fntext[myfootnote]{Since 1880.}
75
76 %% or include affiliations in footnotes:
77 \author[mymainaddress]{Kahina Ghidouche}
78 %%\ead[url]{kahina.ghidouche@univ-bejaia.dz}
79 \cortext[mycorrespondingauthor]{Corresponding author}
80 \ead{kahina.ghidouche@univ-bejaia.dz}
81
82 \author[mysecondaryaddress]{Raphaël Couturier\corref{mycorrespondingauthor}}
83 %%\cortext[mycorrespondingauthor]{Corresponding author}
84 \ead{raphael.couturier@univ-fcomte.fr}
85
86 \author[mymainaddress]{Abderrahmane Sider}
87 %%\cortext[mycorrespondingauthor]{Corresponding author}
88 \ead{ar.sider@univ-bejaia.dz}
89
90 \address[mymainaddress]{Laboratoire LIMED, Faculté des sciences
91   exactes, Université de Bejaia, 06000, Algeria}
92 \address[mysecondaryaddress]{FEMTO-ST Institute, University of
93   Bourgogne Franche-Comte, France }
94
95 \begin{abstract}
96 Polynomials are mathematical algebraic structures that play a great
97 role in science and engineering. Finding the roots of high degree
98 polynomials is computationally demanding. In this paper, we present
99 the results of a parallel implementation of the Ehrlich-Aberth
100 algorithm for the root finding problem for high degree polynomials on
101 GPU architectures. The main result of this
102 work is to be able to solve high degree polynomials (up
103 to 1,000,000)  efficiently. We also compare the results with a
104 sequential implementation and the Durand-Kerner method on full and
105 sparse polynomials.
106 \end{abstract}
107
108 \begin{keyword}
109 Polynomial root finding, Iterative methods, Ehrlich-Aberth, Durand-Kerner, GPU
110 \end{keyword}
111
112 \end{frontmatter}
113
114 \linenumbers
115
116 \section{The problem of finding the roots of a polynomial}
117 Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomena and to express any outcome in the form of a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
118 %%\begin{center}
119 \begin{equation}
120      {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
121 \end{equation}
122 %%\end{center}
123
124 The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeros of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
125 \begin{equation}
126      {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
127 \end{equation}
128
129 The problem of finding a root is equivalent to that of solving a fixed-point problem. To see this, consider the fixed-point problem of finding the $n$-dimensional
130 vector $x$ such that :
131 \begin{center}
132 $x=g(x)$
133 \end{center}
134 where $g : C^{n}\longrightarrow C^{n}$. Usually, we can easily
135 rewrite this fixed-point problem as a root-finding problem by
136 setting $f(x) = x-g(x)$ and likewise we can recast the
137 root-finding problem into a fixed-point problem by setting :
138 \begin{center}
139 $g(x)= f(x)-x$.
140 \end{center}
141
142 It is often impossible to solve such nonlinear equation
143 root-finding problems analytically. When this occurs, we turn to
144 numerical methods to approximate the solution. 
145 Generally speaking, algorithms for solving problems can be divided into
146 two main groups: direct methods and iterative methods.
147
148 Direct methods only exist for $n \leq 4$, solved in closed form
149 by G. Cardano in the mid-16th century. However, N. H. Abel in the early 19th
150 century proved that polynomials of degree five or more could not
151 be solved by  direct methods. Since then, mathematicians have
152 focussed on numerical (iterative) methods such as the famous
153 Newton method, the Bernoulli method of the 18th century, and the Graeffe method.
154
155 Later on, with the advent of electronic computers, other methods have
156 been developed such as the Jenkins-Traub method, the Larkin method,
157 the Muller method, and several other methods for the simultaneous
158 approximation of all the roots, starting with the Durand-Kerner (DK)
159 method:
160 %%\begin{center}
161 \begin{equation}
162 \label{DK}
163  DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, . . . , n,
164 \end{equation}
165 %%\end{center}
166 where $z_i^k$ is the $i^{th}$ root of the polynomial $p$ at the
167 iteration $k$.
168
169
170 This formula is mentioned for the first time by
171 Weiestrass~\cite{Weierstrass03} as part of the fundamental theorem
172 of Algebra and is rediscovered by Ilieff~\cite{Ilie50},
173 Docev~\cite{Docev62}, Durand~\cite{Durand60},
174 Kerner~\cite{Kerner66}. Another method discovered by
175 Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
176 in the following form by Ehrlich~\cite{Ehrlich67} and
177 Aberth~\cite{Aberth73} uses a different iteration formula given as:
178 %%\begin{center}
179 \begin{equation}
180 \label{Eq:EA}
181  EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, . . . , n,
182 \end{equation}
183 %%\end{center}
184 where $p'(z)$ is the polynomial derivative of $p$ evaluated in the
185 point $z$.
186
187 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
188 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
189
190
191 Moreover, the convergence times of iterative methods
192 drastically increases like the degrees of high polynomials. It is expected that the
193 parallelization of these algorithms will reduce the execution times.
194
195 Many authors have dealt with the parallelization of
196 simultaneous methods, i.e. that find all the zeros simultaneously. 
197 Freeman~\cite{Freeman89} implemented and compared DK, EA and another method of the fourth order proposed
198 by Farmer and Loizou~\cite{Loizou83}, on an 8-processor linear
199 chain, for polynomials of degree 8. The third method often
200 diverges, but the first two methods have speed-ups equal to 5.5. Later,
201 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
202 algorithms, in which each processor continues to update its
203 approximations even though the latest values of other roots
204 have not yet been received from the other processors.  In contrast,
205 synchronous algorithms   wait the computation of all roots at a given
206 iterations  before making a new one.
207 Couturier and al.~\cite{Raphaelall01} proposed two methods of parallelization for
208 a shared memory architecture and for distributed memory one. They were able to
209 compute the roots of sparse polynomials of degree 10,000 in 430 seconds with only 8
210 personal computers and 2 communications per iteration. Compared to sequential implementations
211 where it takes up to 3,300 seconds to obtain the same results, the
212 authors' work experiment show an interesting speedup.
213
214 Few works have been conducted after those works until the appearance of
215 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
216 parallel computing platform and a programming model invented by
217 NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the
218 hardware resources provided by GPU in order to offer a stronger
219 computing ability to the massive data computing.
220
221
222 Ghidouche and al~\cite{Kahinall14} proposed an implementation of the
223 Durand-Kerner method on GPU. Their main
224 result showed that a parallel CUDA implementation is about 10 times faster than
225 the sequential implementation on a single CPU for  sparse
226 polynomials of degree 48,000. 
227
228
229 In this paper, we focus on the implementation of the Ehrlich-Aberth
230 method for high degree polynomials on GPU. We propose an adaptation of
231 the exponential logarithm in order to be able to solve sparse and full
232 polynomial of degree up to $1,000,000$. The paper is organized as
233 follows. Initially, we recall the Ehrlich-Aberth method in
234 Section~\ref{sec1}. Improvements for the Ehrlich-Aberth method are
235 proposed in Section \ref{sec2}. Related work to the implementation of
236 simultaneous methods using a parallel approach is presented in Section
237 \ref{secStateofArt}.  In Section~\ref{sec5} we propose a parallel
238 implementation of the Ehrlich-Aberth method on GPU and discuss
239 it. Section~\ref{sec6} presents and investigates our implementation
240 and experimental study results. Finally, Section~\ref{sec7} concludes
241 this paper and gives some hints for future research directions in this
242 topic.
243
244 \section{Ehrlich-Aberth method}
245 \label{sec1}
246 A cubically convergent iteration method to find zeros of
247 polynomials was proposed by O. Aberth~\cite{Aberth73}. The
248 Ehrlich-Aberth method contains 4 main steps, presented in what
249 follows.
250
251 %The Aberth method is a purely algebraic derivation. 
252 %To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors 
253
254 %\begin{equation}
255 %w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
256 %\end{equation}
257
258 %And let a rational function $R_{i}(z)$ be the correction term of the
259 %Weistrass method~\cite{Weierstrass03}
260
261 %\begin{equation}
262 %R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
263 %\end{equation}
264
265 %Differentiating the rational function $R_{i}(z)$ and applying the
266 %Newton method, we have:
267
268 %\begin{equation}
269 %\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
270 %\end{equation}
271 %where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z 
272 %Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.% 
273
274
275 \subsection{Polynomials Initialization}
276 The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients $a_{i}$:
277
278 \begin{equation}
279 \label{eq:SimplePolynome}
280   p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
281 \end{equation}
282
283
284 \subsection{Vector $Z^{(0)}$ Initialization}
285 \label{sec:vec_initialization}
286 As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , n.$
287 The initial guess is very important since the number of steps needed by the iterative method to reach
288 a given approximation strongly depends on it.
289 In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
290 equi-spaced points on a circle of center 0 and radius r, where r is
291 an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
292 performed this choice by selecting complex numbers along different
293 circles which relies on the result of~\cite{Ostrowski41}.
294
295 \begin{equation}
296 \label{eq:radiusR}
297 %%\begin{align}
298 \sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
299 v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
300 %%\end{align}
301 \end{equation}
302 Where:
303 \begin{equation}
304 u_{i}=2.|a_{i}|^{\frac{1}{i}};
305 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
306 \end{equation}
307
308 \subsection{Iterative Function}
309 %The operator used by the Aberth method is corresponding to the
310 %following equation~\ref{Eq:EA} which will enable the convergence towards
311 %polynomial solutions, provided all the roots are distinct.
312
313 Here we give a second form of the iterative function used by the Ehrlich-Aberth method: 
314
315 \begin{equation}
316 \label{Eq:Hi}
317 EA2: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
318 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n
319 \end{equation}
320 It can be noticed that this equation is equivalent to Eq.~\ref{Eq:EA},
321 but we prefer the latter one because we can use it to improve the
322 Ehrlich-Aberth method and find the roots of high degree polynomials. More
323 details are given in Section~\ref{sec2}.
324 \subsection{Convergence Condition}
325 The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
326
327 \begin{equation}
328 \label{eq:Aberth-Conv-Cond}
329 \forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
330 \end{equation}
331
332
333 \section{Improving the Ehrlich-Aberth Method for high degree polynomials with exp-log formulation}
334 \label{sec2}
335 With high degree polynomial, the Ehrlich-Aberth method implementation,
336 as well as the Durand-Kerner implementation, suffers from overflow problems. This
337 situation occurs, for instance, in the case where a polynomial,
338 having positive coefficients and a large degree, is computed at a
339 point $\xi$ where $|\xi| > 1$, where $|z|$ stands for the modulus of a complex $z$. Indeed, the limited number in the
340 mantissa of floating points representations makes the computation of $p(z)$ wrong when z
341 is large. For example $(10^{50}) +1+ (- 10^{50})$ will give the wrong result
342 of $0$ instead of $1$. Consequently, we can not compute the roots
343 for large degrees. This problem was discussed earlier in
344 ~\cite{Karimall98} for the Durand-Kerner method. The authors
345 propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent.
346
347 \begin{equation}
348 \label{deflncomplex}
349  \forall(x,y)\in R^{*2}; \ln (x+i.y)=\ln(x^{2}+y^{2})
350 2+i.\arcsin(y\sqrt{x^{2}+y^{2}})_{\left] -\pi, \pi\right[ }
351 \end{equation}
352 %%\begin{equation}
353 \begin{align}
354 \label{defexpcomplex}
355  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
356                                      & =\exp(x).\cos(y)+i.\exp(x).\sin(y)\label{defexpcomplex1}
357 \end{align}
358 %%\end{equation}
359
360 Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
361 manipulate lower absolute values and the roots for large polynomial degrees can be looked for successfully~\cite{Karimall98}.
362
363 Applying this solution for the iteration function Eq.~\ref{Eq:Hi} of
364 Ehrlich-Aberth method, we obtain the following iteration function with exponential and logarithm:
365 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
366 \begin{equation}
367 \label{Log_H2}
368 EA.EL: z^{k+1}_{i}=z_{i}^{k}-\exp \left(\ln \left(
369 p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln\left(1-Q(z^{k}_{i})\right)\right),
370 \end{equation}
371
372 where:
373
374 \begin{equation}
375 \label{Log_H1}
376 Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
377 \sum_{i\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right)i=1,...,n,
378 \end{equation}
379
380 This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as :
381 \begin{equation}
382 \label{R.EL}
383 R = exp(log(DBL\_MAX)/(2*n) );
384 \end{equation}
385
386
387 %\begin{equation}
388
389 %R = \exp( \log(DBL\_MAX) / (2*n) )
390 %\end{equation}
391  where \verb=DBL_MAX= stands for the maximum representable \verb=double= value.
392
393 \section{Implementation of simultaneous methods in a parallel computer}
394 \label{secStateofArt}   
395 The main problem of simultaneous methods is that the 
396 time needed for convergence is increased when we increase
397 the degree of the polynomial. The parallelization of these
398 algorithms is expected to improve the convergence time.
399 Authors usually adopt one of the two following approaches to parallelize root
400 finding algorithms. The first approach aims at reducing the total number of
401 iterations as in Miranker
402 ~\cite{Mirankar68,Mirankar71}, Schedler~\cite{Schedler72} and
403 Winograd~\cite{Winogard72}. The second approach aims at reducing the
404 computation time per iteration, as reported
405 in~\cite{Benall68,Jana06,Janall99,Riceall06}. 
406
407 There are many schemes for the simultaneous approximation of all roots of a given
408 polynomial. Several works on different methods and issues of root
409 finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08,
410   Zhancall08, Zhuall08}. However, the Durand-Kerner and the Ehrlich-Aberth methods are the most practical choices among
411 them~\cite{Bini04}. These two methods have been extensively
412 studied for parallelization due to their intrinsic parallelism, i.e. the
413 computations involved in both methods have some inherent
414 parallelism that can be suitably exploited by SIMD machines.
415 Moreover, they have fast a rate of convergence (quadratic for the
416 Durand-Kerner and cubic for the Ehrlich-Aberth). Various parallel
417 algorithms reported for these methods can be found
418 in~\cite{Cosnard90, Freeman89,Freemanall90,Jana99,Janall99}.
419 Freeman and Bane~\cite{Freemanall90} presented two parallel
420 algorithms on a local memory MIMD computer with the compute-to
421 communication time ratio O(n). However, their algorithms require
422 each processor to communicate its current approximation to all
423 other processors at the end of each iteration (synchronous). Therefore they
424 cause a high degree of memory conflict. Recently the author
425 in~\cite{Mirankar71} proposed two versions of parallel algorithm
426 for the Durand-Kerner method, and the Ehrlich-Aberth method on a model of
427 Optoelectronic Transpose Interconnection System (OTIS). The
428 algorithms are mapped on an OTIS-2D torus using $N$ processors. This
429 solution needs $N$ processors to compute $N$ roots, which is not
430 practical for solving large degree polynomials.
431
432 %Until very recently, the literature did not mention implementations
433 %able to compute the roots of large degree polynomials (higher then
434 %1000) and within small or at least tractable times.
435
436 Finding polynomial roots rapidly and accurately is the main objective of our work. 
437 With the advent of CUDA (Compute Unified Device
438 Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time. 
439 In~\cite{Kahinall14} we already proposed the first implementation
440 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
441 that a parallel CUDA implementation is 10 times as fast as the
442 sequential implementation on a single CPU for high degree
443 polynomials of 48,000.
444 %In this paper we present a parallel implementation of Ehrlich-Aberth
445 %method on GPUs for sparse and full polynomials with high degree (up
446 %to $1,000,000$).
447
448
449 %% \section {A CUDA parallel Ehrlich-Aberth method}
450 %% In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
451 %% for solving high degree polynomials (up to $1,000,000$). First, the hardware and software of the GPUs are presented. Then, the CUDA parallel Ehrlich-Aberth method is presented.
452
453  
454 %% \subsection{Background on the CUDA Programming Model}
455
456 %% The CUDA programming model is similar in style to a single program
457 %% multiple-data (SPMD) software model. The GPU is viewed as a
458 %% coprocessor that executes data-parallel kernel functions. CUDA
459 %% provides three key abstractions, a hierarchy of thread groups,
460 %% shared memories, and barrier synchronization. Threads have a three
461 %% level hierarchy. A grid is a set of thread blocks that execute a
462 %% kernel function. Each grid consists of blocks of threads. Each
463 %% block is composed of hundreds of threads. Threads within one block
464 %% can share data using shared memory and can be synchronized at a
465 %% barrier. All threads within a block are executed concurrently on a
466 %% multithreaded architecture.The programmer specifies the number of
467 %% threads per block, and the number of blocks per grid. A thread in
468 %% the CUDA programming language is much lighter weight than a thread
469 %% in traditional operating systems. A thread in CUDA typically
470 %% processes one data element at a time. The CUDA programming model
471 %% has two shared read-write memory spaces, the shared memory space
472 %% and the global memory space. The shared memory is local to a block
473 %% and the global memory space is accessible by all blocks. CUDA also
474 %% provides two read-only memory spaces, the constant space and the
475 %% texture space, which reside in external DRAM, and are accessed via
476 %% read-only caches.
477
478 \section{ GPU Implementation of the Ehrlich-Aberth method}
479 \label{sec5}
480 \KG{In the following, we describe the parallel implementation on GPU of the Ehrlich-Aberth method, for solving high degree polynomials. First, the hardware and software of the GPUs are presented. Then, the principal steps of the implementation are described.}
481
482 \subsection{Background on the GPU architecture}
483 \KG{A GPU is viewed as an accelerator for the data-parallel and
484  intensive arithmetic computations. It draws its computing power
485  from the parallel nature of its hardware and software
486  architectures. A GPU is composed of hundreds of Streaming
487  Processors (SPs) organized in several blocks called Streaming
488  Multiprocessors (SMs). It also has a memory hierarchy. It has a
489  private read-write local memory per SP, fast shared memory and
490  read-only constant and texture caches per SM and a read-write
491  global memory shared by all its SPs~\cite{NVIDIA10}.
492
493  On a CPU equipped with a GPU, all the data-parallel and intensive
494  functions of an application running on the CPU are off-loaded onto
495  the GPU in order to accelerate their computations. A similar
496  data-parallel function is executed on a GPU as a kernel by
497  thousands or even millions of parallel threads, grouped together
498  as a grid of thread blocks. Therefore, each SM of the GPU executes
499  one or more thread blocks in SIMD fashion (Single  Instruction,
500  Multiple Data) and in turn each SP of a GPU SM runs one or more
501  threads within a block in SIMT fashion (Single Instruction,
502  Multiple threads). Indeed at any given clock cycle, the threads
503  execute the same instruction of a kernel, but each of them
504  operates on different data.
505   GPUs only work on data filled in their
506  global memories and the final results of their kernel executions
507  must be communicated to their CPUs. Hence, the data must be
508  transferred in and out of the GPU. However, the speed of memory
509  copy between the GPU and the CPU is slower than the memory
510  bandwidths of the GPU memories and, thus, it dramatically affects
511  the performances of GPU computations. Accordingly, it is necessary
512  to limit as much as possible, data transfers between the GPU and its CPU during the
513  computations.}
514  \subsection{Background on the CUDA Programming Model}
515 \KG{The CUDA programming model is similar in style to a single program
516  multiple-data (SPMD) software model. The GPU is viewed as a
517  coprocessor that executes data-parallel kernel functions. CUDA
518  provides three key abstractions, a hierarchy of thread groups,
519  shared memories, and barrier synchronization. Threads have a three
520  level hierarchy. A grid is a set of thread blocks that execute a
521  kernel function. Each grid consists of blocks of threads. Each
522  block is composed of hundreds of threads. Threads within one block
523  can share data using shared memory and can be synchronized at a
524  barrier. All threads within a block are executed concurrently on a
525  multi-threaded architecture.The programmer specifies the number of
526  threads per block, and the number of blocks per grid. A thread in
527  the CUDA programming language is much lighter weight than a thread
528  in traditional operating systems. A thread in CUDA typically
529  processes one data element at a time. The CUDA programming model
530  has two shared read-write memory spaces, the shared memory space
531  and the global memory space. The shared memory is local to a block
532  and the global memory space is accessible by all blocks. CUDA also
533  provides two read-only memory spaces, the constant space and the
534  texture space, which reside in external DRAM, and are accessed via
535  read-only caches.}
536  
537  
538  
539 %%\subsection{A CUDA implementation of the Aberth's method }
540 %%\subsection{A GPU implementation of the Aberth's method }
541
542
543
544 %% \subsection{Sequential Ehrlich-Aberth algorithm}
545 %% The main steps of Ehrlich-Aberth method are shown in Algorithm.~\ref{alg1-seq} :
546 %% %\LinesNumbered  
547 %% \begin{algorithm}[H]
548 %% \label{alg1-seq}
549
550 %% \caption{A sequential algorithm to find roots with the Ehrlich-Aberth method}
551
552 %% \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (error tolerance
553 %%   threshold), $P$ (Polynomial to solve),$Pu$ (the derivative of P) $\Delta z_{max}$ (maximum value
554 %%   of stop condition), k (number of iteration), n (Polynomial's degrees)}
555 %% \KwOut {$Z$ (The solution root's vector), $ZPrec$ (the previous solution root's vector)}
556
557 %% \BlankLine
558
559 %% Initialization of $P$\;
560 %% Initialization of $Pu$\;
561 %% Initialization of the solution vector $Z^{0}$\;
562 %% $\Delta z_{max}=0$\;
563 %%  k=0\;
564
565 %% \While {$\Delta z_{max} > \varepsilon$}{
566 %%  Let $\Delta z_{max}=0$\;
567 %% \For{$j \gets 0 $ \KwTo $n$}{
568 %% $ZPrec\left[j\right]=Z\left[j\right]$;// save Z at the iteration k.\
569
570 %% $Z\left[j\right]=H\left(j, Z, P, Pu\right)$;//update Z with the iterative function.\
571 %% }
572 %% k=k+1\;
573
574 %% \For{$i \gets 0 $ \KwTo $n-1$}{
575 %% $c= testConverge(\Delta z_{max},ZPrec\left[j\right],Z\left[j\right])$\;
576 %% \If{$c > \Delta z_{max}$ }{
577 %% $\Delta z_{max}$=c\;}
578 %% }
579
580 %% }
581 %% \end{algorithm}
582
583 %% ~\\ 
584 %% In this sequential algorithm, one CPU thread  executes all the steps. Let us look to the $3^{rd}$ step i.e. the execution of the iterative function, 2 sub-steps are needed. The first sub-step \textit{save}s the solution vector of the previous iteration, the second sub-step \textit{update}s or computes the new values of the roots vector.
585
586 \subsection{Parallel implementation with CUDA }
587
588 %In order to implement the Ehrlich-Aberth method in CUDA, it is
589 %possible to use the Jacobi scheme or the Gauss-Seidel one.  With the
590 %Jacobi iteration, at iteration $k+1$ we need all the previous values
591 %$z^{k}_{i}$ to compute the new values $z^{k+1}_{i}$, that is :
592
593 %\begin{equation}
594 %EAJ: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
595 %{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n.
596 %\end{equation}
597
598 %With the Gauss-Seidel iteration, we have:
599 %\begin{equation}
600 %\label{eq:Aberth-H-GS}
601 %EAGS: z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{k}_{i}-z^{k}_{j}})}, i=1,...,n.
602 %\end{equation}
603
604 %%\begin{equation}
605 %\label{eq:Aberth-H-GS}
606 %%EAGS: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
607 %%{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum_{j=i+1}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}})}, i=1,. . . .,n
608 %%\end{equation}
609
610 %Using Eq.~\ref{eq:Aberth-H-GS} to update the vector solution
611 %\textit{Z}, we expect the Gauss-Seidel iteration to converge more
612 %quickly because, just as any Jacobi algorithm (for solving linear
613 %systems of equations), it uses the freshest computed roots $z^{k+1}_{i}$.
614
615 %The $4^{th}$ step of the algorithm checks the convergence condition using Eq.~\ref{eq:Aberth-Conv-Cond}.
616 %Both steps 3 and 4 use 1 thread to compute all the $n$ roots on CPU, which is very harmful for performance in case of the large degree polynomials.
617
618
619
620 %On the CPU,  both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
621 %In the GPU, the scheduler assigns the execution of this loop to a
622 %group of threads organised as a grid of blocks with block containing a
623 %number of threads. All threads within a block are executed
624 %concurrently in parallel. The instructions run on the GPU are grouped
625 %in special function called kernels. With CUDA, a programmer must
626 %describe the kernel execution context:  the size of the Grid, the number of blocks and the number of threads per block.
627
628 %In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual \verb=C= function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
629
630 Algorithm~\ref{alg2-cuda} defines the main key points for finding roots polynomials with Ehrlich-Aberth method on GPU. Where $P$, $Pu$ and $Z$ are, respectively, the polynomial to solve, Derivative of P and the solution root vector.
631
632 %%Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth method using CUDA.
633
634 \begin{enumerate}
635 \begin{algorithm}[H]
636 \label{alg2-cuda}
637 %\LinesNumbered
638 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
639
640 \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
641   threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z_{max}$ (Maximum value of stop condition)}
642
643 \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
644
645 \BlankLine
646
647 %\item Initialization of P\;
648 %\item Initialization of Pu\;
649 %\item Initialization of the solution vector $Z^{0}$\;
650 \item Initialization of the parameters of roots finding problem (P, Pu, $Z^{0}$);
651 \item Allocate and copy initial data to the GPU global memory\;
652 \item k=0\;
653 \While {$\Delta z_{max} > \varepsilon$}{
654 \item Let $\Delta z_{max}=0$\;
655 \item $ save(ZPrec,Z)$\;
656 \item  k=k+1\;
657 \item $ Find(Z,P,Pu)$\;
658 \item $testConverge(\Delta z_{max},Z,ZPrec)$\;
659
660 }
661 \item Copy results from GPU memory to CPU memory\;
662 \end{algorithm}
663 \end{enumerate}
664 ~\\ 
665
666 After the initialization step, all data of the root finding problem
667 must be copied from the CPU memory to the GPU global memory, because
668 the GPUs only work on the data filled in their memories. Next, the algorithm uses  an iterative method for finding polynomial root,defined in the function \textit{Find()} in line 7. The iterative method used in this algorithm is the Ehrlich-Aberth method corresponding to Eq.~\ref{Eq:EA}, At every time step, the initial guess for the iterative method is set to the solution found
669 at the previous time step ($ZPrec$ )defined in the function \textit{Save()} in line 7.
670 The iterative function terminates its computations when the error tolerance
671 threshold, $\varepsilon$ have been achieved, and/or  all the roots have converged. Finally, the solution of the root finding problem is copied back from the GPU global memory to the CPU memory. All the data-parallel arithmetic operations inside the main loop \verb=(while(...))= are executed as kernels by the GPU. 
672
673 The Ehrlich-Aberth is an iterative method for finding root polynomial. it is based on arithmetic vector operations that are easy to implement on parallel computers and, thus, on GPUs. Indeed, the GPU executes the vector operations as kernels and the CPU executes the sequential operations, launches the kernels and supplies the GPU with data.
674
675 % Algorithm 2 shows the main key points of the iterative function. %All the data-parallel arithmetic operations inside the main loop (repeat ... until(...)) are executed as kernels by the GPU.
676
677 In order to implement the Ehrlich-Aberth method in CUDA, it is
678 possible to use the Jacobi scheme or the Gauss-Seidel one.  With the Jacobi iteration, at iteration $k+1$ we need all the previous values $z^{k}_{i}$ to compute the new values $z^{k+1}_{i}$, that is :
679
680 \begin{equation}
681 EAJ: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
682 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n.
683 \end{equation}
684
685 With the Gauss-Seidel iteration, we have:
686
687 \begin{equation}
688 \label{eq:Aberth-H-GS}
689 EAGS: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
690 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum_{j=i+1}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}})}, i=1,. . . .,n
691 \end{equation}
692
693 Using Eq.~\ref{eq:Aberth-H-GS} to update the vector solution
694 \textit{Z}, we expect the Gauss-Seidel iteration to converge more
695 quickly because, just as any Jacobi algorithm (for solving linear
696 systems of equations), it uses the freshest computed roots $z^{k+1}_{i}$.
697
698 Algorithm~\ref{alg3-update} shows the main key points of the iterative function implemented as a kernel.
699  
700
701
702 %Next, all the data-parallel arithmetic operations inside the main loop
703 %\verb=(while(...))= are executed as kernels by the GPU. The
704 %first kernel named \textit{save} in line 7 of
705 %Algorithm~\ref{alg2-cuda} consists in saving the vector of
706 %polynomial roots found at the previous time-step in GPU memory, in
707 %order to check the convergence of the roots after each iteration (line
708 %10, Algorithm~\ref{alg2-cuda}).
709
710 %The second kernel executes the iterative function and updates
711 %$Z$, according to Algorithm~\ref{alg3-update}. We notice that the
712 %update kernel is called in two forms, according to the value
713 %\emph{R} which determines the radius beyond which we apply the
714 %exponential logarithm algorithm. 
715
716 \begin{algorithm}[H]
717 \label{alg3-update}
718 %\LinesNumbered
719 \caption{Kernel update for the iterative function}
720
721 \eIf{$(\left|Z\right|<= R)$}{
722 $kernel\_update(Z,P,Pu)$\;}
723 {
724 $kernel\_update\_ExpoLog(Z,P,Pu)$\;
725 }
726 \end{algorithm}
727
728 We notice that the update kernel is called in two forms, according to the value
729 \emph{R} which determines the radius beyond which we apply the exponential logarithm algorithm. 
730
731 If the modulus of the current complex is less than a given value called the
732 radius i.e. ($ |z^{k}_{i}|<= R$), then the classical form of the EA
733 function Eq.~\ref{Eq:Hi} is executed, else the EA.EL
734 function Eq.~\ref{Log_H2} is executed.
735 (with Eq.~\ref{deflncomplex}, Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as in Eq.~\ref{R.EL}.
736
737 \KG{inserer le code du kernel}
738
739 The last kernel checks the convergence of the roots after each update
740 of $Z^{k}$, according to formula Eq.~\ref{eq:Aberth-Conv-Cond}. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
741
742 The kernel terminates its computations when all the roots have
743 converged. It should be noticed that, as blocks of threads are
744 scheduled automatically by the GPU, we have absolutely no control on
745 the order of the blocks. Consequently, our algorithm is executed more
746 or less with the asynchronous iteration model, where blocks of roots
747 are updated in a non deterministic way. As the Durand-Kerner method
748 has been proved to converge with asynchronous iterations \KG{Ajouter la reference qui montre que DK converge with asynchronous iteration}, we think it
749 is similar with the Ehrlich-Aberth method, but we did not try to prove
750 this in that paper. Another consequence of that, is that several
751 executions of our algorithm with the same polynomial do not
752 necessarily give the same result (but roots have the same accuracy)
753 and the same number of iterations (even if the variation is not very
754 significant).
755
756
757
758
759
760 %%HIER END MY REVISIONS (SIDER)
761 \section{Experimental study}
762 \label{sec6}
763 %\subsection{Definition of the used polynomials }
764 We study two categories of polynomials: sparse polynomials and the full polynomials.\\
765 {\it A sparse polynomial} is a polynomial for which only some
766 coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles:
767 \begin{equation}
768         \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
769 \end{equation}\noindent
770 {\it A full polynomial} is, in contrast, a polynomial for which
771 all the coefficients are not null. A full polynomial is defined by:
772 %%\begin{equation}
773         %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
774 %%\end{equation}
775
776 \begin{equation}
777      {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
778 \end{equation}
779 %With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
780
781 %\subsection{The study condition} 
782 %Two parameters are studied are
783 %the polynomial degree and the execution time of our program
784 %to converge on the solution. The polynomial degree allows us
785 %to validate that our algorithm is powerful with high degree
786 %polynomials. The execution time remains the
787 %element-key which justifies our work of parallelization.
788 For our tests, a CPU Intel(R) Xeon(R) CPU
789 E5620@2.40GHz and a GPU K40 (with 6 Go of ram) are used. 
790
791
792 %\subsection{Comparative study}
793 %First, performances of the Ehrlich-Aberth method  of root finding polynomials
794 %implemented on CPUs and on GPUs are studied.
795
796 We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials of different sizes. We took into account the execution times, the  polynomial size and the number of threads per block performed by sum or each experiment on CPU and on GPU.
797
798 All experimental results obtained from the simulations are made in
799 double precision data, the convergence threshold of the methods is set
800 to $10^{-7}$.
801 %Since we were more interested in the comparison of the
802 %performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on
803 %CPUs versus on GPUs.
804 The initialization values of the vector solution
805 of the methods are given in Section~\ref{sec:vec_initialization}.
806
807 \subsection{Comparison of execution times of the Ehrlich-Aberth method
808   on a CPU with OpenMP (1 core and 4 cores) vs. on a Tesla GPU}
809
810 \begin{figure}[htbp]
811 \centering
812   \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
813 \caption{Comparison of execution times  of the Ehrlich-Aberth method
814   on a CPU with OpenMP (1 core, 4 cores) and on a Tesla GPU}
815 \label{fig:01}
816 \end{figure}
817 %%Figure 1 %%show a comparison of execution time between the parallel
818 %%and sequential version of the Ehrlich-Aberth algorithm with sparse
819 %%polynomial exceed 100000,
820
821 In Figure~\ref{fig:01}, we report the execution times of the
822 Ehrlich-Aberth method on one core of a Quad-Core Xeon E5620 CPU, on
823 four cores on the same machine with \textit{OpenMP} and on a Nvidia
824 Tesla K40 GPU.  We chose different sparse polynomials with degrees
825 ranging from 100,000 to 1,000,000. We can see that the implementation
826 on the GPU is faster than those implemented on the CPU.
827 However, the execution time for the
828 CPU (4 cores) implementation exceed 5,000s for 250,000 degrees
829 polynomials. On the other hand, the GPU implementation for the same
830 polynomials do not take more 100s. With the GPU
831 we can solve high degree polynomials very quickly up to degree 1,000,000. We can also notice that the GPU implementation are
832  almost 40 times faster then the implementation on the CPU (4 cores).
833
834
835  
836
837 %This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
838  
839  %We notice that the convergence precision is a round $10^{-7}$ for the both implementation on CPU and GPU. Consequently, we can conclude that Ehrlich-Aberth on GPU are faster and accurately then CPU implementation.
840
841 \subsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
842 To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel). In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. 
843 For that, we noticed that the maximum number of threads per block for
844 the Nvidia Tesla K40 GPU is 1,024, so we varied the number of threads
845 per block from 8 to 1,024. We took into account the execution time for
846 10 different sparse and full polynomials of degree 50,000 and of degree 500,000.
847
848 \begin{figure}[htbp]
849 \centering
850   \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
851 \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
852 \label{fig:02}
853 \end{figure}
854
855 Figure~\ref{fig:02} shows that, the best execution time for both
856 sparse and full polynomial are given when the threads number varies
857 between 64 and 256 threads per block. We notice that with small
858 polynomials the best number of threads per block is 64, whereas for large polynomials the best number of threads per block is
859 256. However, in the following experiments we specify that the number
860 of threads per block is 256.
861
862
863 \subsection{Influence of exp-log solution to compute high degree polynomials}
864
865 In this experiment we report the performance of the exp-log solution described in Section~\ref{sec2} to compute high degree polynomials.   
866 \begin{figure}[htbp]
867 \centering
868   \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog}
869 \caption{The impact of exp-log solution to compute  high degree  polynomials}
870 \label{fig:03}
871 \end{figure}
872
873
874 Figure~\ref{fig:03} shows a comparison between the execution time of
875 the Ehrlich-Aberth method using the exp-log solution and the
876 execution time of the Ehrlich-Aberth method without this solution,
877 with full and sparse polynomials degrees. We can see that the
878 execution times for both algorithms are the same with full polynomials
879 degree inferior to 4,000 and sparse polynomials inferior to 150,000. We
880 also clearly show that the classical version (without exp-log) of
881 Ehrlich-Aberth algorithm does not converge after these degrees with
882 sparse and full polynomials. On the contrary, the new version of
883 the Ehrlich-Aberth algorithm with the exp-log solution can solve
884 high degree polynomials.
885
886 %in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying exp-log solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees . 
887
888
889
890
891 \subsection{Comparison of the Durand-Kerner and the Ehrlich-Aberth methods}
892
893 In this part, we  compare the Durand-Kerner and the Ehrlich-Aberth
894 methods on GPU. We took into account the execution times, the number of iterations and the polynomials size for both sparse and full polynomials.  
895
896 \begin{figure}[htbp]
897 \centering
898   \includegraphics[width=0.8\textwidth]{figures/EA_DK}
899 \caption{Execution times of the  Durand-Kerner and the Ehrlich-Aberth methods on GPU}
900 \label{fig:04}
901 \end{figure}
902
903 Figure~\ref{fig:04} shows the execution times of both methods with
904 sparse polynomial degrees ranging from 1,000 to 1,000,000. We can see
905 that the Ehrlich-Aberth algorithm is faster than Durand-Kerner
906 algorithm, being on average 25 times faster. Then, when degrees of
907 polynomials exceed 500,000 the execution times with DK are very long.
908
909 %with double precision not exceed $10^{-5}$.
910
911 \begin{figure}[htbp]
912 \centering
913   \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
914 \caption{The number of iterations to converge for the Ehrlich-Aberth
915   and the Durand-Kerner methods}
916 \label{fig:05}
917 \end{figure}
918
919 Figure~\ref{fig:05} shows the evaluation of the number of iterations according
920 to the degree of polynomials for both EA and DK algorithms. We can see
921 that the number of iterations of DK is of order 100 while EA is of order
922 10. Indeed the computation of the derivative of P in the iterative function (Eq.~\ref{Eq:Hi}) executed by EA
923 allows the algorithm to converge faster. On the contrary, the
924 DK operator (Eq.~\ref{DK}) needs low operations, consequently low
925 execution times per iteration, but it needs more iterations to converge.
926
927
928
929
930  \section{Conclusion and perspectives}
931 \label{sec7}
932 In this paper we have presented the parallel implementation
933 Ehrlich-Aberth method on GPU for the problem of finding roots
934 polynomial. Moreover, we have improved the classical Ehrlich-Aberth
935 method which suffers from overflow problems, the exp-log solution
936 applied to the iterative function allows to solve high degree
937 polynomials.
938
939 We have performed many experiments with the Ehrlich-Aberth method in
940 GPU. These experiments highlight that this method is more efficient in
941 GPU than all the other implementations. The improvement with
942 the exponential logarithm solution allows us to solve sparse and full
943 high degree polynomials up to 1,000,000 degree. Hence, it may be
944 possible to consider  using polynomial root finding methods in other
945 numerical applications on GPU.
946
947
948 In future works, we plan to investigate the possibility of using
949 several multiple GPUs simultaneously, either with a multi-GPU machine or
950 with a cluster of GPUs. It may also be interesting to study the
951 implementation of other root finding polynomial methods on GPU.
952
953
954
955 \bibliography{mybibfile}
956
957 \end{document}
958