]> AND Private Git Repository - kahina_paper1.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Its Ehrlich and not Ehrlisch
[kahina_paper1.git] / paper.tex
1 \documentclass[review]{elsarticle}
2
3 \usepackage{lineno,hyperref}
4 %%\usepackage[utf8]{inputenc}
5 %%\usepackage[T1]{fontenc}
6 %%\usepackage[french]{babel}
7 \usepackage{float} 
8 \usepackage{amsmath,amsfonts,amssymb}
9 \usepackage[ruled,vlined]{algorithm2e}
10 %\usepackage[french,boxed,linesnumbered]{algorithm2e}
11 \usepackage{array,multirow,makecell}
12 \setcellgapes{1pt}
13 \makegapedcells
14 \newcolumntype{R}[1]{>{\raggedleft\arraybackslash }b{#1}}
15 \newcolumntype{L}[1]{>{\raggedright\arraybackslash }b{#1}}
16 \newcolumntype{C}[1]{>{\centering\arraybackslash }b{#1}}
17 \modulolinenumbers[5]
18
19 \journal{Journal of \LaTeX\ Templates}
20
21 %%%%%%%%%%%%%%%%%%%%%%%
22 %% Elsevier bibliography styles
23 %%%%%%%%%%%%%%%%%%%%%%%
24 %% To change the style, put a % in front of the second line of the current style and
25 %% remove the % from the second line of the style you would like to use.
26 %%%%%%%%%%%%%%%%%%%%%%%
27
28 %% Numbered
29 %\bibliographystyle{model1-num-names}
30
31 %% Numbered without titles
32 %\bibliographystyle{model1a-num-names}
33
34 %% Harvard
35 %\bibliographystyle{model2-names.bst}\biboptions{authoryear}
36
37 %% Vancouver numbered
38 %\usepackage{numcompress}\bibliographystyle{model3-num-names}
39
40 %% Vancouver name/year
41 %\usepackage{numcompress}\bibliographystyle{model4-names}\biboptions{authoryear}
42
43 %% APA style
44 %\bibliographystyle{model5-names}\biboptions{authoryear}
45
46 %% AMA style
47 %\usepackage{numcompress}\bibliographystyle{model6-num-names}
48
49 %% `Elsevier LaTeX' style
50 \bibliographystyle{elsarticle-num}
51 %%%%%%%%%%%%%%%%%%%%%%%
52
53 \begin{document}
54
55 \begin{frontmatter}
56
57 \title{Rapid solution of very high degree polynomials root finding using GPU}
58
59 %% Group authors per affiliation:
60 \author{Elsevier\fnref{myfootnote}}
61 \address{Radarweg 29, Amsterdam}
62 \fntext[myfootnote]{Since 1880.}
63
64 %% or include affiliations in footnotes:
65 \author[mymainaddress]{Ghidouche Kahina\corref{mycorrespondingauthor}}
66 %%\ead[url]{kahina.ghidouche@gmail.com}
67 \cortext[mycorrespondingauthor]{Corresponding author}
68 \ead{kahina.ghidouche@gmail.com}
69
70 \author[mysecondaryaddress]{Couturier Raphael\corref{mycorrespondingauthor}}
71 %%\cortext[mycorrespondingauthor]{Corresponding author}
72 \ead{raphael.couturier@univ-fcomte.fr}
73
74 \author[mymainaddress]{Abderrahmane Sider\corref{mycorrespondingauthor}}
75 %%\cortext[mycorrespondingauthor]{Corresponding author}
76 \ead{ar.sider@univ-bejaia.dz}
77
78 \address[mymainaddress]{Department of informatics,University of Bejaia,Algeria}
79 \address[mysecondaryaddress]{FEMTO-ST Institute, University of Franche-Compté }
80
81 \begin{abstract}
82 Polynomials are mathematical algebraic structures that play a great role in science and engineering. But the process of solving them  for high and large degrees is computationally demanding and still not solved. In this paper, we present the results of a parallel implementation of the Ehrlich-Aberth algorithm for the problem root finding for
83 high degree polynomials on GPU architectures (Graphics Processing Unit). The main result of this work is to be able to solve high and very large degree polynomials (up to 100000) very efficiently. We also compare the results with a sequential implementation and the Durand-Kerner method on full and sparse polynomials.
84 \end{abstract}
85
86 \begin{keyword}
87 root finding of polynomials, high degree, iterative methods, Ehrlich-Aberth, Durant-Kerner, GPU, CUDA, CPU , Parallelization
88 \end{keyword}
89
90 \end{frontmatter}
91
92 \linenumbers
93
94 \section{The problem of finding roots of a polynomial}
95 Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomenons and to express any outcome in the form of a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
96 %%\begin{center}
97 \begin{equation}
98      {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
99 \end{equation}
100 %%\end{center}
101
102 The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeroes of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
103 \begin{equation}
104      {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
105 \end{equation}
106
107 The problem of finding a root is equivalent to that of solving a fixed-point problem. To see this, consider the fixed-point problem of finding the $n$-dimensional
108 vector $x$ such that
109 \begin{center}
110 $x=g(x)$
111 \end{center}
112 where $g : C^{n}\longrightarrow C^{n}$. Usually, we can easily
113 rewrite this fixed-point problem as a root-finding problem by
114 setting $f(x) = x-g(x)$ and likewise we can recast the
115 root-finding problem into a fixed-point problem by setting
116 \begin{center}
117 $g(x)= f(x)-x$.
118 \end{center}
119
120 Often it is not be possible to solve such nonlinear equation
121 root-finding problems analytically. When this occurs we turn to
122 numerical methods to approximate the solution. 
123 Generally speaking, algorithms for solving problems can be divided into
124 two main groups: direct methods and iterative methods.
125 \\
126 Direct methods exist only for $n \leq 4$, solved in closed form by G. Cardano
127 in the mid-16th century. However, N.H. Abel in the early 19th
128 century showed that polynomials of degree five or more could not
129 be solved by  directs methods. Since then, mathmathicians have
130 focussed on numerical (iterative) methods such as the famous
131 Newton's method, Bernoulli's method of the 18th, and Graeffe's.
132
133 Later on, with the advent of electronic computers, other methods has
134 been developed such as the Jenkins-Traub method, Larkin's method,
135 Muller's method, and several methods for simultaneous
136 approximation of all the roots, starting with the Durand-Kerner (DK)
137 method :
138 %%\begin{center}
139 \begin{equation}
140  Z_{i}=Z_{i}-\frac{P(Z_{i})}{\prod_{i\neq j}(z_{i}-z_{j})}
141 \end{equation}
142 %%\end{center}
143
144 This formula is mentioned for the first time by
145 Weiestrass~\cite{Weierstrass03} as part of the fundamental theorem
146 of Algebra and is rediscovered by Ilieff~\cite{Ilie50},
147 Docev~\cite{Docev62}, Durand~\cite{Durand60},
148 Kerner~\cite{Kerner66}. Another method discovered by
149 Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
150 in the following form by Ehrlich~\cite{Ehrlich67} and
151 Aberth~\cite{Aberth73} uses a different iteration formula given as fellows :
152 %%\begin{center}
153 \begin{equation}
154  Z_{i}=Z_{i}-\frac{1}{{\frac {P'(Z_{i})} {P(Z_{i})}}-{\sum_{i\neq j}(z_{i}-z_{j})}}.
155 \end{equation}
156 %%\end{center}
157
158 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizon83} have proved that
159 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
160
161
162 Iterative methods raise several problem when implemented e.g.
163 specific sizes of numbers must be used to deal with this
164 difficulty. Moreover, the convergence time of iterative methods
165 drastically increases like the degrees of high polynomials. It is expected that the
166 parallelization of these algorithms will improve the convergence
167 time.
168
169 Many authors have dealt with the parallelisation of
170 simultaneous methods, i.e. that find all the zeros simultaneously. 
171 Freeman~\cite{Freeman89} implemeted and compared DK, EA and another method of the fourth order proposed
172 by Farmer and Loizou~\cite{Loizon83}, on a 8- processor linear
173 chain, for polynomials of degree up to 8. The third method often
174 diverges, but the first two methods have speed-up 5.5
175 (speed-up=(Time on one processor)/(Time on p processors)). Later,
176 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
177 algorithms, in which each processor continues to update its
178 approximations even though the latest values of other $z_i((k))$
179 have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration.
180 Couturier et al. ~\cite{Raphaelall01} proposed two methods of parallelisation for
181 a shared memory architecture and for distributed memory one. They were able to
182 compute the roots of polynomials of degree 10000 in 430 seconds with only 8
183 personal computers and 2 communications per iteration. Comparing to the sequential implementation
184 where it takes up to 3300 seconds to obtain the same results, the authors show an interesting speedup, indeed.
185
186 Very few works had been since this last work until the appearing of
187 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
188 parallel computing platform and a programming model invented by
189 NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of
190 of CPUs. However, CUDA adopts a totally new computing architecture to use the
191 hardware resources provided by GPU in order to offer a stronger
192 computing ability to the massive data computing.
193
194
195 Ghidouche et al. ~\cite{Kahinall14} proposed an implementation of the
196 Durand-Kerner method on GPU. Their main
197 result showed that a parallel CUDA implementation is 10 times as fast as
198 the sequential implementation on a single CPU for high degree
199 polynomials of about 48000. To our knowledge, it is the first time such high degree polynomials are numerically solved.
200
201
202 In this paper, we focus on the implementation of the Aberth method for
203 high degree polynomials on GPU. The paper is organised as fellows. Initially, we recall the Aberth method in Section.\ref{sec1}. Improvements for the Aberth method are proposed in Section.\ref{sec2}. Related work to the implementation of simultaneous methods using a parallel approach is presented in Section.\ref{secStateofArt}.
204 In Section.4 we propose a parallel implementation of the Aberth method on GPU and discuss it. Section 5 presents and investigates our implementation and experimental study results. Finally, Section 6 concludes this paper and gives some hints for future research directions in this topic.  
205
206 \section{The Sequential Aberth method}
207 \label{sec1}
208 A cubically convergent iteration method for finding zeros of
209 polynomials was proposed by O.Aberth~\cite{Aberth73}. The Aberth
210 method is a purely algebraic derivation. To illustrate the
211 derivation, we let $w_{i}(z)$ be the product of linear factors 
212
213 \begin{equation}
214 w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
215 \end{equation}
216
217 And let a rational function $R_{i}(z)$ be the correction term of the
218 Weistrass method~\cite{Weierstrass03}
219
220 \begin{equation}
221 R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
222 \end{equation}
223
224 Differentiating the rational function $R_{i}(z)$ and applying the
225 Newton method, we have:
226
227 \begin{equation}
228 \frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{i}}}, i=1,2,...,n
229 \end{equation}
230
231 Substituting $x_{j}$ for z we obtain the Aberth iteration method.
232
233 In the fellowing we present the main stages of the running of the Aberth method.
234
235 \subsection{Polynomials Initialization}
236 The initialization of a polynomial p(z) is done by setting each of the $n$ complex coefficients $a_{i}$
237 :
238
239 \begin{equation}
240 \label{eq:SimplePolynome}
241   p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
242 \end{equation}
243
244
245 \subsection{Vector $z^{(0)}$ Initialization}
246
247 Like for any iterative method, we need to choose $n$ initial guess points $z^{(0)}_{i}, i = 1, . . . , n.$
248 The initial guess is very important since the number of steps needed by the iterative method to reach
249 a given approximation strongly depends on it.
250 In~\cite{Aberth73} the Aberth iteration is started by selecting $n$
251 equi-spaced points on a circle of center 0 and radius r, where r is
252 an upper bound to the moduli of the zeros. Later, Bini et al.~\cite{Bini96}
253 performed this choice by selecting complex numbers along different
254 circles and relies on the result of~\cite{Ostrowski41}.
255
256 \begin{equation}
257 \label{eq:radiusR}
258 %%\begin{align}
259 \sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
260 v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
261 %%\end{align}
262 \end{equation}
263 Where:
264 \begin{equation}
265 u_{i}=2.|a_{i}|^{\frac{1}{i}};
266 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
267 \end{equation}
268
269 \subsection{Iterative Function $H_{i}$}
270 The operator used by the Aberth method is corresponding to the
271 following equation which will enable the convergence towards
272 polynomial solutions, provided all the roots are distinct.
273
274 \begin{equation}
275 H_{i}(z)=z_{i}-\frac{1}{\frac{p^{'}(z_{i})}{p(z_{i})}-\sum_{j\neq
276 i}{\frac{1}{z_{i}-z_{j}}}}
277 \end{equation}
278
279 \subsection{Convergence Condition}
280 The convergence condition determines the termination of the algorithm. It consists in stopping from running
281 the iterative function $H_{i}(z)$ when the roots are sufficiently stable. We consider that the method
282 converges sufficiently when :
283
284 \begin{equation}
285 \label{eq:Aberth-Conv-Cond}
286 \forall i \in
287 [1,n];\frac{z_{i}^{(k)}-z_{i}^{(k-1)}}{z_{i}^{(k)}}<\xi
288 \end{equation}
289
290
291 \section{Improving the Ehrlich-Aberth Method}
292 \label{sec2}
293 The Ehrlich-Aberth method implementation suffers of overflow problems. This
294 situation occurs, for instance, in the case where a polynomial
295 having positive coefficients and a large degree is computed at a
296 point $\xi$ where $|\xi| > 1$, where $|x|$ stands for the modolus of a complex $x$. Indeed, the limited number in the
297 mantissa of floating points representations makes the computation of p(z) wrong when z
298 is large. For example $(10^{50}) +1+ (- 10^{50})$ will give the wrong result
299 of $0$ instead of $1$. Consequently, we can not compute the roots
300 for large degrees. This problem was early discussed in
301 ~\cite{Karimall98} for the Durand-Kerner method, the authors
302 propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent.
303
304 \begin{equation}
305 \label{deflncomplex}
306  \forall(x,y)\in R^{*2}; \ln (x+i.y)=\ln(x^{2}+y^{2})
307 2+i.\arcsin(y\sqrt{x^{2}+y^{2}})_{\left] -\pi, \pi\right[ }
308 \end{equation}
309 %%\begin{equation}
310 \begin{align}
311 \label{defexpcomplex}
312  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
313                                      & =\exp(x).\cos(y)+i.\exp(x).\sin(y)\label{defexpcomplex}
314 \end{align}
315 %%\end{equation}
316
317 Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
318 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
319
320 Applying this solution for the Aberth method we obtain the
321 iteration function with logarithm:
322 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
323 \begin{equation}
324 \label{Log_H2}
325 H_{i}(z)=z_{i}^{k}-\exp \left(\ln \left(
326 p(z_{k})\right)-\ln\left(p(z_{k}^{'})\right)- \ln
327 \left(1-Q(z_{k})\right)\right),
328 \end{equation}
329
330 where:
331
332 \begin{equation}
333 \label{Log_H1}
334 Q(z_{k})=\exp\left( \ln (p(z_{k}))-\ln(p(z_{k}^{'}))+\ln \left(
335 \sum_{k\neq j}^{n}\frac{1}{z_{k}-z_{j}}\right)\right).
336 \end{equation}
337
338 This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated as:
339 \begin{equation}
340 \label{R}
341 R = \exp( \log(DBL\_MAX) / (2*n) )
342 \end{equation}
343  where $DBL\_MAX$ stands for the maximum representable double value.
344
345 \section{The implementation of simultaneous methods in a parallel computer}
346 \label{secStateofArt}   
347 The main problem of simultaneous methods is that the necessary
348 time needed for convergence is increased when we increase
349 the degree of the polynomial. The parallelisation of these
350 algorithms is expected to improve the convergence time.
351 Authors usually adopt one of the two following approaches to parallelize root
352 finding algorithms. The first approach aims at reducing the total number of
353 iterations as by Miranker
354 ~\cite{Mirankar68,Mirankar71}, Schedler~\cite{Schedler72} and
355 Winogard~\cite{Winogard72}. The second approach aims at reducing the
356 computation time per iteration, as reported
357 in~\cite{Benall68,Jana06,Janall99,Riceall06}. 
358
359 There are many schemes for the simultaneous approximation of all roots of a given
360 polynomial. Several works on different methods and issues of root
361 finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Skachek08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich-Aberth methods are the most practical choices among
362 them~\cite{Bini04}. These two methods have been extensively
363 studied for parallelization due to their intrinsics, i.e. the
364 computations involved in both methods has some inherent
365 parallelism that can be suitably exploited by SIMD machines.
366 Moreover, they have fast rate of convergence (quadratic for the
367 Durand-Kerner and cubic for the Ehrlich-Aberth). Various parallel
368 algorithms reported for these methods can be found
369 in~\cite{Cosnard90, Freeman89,Freemanall90,Jana99,Janall99}.
370 Freeman and Bane~\cite{Freemanall90} presented two parallel
371 algorithms on a local memory MIMD computer with the compute-to
372 communication time ratio O(n). However, their algorithms require
373 each processor to communicate its current approximation to all
374 other processors at the end of each iteration (synchronous). Therefore they
375 cause a high degree of memory conflict. Recently the author
376 in~\cite{Mirankar71} proposed two versions of parallel algorithm
377 for the Durand-Kerner method, and Ehrlich-Aberth method on a model of
378 Optoelectronic Transpose Interconnection System (OTIS).The
379 algorithms are mapped on an OTIS-2D torus using N processors. This
380 solution needs N processors to compute N roots, which is not
381 practical for solving polynomials with large degrees.
382 Until very recently, the literature doen not mention implementations able to compute the roots of
383 large degree polynomials (higher then 1000) and within small or at least tractable times. Finding polynomial roots rapidly and accurately is the main objective of our work. 
384 With the advent of CUDA (Compute Unified Device
385 Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time. 
386 In~\cite{Kahinall14} we already proposed the first implementation
387 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
388 that a parallel CUDA implementation is 10 times as fast as the
389 sequential implementation on a single CPU for high degree
390 polynomials of 48000. In this paper we present a parallel implementation of Ehlisch-Aberth method on
391 GPUs, which details are discussed in the sequel.
392
393
394 \section {A CUDA parallel Ehrlich-Aberth method}
395 In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
396 for solving high degree polynomials. First, the hardware and software of the GPUs are presented. Then, a CUDA parallel Ehrlich-Aberth method are presented.
397
398 \subsection{Background on the GPU architecture}
399 A GPU is viewed as an accelerator for the data-parallel and
400 intensive arithmetic computations. It draws its computing power
401 from the parallel nature of its hardware and software
402 architectures. A GPU is composed of hundreds of Streaming
403 Processors (SPs) organized in several blocks called Streaming
404 Multiprocessors (SMs). It also has a memory hierarchy. It has a
405 private read-write local memory per SP, fast shared memory and
406 read-only constant and texture caches per SM and a read-write
407 global memory shared by all its SPs~\cite{NVIDIA10}.
408
409 On a CPU equipped with a GPU, all the data-parallel and intensive
410 functions of an application running on the CPU are off-loaded onto
411 the GPU in order to accelerate their computations. A similar
412 data-parallel function is executed on a GPU as a kernel by
413 thousands or even millions of parallel threads, grouped together
414 as a grid of thread blocks. Therefore, each SM of the GPU executes
415 one or more thread blocks in SIMD fashion (Single  Instruction,
416 Multiple Data) and in turn each SP of a GPU SM runs one or more
417 threads within a block in SIMT fashion (Single Instruction,
418 Multiple threads). Indeed at any given clock cycle, the threads
419 execute the same instruction of a kernel, but each of them
420 operates on different data.
421  GPUs only work on data filled in their
422 global memories and the final results of their kernel executions
423 must be communicated to their CPUs. Hence, the data must be
424 transferred in and out of the GPU. However, the speed of memory
425 copy between the GPU and the CPU is slower than the memory
426 bandwidths of the GPU memories and, thus, it dramatically affects
427 the performances of GPU computations. Accordingly, it is necessary
428 to limit as much as possible, data transfers between the GPU and its CPU during the
429 computations.
430 \subsection{Background on the CUDA Programming Model}
431
432 The CUDA programming model is similar in style to a single program
433 multiple-data (SPMD) software model. The GPU is viewed as a
434 coprocessor that executes data-parallel kernel functions. CUDA
435 provides three key abstractions, a hierarchy of thread groups,
436 shared memories, and barrier synchronization. Threads have a three
437 level hierarchy. A grid is a set of thread blocks that execute a
438 kernel function. Each grid consists of blocks of threads. Each
439 block is composed of hundreds of threads. Threads within one block
440 can share data using shared memory and can be synchronized at a
441 barrier. All threads within a block are executed concurrently on a
442 multithreaded architecture.The programmer specifies the number of
443 threads per block, and the number of blocks per grid. A thread in
444 the CUDA programming language is much lighter weight than a thread
445 in traditional operating systems. A thread in CUDA typically
446 processes one data element at a time. The CUDA programming model
447 has two shared read-write memory spaces, the shared memory space
448 and the global memory space. The shared memory is local to a block
449 and the global memory space is accessible by all blocks. CUDA also
450 provides two read-only memory spaces, the constant space and the
451 texture space, which reside in external DRAM, and are accessed via
452 read-only caches.
453
454 \subsection{ The implementation of Aberth method on GPU}
455 %%\subsection{A CUDA implementation of the Aberth's method }
456 %%\subsection{A GPU implementation of the Aberth's method }
457
458
459
460 \subsubsection{A sequential Aberth algorithm}
461 The main steps of Aberth method are shown in Algorithm.~\ref{alg1-seq} :
462   
463 \begin{algorithm}[H]
464 \label{alg1-seq}
465 %\LinesNumbered
466 \caption{A sequential algorithm to find roots with the Aberth method}
467
468 \KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
469 tolerance threshold),P(Polynomial to solve)}
470
471 \KwOut {Z(The solution root's vector)}
472
473 \BlankLine
474
475 Initialization of the coefficients of the polynomial to solve\;
476 Initialization of the solution vector $Z^{0}$\;
477
478 \While {$\Delta z_{max}\succ \epsilon$}{
479  Let $\Delta z_{max}=0$\;
480 \For{$j \gets 0 $ \KwTo $n$}{
481 $ZPrec\left[j\right]=Z\left[j\right]$\;
482 $Z\left[j\right]=H\left(j,Z\right)$\;
483 }
484
485 \For{$i \gets 0 $ \KwTo $n-1$}{
486 $c=\frac{\left|Z\left[i\right]-ZPrec\left[i\right]\right|}{Z\left[i\right]}$\;
487 \If{$c\succ\Delta z_{max}$ }{
488 $\Delta z_{max}$=c\;}
489 }
490 }
491 \end{algorithm}
492
493 ~\\ 
494 In this sequential algorithm, one CPU thread  executes all the steps. Let us look to the $3^{rd}$ step i.e. the execution of the iterative function, 2 sub-steps are needed. The first sub-step \textit{save}s the solution vector of the previous iteration, the second sub-step \textit{update}s or computes the new values of the roots vector.
495 There exists two ways to execute the iterative function that we call a Jacobi one and a Gauss-Seidel one. With the Jacobi iteration, at iteration $k+1$ we need all the previous values $z^{(k)}_{i}$ to compute the new values $z^{(k+1)}_{i}$, that is :
496
497 \begin{equation}
498 H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}}}, i=1,...,n.
499 \end{equation}
500
501 With the Gauss-seidel iteration, we have:
502 \begin{equation}
503 \label{eq:Aberth-H-GS}
504 H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{(k)}_{i}-z^{(k+1)}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}})}, i=1,...,n.
505 \end{equation}
506
507 Using Equation.~\ref{eq:Aberth-H-GS} for the update sub-step of $H(i,z^{k+1})$, we expect the Gauss-Seidel iteration to converge more quickly because, just as its ancestor (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
508
509 The $4^{th}$ step of the algorithm checks the convergence condition using Equation.~\ref{eq:Aberth-Conv-Cond}.
510 Both steps 3 and 4 use 1 thread to compute all the $n$ roots on CPU, which is very harmful for performance in case of the large degree polynomials.
511
512 \paragraph{The execution time}
513 Let $T_{i}(n)$ be the time to compute one new root value at step 3, $T_{i}$ depends on the polynomial's degree $n$. When $n$ increase $T_{i}(n)$ increases too. We need $n.T_{i}(n)$ to compute all the new values in one iteration at step 3.
514
515 Let $T_{j}$ be the time needed to check the convergence of one root value at the step 4, so we need $n.T_{j}$ to compute global convergence condition in each iteration at step 4.
516
517 Thus, the execution time for both steps 3 and 4 is:
518 \begin{equation}
519 T_{iter}=n(T_{i}(n)+T_{j})+O(n).
520 \end{equation}
521 Let $K$ be the number of iterations necessary to compute all the roots, so the total execution time $T$ can be given as:
522
523 \begin{equation}
524 \label{eq:T-global}
525 T=\left[n\left(T_{i}(n)+T_{j}\right)+O(n)\right].K
526 \end{equation}
527 The execution time increases with the increasing of the polynomial degree, which justifies to parallelise these steps  in order to reduce the global execution time. In the following,  we explain how we did parrallelize these steps on a GPU architecture using the CUDA platform.
528
529 \subsubsection{A Parallel implementation with CUDA }
530 On the CPU,  both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
531 In the GPU, the schduler assigns the execution of this loop to a group of threads organised as a grid of blocks with block containing a number of threads. All threads within a block are executed concurrently in parallel. The instructions run on the GPU are grouped in special function called kernels. It's up to the programmer, to describe the execution context, that is the size of the Grid, the number of blocks and the number of threads per block upon the call of a given kernel, according to a special syntax defined by CUDA.
532
533 Let N be the number of threads executed in parallel,  Equation.~\ref{eq:T-global} becomes then : 
534
535 \begin{equation}
536 T=\left[\frac{n}{N}\left(T_{i}(n)+T_{j}\right)+O(n)\right].K.
537 \end{equation}
538
539 In theory, total execution time $T$ on GPU is speed up $N$ times as  $T$ on CPU. We will see at what extent this is true in the experimental study hereafter. 
540 ~\\
541 ~\\
542 In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual ``C`` function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
543
544 Algorithm~\ref{alg2-cuda} shows a sketch of the Aberth algorithm usind CUDA.
545
546 \begin{algorithm}[H]
547 \label{alg2-cuda}
548 %\LinesNumbered
549 \caption{CUDA Algorithm to find roots with the Aberth method}
550
551 \KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
552 tolerance threshold),P(Polynomial to solve)}
553
554 \KwOut {Z(The solution root's vector)}
555
556 \BlankLine
557
558 Initialization of the coeffcients of the polynomial to solve\;
559 Initialization of the solution vector $Z^{0}$\;
560 Allocate and copy initial data to the GPU global memory\;
561
562 \While {$\Delta z_{max}\succ \epsilon$}{
563  Let $\Delta z_{max}=0$\;
564 $ kernel\_save(d\_z^{k-1})$\;
565 $ kernel\_update(d\_z^{k})$\;
566 $kernel\_testConverge(\Delta z_{max},d_z^{k},d_z^{k-1})$\;
567 }
568 \end{algorithm}
569 ~\\ 
570
571 After the initialisation step, all data of the root finding problem to be solved must be copied from the CPU memory to the GPU global memory, because the GPUs only access data already present in their memories. Next, all the data-parallel arithmetic operations inside the main loop \verb=(do ... while(...))= are executed as kernels by the GPU. The first kernel named \textit{save} in line 6 of Algorithm~\ref{alg2-cuda} consists in saving the vector of polynomial's root found at the previous time-step in GPU memory, in order to check the convergence of the roots after each iteration (line 8, Algorithm~\ref{alg2-cuda}).
572
573 The second kernel executes the iterative function $H$ and updates $z^{k}$, according to Algorithm~\ref{alg3-update}. We notice that the update kernel is called in two forms, separated with the value of \emph{R} which determines the radius beyond which we apply the logarithm computation of the power of a complex. 
574
575 \begin{algorithm}[H]
576 \label{alg3-update}
577 %\LinesNumbered
578 \caption{A global Algorithm for the iterative function}
579
580 \eIf{$(\left|Z^{(k)}\right|<= R)$}{
581 $kernel\_update(d\_z^{k})$\;}
582 {
583 $kernel\_update\_Log(d\_z^{k})$\;
584 }
585 \end{algorithm}
586
587 The first form executes formula \ref{eq:SimplePolynome} if the modulus of the current complex is less than the a certain value called the radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes formulas (Eq.~\ref{deflncomplex},Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as :
588
589 $$R = \exp( \log(DBL\_MAX) / (2*n) )$$ where $DBL\_MAX$ stands for the maximum representable double value.
590
591 The last kernel verifies the convergence of the roots after each update of $Z^{(k)}$, according to formula. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
592
593 The kernels terminate it computations when all the roots converge. Finally, the solution of the root finding problem is copied back from GPU global memory to CPU memory. We use the communication functions of CUDA for the memory allocation in the GPU \verb=(cudaMalloc())= and for data transfers from the CPU memory to the GPU memory \verb=(cudaMemcpyHostToDevice)=
594 or from GPU memory to CPU memory \verb=(cudaMemcpyDeviceToHost))=. 
595 %%HIER END MY REVISIONS (SIDER)
596 \section{Experimental study}
597
598 \subsection{Definition of the used polynomials }
599 We study two categories of polynomials : the sparse polynomials and the full polynomials.
600 \paragraph{A sparse polynomial}: is a polynomial for which only some coefficients are not null. We use in the following polonymial for which the roots are distributed on 2 distinct circles :
601 \begin{equation}
602         \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
603 \end{equation}
604
605
606 \paragraph{A full polynomial} is in contrast, a polynomial for which all the coefficients are not null. the second form used to obtain a full polynomial is:
607 %%\begin{equation}
608         %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
609 %%\end{equation}
610
611 \begin{equation}
612      {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
613 \end{equation}
614 With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
615
616 \subsection{The study condition} 
617 The our experiences results concern two parameters which are
618 the polynomial degree and the execution time of our program
619 to converge on the solution. The polynomial degree allows us
620 to validate that our algorithm is powerful with high degree
621 polynomials. The execution time remains the
622 element-key which justifies our work of parallelization.
623         For our tests we used a CPU Intel(R) Xeon(R) CPU
624 E5620@2.40GHz and a GPU K40 (with 6 Go of ram).
625
626
627 \subsection{Comparative study}
628 In this section, we discuss the performance Ehrlich-Aberth method  of root finding polynomials implemented on CPUs and on GPUs.
629
630 We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution time,the  polynomial size and the number of threads per block performed by sum or each experiment on CPUs and on GPUs.
631
632 All experimental results obtained from the simulations are made in double precision data, for a convergence tolerance of the methods set to $10^{-7}$. Since we were more interested in the comparison of the performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on CPUs versus on GPUs. The initialization values of the vector solution of the Ehrlich-Aberth method are given in section 2.2. 
633 \subsubsection{The execution time in seconds of Ehrlich-Aberth algorithm on CPU core vs. on a Tesla GPU}
634
635
636 \begin{figure}[H]
637 \centering
638   \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU}
639 \caption{The execution time in seconds of Ehrlich-Aberth algorithm on CPU core vs. on a Tesla GPU}
640 \label{fig:01}
641 \end{figure}
642
643 Figure 1 %%show a comparison of execution time between the parallel and sequential version of the Ehrlich-Aberth algorithm with sparse polynomial exceed 100000, 
644 We report the execution times of the Ehrlich-Aberth method implemented on one core of the Quad-Core Xeon E5620 CPU and those of the same methods implemented on one Nvidia Tesla K40c GPU, with sparse polynomial degrees ranging from 100,000 to 1,000,000. We can see that the methods implemented on the GPU are faster than those implemented on the CPU. This is due to the GPU ability to compute the data-parallel functions faster than its CPU counterpart. However, the execution time for the sequential implementation exceed 16,000 s for 450,000 degrees polynomials, in counterpart  the GPU implementation for the same polynomials need only 350 s, more than again, with 1,000,000 polynomials degrees GPU implementation not reach 2,300 s degrees. While CPU implementation need more than 10 hours. We can also notice that the GPU implementation are almost 47 faster then those implementation on the CPU. Furthermore, we verify that the number of iterations is the same. This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
645  
646
647
648 \subsubsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
649 It is also interesting to see the influence of the number of threads per block on the execution time. For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40c GPU is 1024, so we varied the number of threads per block from 8 to 1024. We took into account the execution time for both sparse and full polynomials of size 50000 and 500000 degrees.
650
651 \begin{figure}[H]
652 \centering
653   \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
654 \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
655 \label{fig:01}
656 \end{figure}
657
658 The figure 2 show that, the best execution time for both sparse and full polynomial are given while the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the number of threads per block is 64, Whereas, the large polynomials the number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256.
659
660 \subsubsection{The impact of exp-log solution to compute very high degrees of  polynomial}
661
662 In this experiment we report the performance of log.exp solution describe in ~\ref{sec2} to compute very high degrees polynomials.   
663 \begin{figure}[H]
664 \centering
665   \includegraphics[width=0.8\textwidth]{figures/log_exp}
666 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
667 \label{fig:01}
668 \end{figure}
669
670 The figure 3, show a comparison between the execution time of the Ehrlich-Aberth algorithm applying log-exp solution and the execution time of the Ehrlich-Aberth algorithm without applying log-exp solution, with full polynomials degrees. We can see that the execution time for the both algorithms are the same while the polynomials degrees are less than 4500. After,we show clearly that the classical version of Ehrlich-Aberth algorithm (without applying log.exp) stop to converge and can not solving polynomial exceed 4500, in counterpart, the new version of Ehrlich-Aberth algorithm (applying log.exp solution) can solve very high and large full polynomial exceed 100,000 degrees.
671
672 in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying log.exp solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2}and allows to solve a very large polynomials degrees . 
673
674
675
676 %we report the performances of the exp.log for the Ehrlich-Aberth algorithm for solving very high degree of polynomial. 
677
678  
679 \subsubsection{A comparative study between Ehrlich-Aberth algorithm and Durand-kerner algorithm}
680 In this part, we are interesting to compare the simultaneous methods, Ehrlich-Aberth and Durand-Kerner in parallel computer using GPU. We took into account the execution time, the number of iteration and the polynomial's size. for the both sparse and full polynomials.  
681
682 \begin{figure}[H]
683 \centering
684   \includegraphics[width=0.8\textwidth]{figures/EA_DK}
685 \caption{The execution time of Ehrlich-Aberth versus Durand-Kerner algorithm on GPU}
686 \label{fig:01}
687 \end{figure}
688
689 This figure show the execution time of the both algorithm EA and DK with sparse polynomial degrees ranging from 1000 to 1000000. We can see that the Ehrlich-Aberth algorithm are faster than Durand-Kerner algorithm, with an average of 25 times as fast. Then, when degrees of polynomial exceed 500000 the execution time with EA is of the order 100 whereas DK passes in the order 1000. %with double precision not exceed $10^{-5}$.
690
691 \begin{figure}[H]
692 \centering
693   \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
694 \caption{The iteration number of Ehrlich-Aberth versus Durand-Kerner algorithm}
695 \label{fig:01}
696 \end{figure}
697
698 \bibliography{mybibfile}
699
700 \end{document}