]> AND Private Git Repository - kahina_paper1.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
MAJ des figures 1,2,3
[kahina_paper1.git] / paper.tex
index 9897244a20b19a6506dc8eeb096f446bec2fbf4d..b9ed2ff086ce48a77d9b05c9f11ab746923e3a48 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -4,6 +4,7 @@
 %%\usepackage[utf8]{inputenc}
 %%\usepackage[T1]{fontenc}
 %%\usepackage[french]{babel}
+\usepackage{float} 
 \usepackage{amsmath,amsfonts,amssymb}
 \usepackage[ruled,vlined]{algorithm2e}
 %\usepackage[french,boxed,linesnumbered]{algorithm2e}
@@ -588,7 +589,6 @@ We study two forms of  polynomials the sparse polynomials and the full polynomia
 \begin{equation}
        \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
 \end{equation}
-
 This form makes it possible to associate roots having two
 different modules and thus to work on a polynomial constitute
 of four non zero terms.
@@ -636,7 +636,7 @@ We initially carried out the convergence of Aberth algorithm with various sizes
 %      \label{tab:theConvergenceOfAberthAlgorithm}
 %\end{table}
  
-\begin{figure}[htbp]
+\begin{figure}[H]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU}
 \caption{Aberth algorithm on CPU and GPU}
@@ -665,14 +665,15 @@ We initially carried out the convergence of Aberth algorithm with various sizes
 %\end{table}
 
 
-\begin{figure}[htbp]
+\begin{figure}[H]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
 \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
 \label{fig:01}
 \end{figure}
 
-\begin{figure}[htbp]
+\subsubsection{The impact of exp-log solution to compute very high degrees of  polynomial}
+\begin{figure}[H]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/log_exp}
 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
@@ -680,18 +681,14 @@ We initially carried out the convergence of Aberth algorithm with various sizes
 \end{figure}
 
 \subsubsection{A comparative study between Aberth and Durand-kerner algorithm}
-\begin{table}[htbp]
-       \centering
-               \begin{tabular} {|R{2cm}|L{2.5cm}|L{2.5cm}|L{1.5cm}|L{1.5cm}|}
-                       \hline Polynomial's degrees & Aberth $T_{exe}$ & D-Kerner $T_{exe}$ & Aberth iteration & D-Kerner iteration\\
-                       \hline 5000 &  0.40 & 3.42 & 17 & 138 \\
-                       \hline 50000 & 3.92 & 385.266 & 17 & 823\\
-                       \hline 500000 & 497.109 & 4677.36 & 24 & 214\\
-                       \hline                                  
-                                       \end{tabular}
-       \caption{Aberth algorithm compare to Durand-Kerner algorithm}
-       \label{tab:AberthAlgorithCompareToDurandKernerAlgorithm}
-\end{table}
+
+
+\begin{figure}[H]
+\centering
+  \includegraphics[width=0.8\textwidth]{figures/EA_DK}
+\caption{Ehrlisch-Aberth and Durand-Kerner algorithm on GPU}
+\label{fig:01}
+\end{figure}
 
 
 \bibliography{mybibfile}