\caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (error tolerance
\caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (error tolerance
- threshold), P(Polynomial to solve), Pu (the derivative of P), $n$ (Polynomial's degrees),$\Delta z_{max}$ (maximum value of stop condition)}
+ threshold), P(Polynomial to solve), Pu (the derivative of P), $n$ (Polynomial's degrees), $\Delta z_{max}$ (maximum value of stop condition)}
Initialization of the of P\;
Initialization of the of Pu\;
Initialization of the solution vector $Z^{0}$\;
Initialization of the of P\;
Initialization of the of Pu\;
Initialization of the solution vector $Z^{0}$\;
-$ kernel\_update(d\_Z,d\_P,d\_Pu)$\;
-$kernel\_testConverge(\Delta z_{max},d\_Z,d\_ZPrec)$\;
+$ kernel\_update(Z,P,Pu)$\;
+$kernel\_testConverge(\Delta z_{max},Z,ZPrec)$\;
-\eIf{$(\left|d\_Z\right|<= R)$}{
-$kernel\_update((d\_Z,d\_P,d\_Pu)$\;}
+\eIf{$(\left|Z\right|<= R)$}{
+$kernel\_update((Z,P,Pu)$\;}
Figure~\ref{fig:04} shows the execution times of both methods with
sparse polynomial degrees ranging from 1,000 to 1,000,000. We can see
that the Ehrlich-Aberth algorithm is faster than Durand-Kerner
Figure~\ref{fig:04} shows the execution times of both methods with
sparse polynomial degrees ranging from 1,000 to 1,000,000. We can see
that the Ehrlich-Aberth algorithm is faster than Durand-Kerner