#set format x "%6.4e"
set format x "%2.0e"
#set format x "%2.0t{/Symbol \327}10^{%L}"
-#set logscale x
-#set logscale y
+set logscale x
+set logscale y
#set key on outside left bmargin
-set style line 1 lc rgb '#0060ad' lt 1 lw 2 pt 1 ps 1.5 # --- blue
-set style line 3 lc rgb '#dd181f' lt 1 lw 2 pt 3 ps 1.5 # --- red
-set style line 2 lc rgb '#dd181f' lt 1 lw 2 pt 4 ps 1.5 # --- red
-set style line 4 lc rgb '#dd181f' lt 1 lw 2 pt 6 ps 1.5 # --- red
+set style line 1 lc rgb '#000c16' lt 1 lw 2 pt 4 ps 1.5 # --- blue
+set style line 2 lc rgb '#000c16' lt 1 lw 2 pt 5 ps 1.5 # --- red
+set style line 3 lc rgb '#000c16' lt 1 lw 2 pt 6 ps 1.5 # --- red
+set style line 4 lc rgb '#000c16' lt 1 lw 2 pt 7 ps 1.5 # --- red
-set style line 2 lc rgb '#dd181f' lt 1 lw 2 pt 5 ps 1.5 # --- red
+set style line 2 lc rgb '#000c16' lt 1 lw 2 pt 5 ps 1.5 # --- red
plot 'EA_DK.txt'index 0 using 1:2 t "EA with sparse polynomials" with linespoints ls 1,\
'EA_DK.txt'index 0 using 1:4 t "EA with full polynomials" with linespoints ls 2,\
'EA_DK.txt'index 1 using 1:2 t "DK with sparse polynomials" with linespoints ls 3,\
# First data block (index 0)
#EA sparse full
#Taille_Poly times nb iter times nb iter
+500 0.179359 13 0.232027 16
+1000 0.162205 11 0.309663 21
+3000 0.192672 12 0.313993 15
5000 0.40 17 0.748784 25
50000 3.92 17 25.9504 40
100000 12.45 16 54.5215 30
#DK sparse full
times nb iter times nb iter
+500 0.666998 57 15.7343 1379 3.0441 232
+1000 1.62935 128 31.9188 1822
+3000 5.32778 270 59.6391 1538
5000 3.42 138 622.617 9483
-50000 385.266 823
+50000 385.266 823
100000 447.364 408
150000 1524.08 552
200000 1530.86 360
\label{fig:04}
\end{figure}
+\begin{figure}[htbp]
+\centering
+ \includegraphics[width=0.8\textwidth]{figures/EA_DK1}
+\caption{Execution times of the Durand-Kerner and the Ehrlich-Aberth methods on GPU}
+\label{fig:0}
+\end{figure}
+
Figure~\ref{fig:04} shows the execution times of both methods with
sparse polynomial degrees ranging from 1,000 to 1,000,000. We can see
that the Ehrlich-Aberth algorithm is faster than Durand-Kerner