Direct methods exist only for $n \leq 4$, solved in closed form by G. Cardano
in the mid-16th century. However, N. H. Abel in the early 19th
century showed that polynomials of degree five or more could not
-be solved by direct methods. Since then, mathmathicians have
+be solved by direct methods. Since then, mathematicians have
focussed on numerical (iterative) methods such as the famous
Newton method, the Bernoulli method of the 18th, and the Graeffe method.
\begin{equation}
\label{Log_H1}
-Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}^{i}))+\ln \left(
+Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
\sum_{k\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right).
\end{equation}