]> AND Private Git Repository - kahina_paper1.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
commenter la figure 1 & 2
authorKahina <kahina@kahina-VPCEH3K1E.(none)>
Sun, 25 Oct 2015 04:23:38 +0000 (05:23 +0100)
committerKahina <kahina@kahina-VPCEH3K1E.(none)>
Sun, 25 Oct 2015 04:23:38 +0000 (05:23 +0100)
figures/Compar_EA_algorithm_CPU_GPU.pdf
figures/Compar_EA_algorithm_CPU_GPU.plot
paper.tex

index 81bf3faba5ddf3dc8864dcaa59ed25fabc1058f0..1a70d4a37dec943a7ea50e95098c938555f1be19 100644 (file)
Binary files a/figures/Compar_EA_algorithm_CPU_GPU.pdf and b/figures/Compar_EA_algorithm_CPU_GPU.pdf differ
index a92ec7072eb4fcecf62db546c541fd887f373a95..c7194b93be78fc6b99abbb867180ffe417bdd5cc 100644 (file)
@@ -5,9 +5,9 @@ set size 1,0.5
 set term postscript enhanced portrait "Helvetica" 12
 
 set ylabel "execution times (in s)" 
-set xlabel "polynomial's degrees" 
-#set logscale x
-#set logscale y
+set xlabel "Sparse polynomial's degrees" 
+set logscale x
+set logscale y
 
 #set key on outside left bmargin
 set style line 1 lc rgb '#0060ad' lt 1 lw 2 pt 1 ps 1.5   # --- blue
index 35896aeff5ed485d271336c31dfbbf0bc59ef595..91bdab7af02177a97b9e40a6974566ae2ed4f0e8 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -625,55 +625,24 @@ In this section, we discuss the performance Ehrlish-Aberth method  of root findi
 
 We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution time,the  polynomial size and the number of threads per block performed by sum or each experiment on CPUs and on GPUs.
 
-All experimental results obtained from the simulations are made in double precision data, for a convergence tolerance of the methods set to $10^{-7}$. Since we were more interested in the comparison of the performance behaviors of Ehrlish-Aberth and Durand-Kerner methods on CPUs versus on GPUs.
-
-\subsubsection{Aberth algorithm on CPU and GPU}
-
-%\begin{table}[!ht]
-%      \centering
-%              \begin{tabular} {|R{2cm}|L{2.5cm}|L{2.5cm}|L{1.5cm}|L{1.5cm}|}
-%                      \hline Polynomial's degrees & $T_{exe}$ on CPU & $T_{exe}$ on GPU & CPU iteration & GPU iteration\\
-%                              \hline 5000 & 1.90 & 0.40 & 18 & 17\\
-%                              \hline 10000 & 172.723 & 0.59 & 21 & 24\\
-%                              \hline 20000 & 172.723 & 1.52 & 21 & 25\\
-%                              \hline 30000 & 172.723 & 2.77 & 21 & 33\\
-%                              \hline 50000 & 172.723 & 3.92 & 21 & 18\\
-%                              \hline 500000 & $>$1h & 497.109 &  & 24\\
-%                              \hline 1000000 & $>$1h & 1,524.51& & 24\\
-%                              \hline 
-%              \end{tabular}
-%      \caption{the convergence of Aberth algorithm}
-%      \label{tab:theConvergenceOfAberthAlgorithm}
-%\end{table}
+All experimental results obtained from the simulations are made in double precision data, for a convergence tolerance of the methods set to $10^{-7}$. Since we were more interested in the comparison of the performance behaviors of Ehrlish-Aberth and Durand-Kerner methods on CPUs versus on GPUs. The initialization values of the vector solution of the Ehrlich-Aberth method are given in section 2.2. 
+\subsubsection{The execution time in seconds of Ehrlisch-Aberth algorithm on CPU core vs. on a Tesla GPU}
+
+
 \begin{figure}[H]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU}
-\caption{Aberth algorithm on CPU and GPU}
+\caption{The execution time in seconds of Ehrlisch-Aberth algorithm on CPU core vs. on a Tesla GPU}
 \label{fig:01}
 \end{figure}
 
+Figure 1 %%show a comparison of execution time between the parallel and sequential version of the Ehrlisch-Aberth algorithm with sparse polynomial exceed 100000, 
+We report the execution times of the Ehrlisch-Aberth method implemented on one core of the Quad-Core Xeon E5620 CPU and those of the same methods implemented on one Nvidia Tesla K40c GPU, with sparse polynomial degrees ranging from 100,000 to 1,000,000. We can see that the methods implemented on the GPU are faster than those implemented on the CPU. This is due to the GPU ability to compute the data-parallel functions faster than its CPU counterpart. However, the execution time for the sequential implementation exceed 16,000 s for 450,000 degrees polynomials, in counterpart  the GPU implementation for the same polynomials need only 350 s, more than again, with 1,000,000 polynomials degrees GPU implementation not reach 2,300 s degrees. While CPU implementation need more than 10 hours. We can also notice that the GPU implementation are almost 47 faster then those implementation on the CPU. Furthermore, we verify that the number of iterations is the same. This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
 
-\subsubsection{The impact of the thread's number into the convergence of Aberth  algorithm}
-
-%\begin{table}[!h]
-%      \centering
-%              \begin{tabular} {|R{2.5cm}|L{2.5cm}|L{2.5cm}|}
-%                      \hline Thread's numbers & Execution time &Number of iteration\\
-%                              \hline 1024 & 523 & 27\\
-%                              \hline 512 & 449.426 & 24\\
-%                              \hline 256 & 440.805 & 24\\
-%                              \hline 128 & 456.175 & 22\\
-%                              \hline 64 & 472.862 & 23\\
-%                              \hline 32 & 830.152 & 24\\
-%                              \hline 8 & 2632.78 & 23 \\
-%                              \hline
-%                              \end{tabular}
-%                              \caption{The impact of the thread's number into the convergence of Aberth  algorithm}
-%      \label{tab:Theimpactofthethread'snumberintotheconvergenceofAberthalgorithm}
-%              
-%\end{table}
 
+\subsubsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
+It is also interesting to see the influence of the number of threads per block on the execution time. For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40c GPU is 1024, so we varied the number of threads per block from 8 to 1024.we took into account the execution time for both sparse and full polynomials of size 50000 and 500000 degrees.
 
 \begin{figure}[H]
 \centering
@@ -682,24 +651,33 @@ All experimental results obtained from the simulations are made in double precis
 \label{fig:01}
 \end{figure}
 
+The figure 2 show that, the best execution time for both sparse and full polynomial are given while the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the number of threads per block is 64, Whereas, the large polynomials is 256. However,In the following experiments we specify that the number of thread by block is 256.
+
 \subsubsection{The impact of exp-log solution to compute very high degrees of  polynomial}
+
 \begin{figure}[H]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/log_exp}
 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
 \label{fig:01}
 \end{figure}
-
 \subsubsection{A comparative study between Aberth and Durand-kerner algorithm}
 
 
 \begin{figure}[H]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/EA_DK}
-\caption{Ehrlisch-Aberth and Durand-Kerner algorithm on GPU}
+\caption{The execution time of Ehrlisch-Aberth versus Durand-Kerner algorithm}
 \label{fig:01}
 \end{figure}
 
+\begin{figure}[H]
+\centering
+  \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
+\caption{The iteration number of Ehrlisch-Aberth versus Durand-Kerner algorithm}
+\label{fig:01}
+\end{figure}
 
 \bibliography{mybibfile}