]> AND Private Git Repository - kahina_paper1.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
MAJ de la figure 1
authorKahina <kahina@kahina-VPCEH3K1E.(none)>
Wed, 28 Oct 2015 15:53:23 +0000 (16:53 +0100)
committerKahina <kahina@kahina-VPCEH3K1E.(none)>
Wed, 28 Oct 2015 15:53:23 +0000 (16:53 +0100)
paper.tex

index d9d72c31c05b570457dfed406a93e3964c5efa97..0ff4207f68d8e410d2fe7ebb99f16ae008e07966 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -645,25 +645,30 @@ In this section, we discuss the performance Ehrlich-Aberth method  of root findi
 We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution time, the  polynomial size and the number of threads per block performed by sum or each experiment on CPUs and on GPUs.
 
 All experimental results obtained from the simulations are made in double precision data, for a convergence tolerance of the methods set to $10^{-7}$. Since we were more interested in the comparison of the performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on CPUs versus on GPUs. The initialization values of the vector solution of the Ehrlich-Aberth method are given in section 2.2. 
-\subsubsection{The execution time in seconds of Ehrlich-Aberth algorithm on CPU core vs. on a Tesla GPU}
+\subsubsection{The execution time in seconds of Ehrlich-Aberth algorithm on CPU OpenMP (1 core, 4 cores) vs. on a Tesla GPU}
 
 
+%\begin{figure}[H]
+%\centering
+ % \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU}
+%\caption{The execution time in seconds of Ehrlich-Aberth algorithm on CPU core vs. on a Tesla GPU}
+%\label{fig:01}
+%\end{figure}
+
 \begin{figure}[H]
 \centering
-  \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU}
-\caption{The execution time in seconds of Ehrlich-Aberth algorithm on CPU core vs. on a Tesla GPU}
+  \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
+\caption{The execution time in seconds of Ehrlich-Aberth algorithm on CPU OpenMP (1 core, 4 cores) vs. on a Tesla GPU}
 \label{fig:01}
 \end{figure}
-
 Figure 1 %%show a comparison of execution time between the parallel and sequential version of the Ehrlich-Aberth algorithm with sparse polynomial exceed 100000, 
-We report the execution times of the Ehrlich-Aberth method implemented on one core of the Quad-Core Xeon E5620 CPU and those of the same methods implemented on one Nvidia Tesla K40c GPU, with sparse polynomial degrees ranging from 100,000 to 1,000,000. We can see that the method implemented on the GPU are faster than those implemented on the CPU. This is due to the GPU ability to compute the data-parallel functions faster than its CPU counterpart. However, the execution time for the CPU implementation exceed 5,000 s for 250,000 degrees polynomials, in counterpart  the GPU implementation for the same polynomials not reach 100 s, more than again, % with 1,000,000 polynomials degrees GPU implementation not reach 2,300 s degrees. While CPU implementation need more than 10 hours.
-with an execution time under to 2500 s CPU implementation can resolve polynomials degrees of only 200,000 s, whereas GPU implementation can resolve polynomials more than 1,000,000 degrees. We can also notice that the GPU implementation are almost 47 faster then those implementation on the CPU. Furthermore, we verify that the number of iterations is the same. This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
+We report respectively the execution time of the Ehrlich-Aberth method implemented initially on one core of the Quad-Core Xeon E5620 CPU than on four cores of the same machine with \textit{OpenMP} platform and the execution time of the same method implemented on one Nvidia Tesla K40c GPU, with sparse polynomial degrees ranging from 100,000 to 1,000,000. We can see that the method implemented on the GPU are faster than those implemented on the CPU (4 cores). This is due to the GPU ability to compute the data-parallel functions faster than its CPU counterpart. However, the execution time for the CPU(4 cores) implementation exceed 5,000 s for 250,000 degrees polynomials, in counterpart  the GPU implementation for the same polynomials not reach 100 s, more than again, with an execution time under to 2500 s CPU (4 cores) implementation can resolve polynomials degrees of only 200,000, whereas GPU implementation can resolve polynomials more than 1,000,000 degrees. We can also notice that the GPU implementation are almost 47 faster then those implementation on the CPU(4 cores). However the CPU(4 cores) implementation are almost 4 faster then his implementation on CPU (1 core). Furthermore, we verify that the number of iterations and the convergence precision is the same for the both CPU and GPU implementation. %This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
  
-
+ %We notice that the convergence precision is a round $10^{-7}$ for the both implementation on CPU and GPU. Consequently, we can conclude that Ehrlich-Aberth on GPU are faster and accurately then CPU implementation.
 
 \subsubsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
 To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel) and to optimize the use of the various memoirs GPU. In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. 
-For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40c GPU is 1024, so we varied the number of threads per block from 8 to 1024. We took into account the execution time for both sparse and full polynomials of size 50000 and 500000 degrees.
+For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40 GPU is 1024, so we varied the number of threads per block from 8 to 1024. We took into account the execution time for both sparse and full of 10 different polynomials of size 50000 and 10 different polynomials of size 500000 degrees.
 
 \begin{figure}[H]
 \centering
@@ -718,14 +723,9 @@ This figure show the execution time of the both algorithm EA and DK with sparse
 \label{fig:01}
 \end{figure}
 
-\subsubsection{The execution time of Ehrlich-Aberth algorithm on OpenMP(1 core, 4 cores) vs. on a Tesla GPU}
+%\subsubsection{The execution time of Ehrlich-Aberth algorithm on OpenMP(1 core, 4 cores) vs. on a Tesla GPU}
+
 
-\begin{figure}[H]
-\centering
-  \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
-\caption{The execution time in seconds of Ehrlich-Aberth algorithm on OpenMP(1 core, 4 cores) vs. on a Tesla GPU}
-\label{fig:01}
-\end{figure}