et quelques remarques faites par SIDER
50000 385.266 823 9.27 19
100000 447.364 408 7.73 15
150000 1524.08 552 8.64 21
50000 385.266 823 9.27 19
100000 447.364 408 7.73 15
150000 1524.08 552 8.64 21
-200000 3.92233 17 7.84 16
+200000 1530.86 360 7.84 16
250000 1958.24 348 11.33 18
250000 1958.24 348 11.33 18
-300000 12.3981 21 20.47 21
-350000 23.813 21 35.07 26
+300000 2800.53 319 20.47 21
+350000 4071.47 378 35.07 26
\sum_{k\neq j}^{n}\frac{1}{z_{k}-z_{j}}\right)\right).
\end{equation}
\sum_{k\neq j}^{n}\frac{1}{z_{k}-z_{j}}\right)\right).
\end{equation}
-This solution is applied when it is necessary ??? When ??? (SIDER)
+This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated as:
+
+$$R = \exp( \log(DBL\_MAX) / (2*n) )$$ where $DBL\_MAX$ stands for the maximum representable double value.
\section{The implementation of simultaneous methods in a parallel computer}
\label{secStateofArt}
\section{The implementation of simultaneous methods in a parallel computer}
\label{secStateofArt}
Moreover, they have fast rate of convergence (quadratic for the
Durand-Kerner and cubic for the Ehrlisch-Aberth). Various parallel
algorithms reported for these methods can be found
Moreover, they have fast rate of convergence (quadratic for the
Durand-Kerner and cubic for the Ehrlisch-Aberth). Various parallel
algorithms reported for these methods can be found
-in~\cite{Cosnard90, Freeman89,Freemanall90,,Jana99,Janall99}.
+in~\cite{Cosnard90, Freeman89,Freemanall90,Jana99,Janall99}.
Freeman and Bane~\cite{Freemanall90} presented two parallel
algorithms on a local memory MIMD computer with the compute-to
communication time ratio O(n). However, their algorithms require
Freeman and Bane~\cite{Freemanall90} presented two parallel
algorithms on a local memory MIMD computer with the compute-to
communication time ratio O(n). However, their algorithms require
\section {A CUDA parallel Ehrlisch-Aberth method}
\section {A CUDA parallel Ehrlisch-Aberth method}
+In the following, we describe the parallel implementation of Ehrlisch-Aberth method on GPU
+for solving high degree polynomials. First, the hardware and software of the GPUs are presented. Then, a CUDA parallel Ehrlisch-Aberth method are presented.
\subsection{Background on the GPU architecture}
A GPU is viewed as an accelerator for the data-parallel and
\subsection{Background on the GPU architecture}
A GPU is viewed as an accelerator for the data-parallel and