--- /dev/null
+# Analysis description
+set encoding iso_8859_1
+set terminal x11
+set size 1,0.5
+set term postscript enhanced portrait "Helvetica" 12
+
+set ylabel "execution times (in s)"
+set xlabel "polynomial's degree"
+set logscale x
+set logscale y
+
+#set key on outside left bmargin
+set style line 1 lc rgb '#0060ad' lt 1 lw 2 pt 1 ps 1.5 # --- blue
+set style line 3 lc rgb '#dd181f' lt 1 lw 2 pt 1 ps 1.5 # --- red
+
+set style line 2 lc rgb '#dd181f' lt 1 lw 2 pt 5 ps 1.5 # --- red
+plot 'EA_DK.txt'index 0 using 1:2 t "EA with sparse polynomials" with linespoints ls 1,\
+ 'EA_DK.txt'index 1 using 1:2 t "DK with sparse polynomials" with linespoints ls 3
+
+
+
--- /dev/null
+# First data block (index 0)
+#EA sparse full
+#Taille_Poly times nb iter times nb iter
+5000 0.40 17
+50000 3.92 17 1407.24 29
+100000 12.45 16 1459.35 31
+150000 28.67 17 754.24 27
+200000 40 23 718.623 27
+250000 93.76 20 715.554 27
+300000 138.94 21 1089.61 27
+350000 159.65 18 1746.53 22
+400000 258.91 22 3112 20
+450000 339.47 23
+500000 419.78 23
+550000 415.94 19
+600000 549.70 21
+650000 612.12 20
+700000 864.21 24
+750000 940.87 23
+800000 1247.16 26
+850000 1702.12 32
+900000 1803.17 30
+950000 2280.07 34
+1000000 2400.51 30
+
+# Second data block (index 1)
+
+#DK sparse full
+ times nb iter times nb iter
+5000 3.42 138 8.61 16
+50000 385.266 823 9.27 19
+100000 447.364 408 7.73 15
+150000 1524.08 552 8.64 21
+200000 3.92233 17 7.84 16
+250000 1958.24 348 11.33 18
+300000 12.3981 21 20.47 21
+350000 23.813 21 35.07 26
+400000
+450000
+500000
+550000
+600000
+650000
+700000
+750000
+800000
+850000
+900000
+950000
+1000000
%%\usepackage[utf8]{inputenc}
%%\usepackage[T1]{fontenc}
%%\usepackage[french]{babel}
+\usepackage{float}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage[ruled,vlined]{algorithm2e}
%\usepackage[french,boxed,linesnumbered]{algorithm2e}
\begin{equation}
\forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
\end{equation}
-
This form makes it possible to associate roots having two
different modules and thus to work on a polynomial constitute
of four non zero terms.
% \label{tab:theConvergenceOfAberthAlgorithm}
%\end{table}
-\begin{figure}[htbp]
+\begin{figure}[H]
\centering
\includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU}
\caption{Aberth algorithm on CPU and GPU}
%\end{table}
-\begin{figure}[htbp]
+\begin{figure}[H]
\centering
\includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
\caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
\label{fig:01}
\end{figure}
-\begin{figure}[htbp]
+\subsubsection{The impact of exp-log solution to compute very high degrees of polynomial}
+\begin{figure}[H]
\centering
\includegraphics[width=0.8\textwidth]{figures/log_exp}
\caption{The impact of exp-log solution to compute very high degrees of polynomial.}
\end{figure}
\subsubsection{A comparative study between Aberth and Durand-kerner algorithm}
-\begin{table}[htbp]
- \centering
- \begin{tabular} {|R{2cm}|L{2.5cm}|L{2.5cm}|L{1.5cm}|L{1.5cm}|}
- \hline Polynomial's degrees & Aberth $T_{exe}$ & D-Kerner $T_{exe}$ & Aberth iteration & D-Kerner iteration\\
- \hline 5000 & 0.40 & 3.42 & 17 & 138 \\
- \hline 50000 & 3.92 & 385.266 & 17 & 823\\
- \hline 500000 & 497.109 & 4677.36 & 24 & 214\\
- \hline
- \end{tabular}
- \caption{Aberth algorithm compare to Durand-Kerner algorithm}
- \label{tab:AberthAlgorithCompareToDurandKernerAlgorithm}
-\end{table}
+
+
+\begin{figure}[H]
+\centering
+ \includegraphics[width=0.8\textwidth]{figures/EA_DK}
+\caption{Ehrlisch-Aberth and Durand-Kerner algorithm on GPU}
+\label{fig:01}
+\end{figure}
\bibliography{mybibfile}