set style line 2 lc rgb '#dd181f' lt 1 lw 2 pt 5 ps 1.5 # --- red
plot'log_exp.txt' index 0 using 1:4 t "No log exp" with linespoints ls 2,\
- 'log_exp.txt' index 0 using 1:2 t "with log exp" with linespoints ls 1,\
- 'log_exp.txt'index 1 using 1:2 t "with_log_exp" with linespoints ls 1
+ 'log_exp.txt' index 0 using 1:2 t "with log exp" with linespoints ls 1,\
+ 'log_exp.txt'index 1 using 1:2 t "with_log_exp" with linespoints ls 1
# Second index block (index 1)
#EA With_log_exp
-#Taille_Poly times nb iter
-4500 0.946749 23
+#Taille_Poly times nb iter
+4000 0.506183 23
+#4500 0.946749 23
5000 0.769945 33
6000 1.38447 48
10000 2.15026 32
set term postscript enhanced portrait "Helvetica" 12
set ylabel "execution times (in s)"
-set xlabel "Soarse polynomial's degrees"
+set xlabel "Sparse polynomial's degrees"
set logscale x
set logscale y
plot'log_exp_Sparse.txt' index 0 using 1:4 t "No log exp" with linespoints ls 2,\
'log_exp_Sparse.txt' index 0 using 1:2 t "with log exp" with linespoints ls 1,\
- 'log_exp_Sparse.txt'index 1 using 1:2 t "with_log_exp" with linespoints ls 1
\ No newline at end of file
+ 'log_exp_Sparse.txt' index 1 using 1:2 t "with_log_exp" with linespoints ls 1
\ No newline at end of file
150000 18.6746 11 16.3098 16
# Second index block (index 1)
-#Taille_Poly times nb iter
+#Taille_Poly times nb iter
+150000 18.6746 11
200000 67.6199 22
300000 132.27 20
350000 159.65 18
in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying log.exp solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2}and allows to solve a very large polynomials degrees .
+\begin{figure}[H]
+\centering
+ \includegraphics[width=0.8\textwidth]{figures/log_exp_Sparse}
+\caption{The impact of exp-log solution to compute very high degrees of polynomial.}
+\label{fig:01}
+\end{figure}
%we report the performances of the exp.log for the Ehrlich-Aberth algorithm for solving very high degree of polynomial.