]> AND Private Git Repository - kahina_paper2.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
1bda930ea574d8ec55071568270f05aa9eabdb65
[kahina_paper2.git] / paper.tex
1 \documentclass[conference]{IEEEtran}
2 \usepackage[ruled,vlined]{algorithm2e}
3 \hyphenation{op-tical net-works semi-conduc-tor}
4 \bibliographystyle{IEEEtran}
5
6 \usepackage{amsfonts}
7 \usepackage[utf8]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage[textsize=footnotesize]{todonotes}
10 \usepackage{amsmath}
11 \usepackage{amssymb}
12
13 \newcommand{\LZK}[2][inline]{%
14   \todo[color=red!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
15 \newcommand{\RC}[2][inline]{%
16   \todo[color=blue!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
17 \newcommand{\KG}[2][inline]{%
18   \todo[color=green!10,#1]{\sffamily\textbf{KG:} #2}\xspace}
19 \newcommand{\AS}[2][inline]{%
20   \todo[color=orange!10,#1]{\sffamily\textbf{AS:} #2}\xspace}
21
22
23 \begin{document}
24
25 \title{Two parallel implementations of Ehrlich-Aberth algorithm for root-finding of polynomials on multiple GPUs with OpenMP and MPI}
26
27 \author{\IEEEauthorblockN{Kahina Ghidouche, Abderrahmane Sider }
28   \IEEEauthorblockA{Laboratoire LIMED\\
29     Faculté des sciences exactes\\
30     Université de Bejaia, 06000, Algeria\\
31 Email: \{kahina.ghidouche,ar.sider\}@univ-bejaia.dz}
32 \and
33 \IEEEauthorblockN{Lilia Ziane Khodja, Raphaël Couturier}
34 \IEEEauthorblockA{FEMTO-ST Institute\\
35   University of   Bourgogne Franche-Comte, France\\
36 Email: zianekhodja.lilia@gmail.com\\ raphael.couturier@univ-fcomte.fr}}
37
38
39 \maketitle
40
41 \begin{abstract}
42 Finding the roots of polynomials is a very important part of solving
43 real-life problems but the higher the degree of the polynomials is,
44 the less easy it becomes. In this paper, we present two different
45 parallel algorithms of the Ehrlich-Aberth method to find roots of
46 sparse and fully defined polynomials of high degrees. Both algorithms
47 are based on CUDA technology to be implemented on multi-GPU computing
48 platforms but each use different parallel paradigms: OpenMP or
49 MPI. The experiments show a quasi-linear speedup by using up-to 4 GPU
50 devices compared to 1 GPU to find the roots of polynomials of degree up-to
51 1.4 million. Moreover, other experiments show it is possible to find the
52 roots of polynomials of degree up-to 5 million.
53 \end{abstract}
54
55 \begin{IEEEkeywords}
56   root finding method, Ehrlich-Aberth method, GPU, MPI, OpenMP
57 \end{IEEEkeywords}
58
59 \IEEEpeerreviewmaketitle
60
61
62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64 \section{Introduction}
65
66
67 Finding the roots of polynomials of very high degrees arises in many complex problems of various domains such as algebra, biology or physics. A polynomial $p(x)$ in $\mathbb{C}$ in one variable $x$ is an algebraic expression in $x$ of the form:
68 \begin{equation}
69 p(x) = \displaystyle\sum^n_{i=0}{\alpha_ix^i},\alpha_n\neq 0, 
70 \end{equation}
71 where $\{\alpha_i\}_{0\leq i\leq n}$ are complex coefficients and $n$ is a high integer number. If $\alpha_n\neq0$ then $n$ is called the degree of the polynomial. The root-finding problem consists in finding the $n$ different values of the unknown variable $x$ for which $p(x)=0$. Such values are called roots of $p(x)$. Let $\{z_i\}_{1\leq i\leq n}$ be the roots of polynomial $p(x)$, then $p(x)$ can be written as :
72 \begin{equation}
73  p(x)=\alpha_n\displaystyle\prod_{i=1}^n(x-z_i), \alpha_n\neq 0.
74 \end{equation}
75
76 Most of the numerical methods that deal with the polynomial
77 root-finding problems are simultaneous methods, \textit{i.e.} the
78 iterative methods to find simultaneous approximations of the $n$
79 polynomial roots. These methods start from the initial approximation
80 of all $n$ polynomial roots and give a sequence of approximations that
81 converge to the roots of the polynomial. Two examples of well-known
82 simultaneous methods for root-finding problem of polynomials are
83 the Durand-Kerner method~\cite{Durand60,Kerner66} and the Ehrlich-Aberth method~\cite{Ehrlich67,Aberth73}.
84
85
86 The convergence time of simultaneous methods drastically increases
87 with the increasing of the polynomial's degree. The great challenge
88 with simultaneous methods is to parallelize them and to improve their
89 convergence. Many authors have proposed parallel simultaneous
90 methods~\cite{Freeman89,Loizou83,Freemanall90,bini96,cs01:nj,Couturier02},
91 using several paradigms of parallelization (synchronous or
92 asynchronous computations, mechanism of shared or distributed memory,
93 etc). However, so far until now, only polynomials not exceeding
94 degrees of less than 100,000 have been solved.
95
96 %The main problem of the simultaneous methods is that the necessary
97 %time needed for the convergence increases with the increasing of the
98 %polynomial's degree. Many authors have treated the problem of
99 %implementing  simultaneous methods in
100 %parallel. Freeman~\cite{Freeman89} implemented and compared
101 %Durand-Kerner method, Ehrlich-Aberth method and another method of the
102 %fourth order of convergence proposed by Farmer and
103 %Loizou~\cite{Loizou83} on a 8-processor linear chain, for polynomials
104 %of degree up-to 8. The method of Farmer and Loizou~\cite{Loizou83}
105 %often diverges, but the first two methods (Durand-Kerner and
106 %Ehrlich-Aberth methods) have a speed-up equals to 5.5. Later, Freeman
107 %and Bane~\cite{Freemanall90} considered asynchronous algorithms in
108 %which each processor continues to update its approximations even
109 %though the latest values of other approximations $z^{k}_{i}$ have not
110 %been received from the other processors, in contrast with synchronous
111 %algorithms where it would wait those values before making a new
112 %iteration. Couturier and al.~\cite{cs01:nj} proposed two methods
113 %of parallelization for a shared memory architecture with OpenMP and
114 %for a distributed memory one with MPI. They are able to compute the
115 %roots of sparse polynomials of degree 10,000. The authors showed an interesting
116 %speedup that is 20 times as fast as the sequential implementation. 
117
118 With the recent advent of the Compute Unified Device Architecture
119 (CUDA)~\cite{CUDA15}, a parallel computing platform and a programming
120 model invented by NVIDIA had revived parallel programming interest for
121 this problem. Indeed, the computing power of GPUs (Graphics Processing
122 Units) has exceeded that of traditional  CPUs processors, which makes it very appealing to the research community to investigate new parallel implementations for a whole set of scientific problems in the reasonable hope to solve bigger instances of well known computationally demanding issues such as the one beforehand. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by the GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche et al.~\cite{Kahinall14} proposed an implementation of the Durand-Kerner method on a single GPU. Their main results showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000. 
123
124 In this paper we propose the parallelization of the Ehrlich-Aberth (EA) method which has a cubic convergence rate which is much better than the quadratic rate of the Durand-Kerner method which has already been investigated in \cite{Kahinall14}. In the other hand,  EA is suitable to be implemented in parallel computers according to the data-parallel paradigm. In this model, computing elements carry computations on the data they are assigned and communicate with other computing elements in order to get fresh data or to synchronise. Classically, two parallel programming paradigms OpenMP and MPI are used to code such solutions. But in our case, computing elements are CUDA multi-GPU platforms. This architectural setting poses new programming challenges but offers also new opportunities to efficiently solve huge problems, otherwise considered intractable until recently. To the best of our knowledge, our CUDA-MPI and CUDA-OpenMP codes are the first implementations of EA method with multiple GPUs for finding roots of polynomials. Our major contributions include:
125  \begin{itemize}
126
127 \item The parallel implementation of EA algorithm on a multi-GPU platform with a shared memory using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory.
128 \item The parallel implementation of EA algorithm on a
129   multi-GPU platform with a distributed memory using MPI API, such
130   that each GPU is attached and managed by a MPI process. The GPUs
131   exchange their data by message-passing communications. This approach is more used on clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.
132 \item
133   Our method is efficient to compute the roots of sparse and full
134   polynomials of degree up to 5 million.
135  \end{itemize}
136
137
138 The paper is organized as follows. In Section~\ref{sec2} we present three different parallel programming models OpenMP, MPI and CUDA. In Section~\ref{sec3} we present the implementation of the Ehrlich-Aberth algorithm on a single GPU. In Section~\ref{sec4} we present the parallel implementations of the Ehrlich-Aberth algorithm on multiple GPUs using the OpenMP and MPI approaches. In section~\ref{sec5} we present our experiments and discuss them. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic. 
139
140
141 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
142 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
143  
144 \section{Parallel programming models}
145 \label{sec2}
146 Our objective consists in implementing a root-finding algorithm of
147 polynomials on multiple GPUs. To this end, it is essential to know how
148 to manage the CUDA contexts of different GPUs. A direct method to control the various GPUs is to use as many threads or processes as GPU devices. We investigate two parallel paradigms: OpenMP and MPI. In this case, the GPU indices are defined according to the identifiers of the OpenMP threads or the ranks of the MPI processes. In this section we present the parallel programming models: OpenMP, MPI and CUDA.
149  
150 \subsection{OpenMP}
151 OpenMP (Open Multi-processing) is an application programming interface
152 for parallel programming~\cite{openmp13}. It is a portable approach
153 based on the multithreading designed for shared memory computers,
154 where a master thread forks a number of slave threads which execute
155 blocks of code in parallel. An OpenMP program alternates sequential
156 regions and parallel regions of code, where the sequential regions are
157 executed by the master thread and the parallel ones may be executed by
158 multiple threads. During the execution of an OpenMP program the
159 threads communicate their data (read and modified) in the shared
160 memory. One advantage of OpenMP is the global view of the memory
161 address space of an application. This allows  a relatively fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of performances in large scale-applications. 
162
163 \subsection{MPI} 
164 MPI (Message Passing Interface) is a portable message passing style of
165 the parallel programming designed specifically for distributed memory
166 architectures~\cite{Peter96}. In most MPI implementations, a
167 computation contains a fixed set of processes created at the
168 initialization of the program in such a way that one process is
169 created per processor. The processes synchronize their computations
170 and communicate by sending/receiving messages to/from other
171 processes. In this case, the data are explicitly exchanged by message
172 passing while the data exchanges are implicit in a multithread
173 programming model like OpenMP and Pthreads. However in the MPI
174 programming model, the processes may either execute different programs
175 referred to as multiple program multiple data (MPMD) or every process
176 executes the same program (SPMD). The MPI approach is one of the most used HPC programming model to solve large scale and complex applications.
177  
178 \subsection{CUDA}
179 CUDA (Compute Unified Device Architecture) is a parallel computing
180 architecture developed by NVIDIA~\cite{CUDA15} for GPUs. It provides a
181 high level GPGPU-based programming model to program GPUs for general
182 purpose computations. The GPU is viewed as an accelerator such that
183 data-parallel operations of a CUDA program running on a CPU are
184 off-loaded onto GPU and executed by this latter. The data-parallel
185 operations executed by GPUs are called kernels. The same kernel is
186 executed in parallel by a large number of threads organized in grids
187 of thread blocks, such that each GPU multiprocessor executes one or
188 more thread blocks in SIMD fashion (Single Instruction, Multiple Data)
189 and in turn each core of the multiprocessor executes one or more
190 threads within a block. Threads within a block can cooperate by
191 sharing data through a fast shared memory and coordinate their
192 execution through synchronization points. In contrast, within a grid
193 of thread blocks, there is no synchronization at all between
194 blocks. The GPU only works on data filled in the global memory and the
195 final results of the kernel executions must be transferred out of the
196 GPU. In the GPU, the global memory has lower bandwidth than the shared
197 memory associated to each multiprocessor. Thus with CUDA programming,
198 it is necessary to design carefully the arrangement of the thread
199 blocks in order to ensure a low latency and a proper use of the shared
200 memory. As for the global memory accesses, it should also be minimized.
201
202
203 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
204 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
205
206 \section{The Ehrlich-Aberth algorithm on a GPU}
207 \label{sec3}
208
209 \subsection{The Ehrlich-Aberth method}
210
211 The Ehrlich-Aberth method is a simultaneous method~\cite{Aberth73} using the following iteration
212 \begin{equation}
213 \label{Eq:EA1}
214 z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
215 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,\ldots,n
216 \end{equation}
217
218 This method contains 4 steps. The first step consists in the
219 initializing the polynomial. The second step initializes the solution
220 vector $Z$ using the Guggenheimer method~\cite{Gugg86} to ensure that
221 initial roots are all distinct from each other. In step 3, the
222 iterative function based on the Newton's method~\cite{newt70} and
223 Weiestrass operator~\cite{Weierstrass03} is applied. In our case, the
224 Ehrlich-Aberth is applied as in~(\ref{Eq:EA1}). Iterations of the
225 EA method will converge to the roots of the considered
226 polynomial. In order to stop the iterative function, a stop condition
227 is applied, this is the 4th step. This condition checks that all the
228 root modules are lower than a fixed value $\epsilon$.
229
230 \begin{equation}
231 \label{eq:Aberth-Conv-Cond}
232 \forall i\in[1,n],~\vert\frac{z_i^k-z_i^{k-1}}{z_i^k}\vert<\epsilon
233 \end{equation}
234
235 \subsection{Improving Ehrlich-Aberth method}
236 With high degree polynomials, the EA method suffers from floating point overflows due to the mantissa of floating points representations. This induces errors in the computation of $p(z)$ when $z$ is large.
237  
238 In order to solve this problem, we propose to modify the iterative
239 function by using the logarithm and the exponential of a complex and
240 we propose a new version of the EA method.  This method
241 allows us to exceed the computation of the polynomials of degree
242 100,000 and to reach a degree up to more than 1,000,000. The reformulation of the iteration~(\ref{Eq:EA1}) of the EA method with exponential and logarithm operators is defined as follows, for $i=1,\dots,n$:
243
244 \begin{equation}
245 \label{Log_H2}
246 z^{k+1}_i = z_i^k - \exp(\ln(p(z_i^k)) - \ln(p'(z^k_i)) - \ln(1-Q(z^k_i))),
247 \end{equation}
248
249 where:
250
251 \begin{equation}
252 \label{Log_H1}
253 Q(z^k_i) = \exp(\ln(p(z^k_i)) - \ln(p'(z^k_i)) + \ln(\sum_{i\neq j}^n\frac{1}{z^k_i-z^k_j})).
254 \end{equation}
255
256 Using the logarithm  and the exponential operators, we can replace any
257 multiplications and divisions with additions and
258 subtractions. Consequently, computations manipulate lower values in
259 absolute values~\cite{Karimall98}. In practice, the  exponential and
260 logarithm mode is used when a root is outisde the circle unit represented by the radius $R$ evaluated in C language with:
261 \begin{equation}
262 \label{R.EL}
263 R = exp(log(DBL\_MAX)/(2*n) );
264 \end{equation}
265 where \verb=DBL_MAX= stands for the maximum representable
266 \verb=double= value and $n$ is the degree of the polynimal.
267
268
269 \subsection{The Ehrlich-Aberth parallel implementation on CUDA}
270 The code is organized as kernels which are parts of codes that are run
271 on GPU devices. Algorithm~\ref{alg1-cuda} describes the CUDA
272 implementation of the Ehrlich-Aberth on a GPU.  This algorithms starts
273 by initializing the polynomial and its derivative (line 1). The
274 initialization of the roots is performed (line 2). Data are transferred
275 from the CPU to the GPU (after the allocation of the required memory on
276 the GPU) (line 3). Then at each iteration, if the error is greater
277 than the threshold, the following operations are performed. The previous
278 roots are saved using a kernel (line 5). Then the new roots with the
279 new iterations are computed using the EA method with a Gauss-Seidel
280 iteration mode in order to use the latest updated roots (line
281 6). This improves the convergence. This kernel is, in practice, very
282 long since it performs all the operations with complex numbers with
283 the normal mode of the EA method but also with the
284 logarithm-exponential one. Then the error is computed with a final
285 kernel (line 7). Finally when the EA method has converged, the roots
286 are transferred from the GPU to the CPU.
287
288 \begin{algorithm}[htpb]
289 \label{alg1-cuda}
290 \LinesNumbered
291 \SetAlgoNoLine
292 \caption{Finding roots of polynomials with the Ehrlich-Aberth method on a GPU}
293 \KwIn{ $\epsilon$ (tolerance threshold)}
294 \KwOut{$Z$ (solution vector of roots)}
295 Initialize the polynomial $P$ and its derivative $P'$\;
296 Set the initial values of vector $Z$\;
297 Copy $P$, $P'$ and $Z$ from CPU to GPU\;
298 \While{$error > \epsilon$}{
299   $Z^{prev}$ = KernelSave($Z$)\;
300   $Z$ = KernelUpdate($P,P',Z$)\;
301   $error$ = KernelComputeError($Z,Z^{prev}$)\;
302 }
303 Copy $Z$ from GPU to CPU\;
304 \end{algorithm}
305
306
307 The development of this code is a rather long task, as the development
308 of corresponding kernels with CUDA is longer than on a CPU host. This
309 comes in particular from the fact that it is very difficult to debug
310 CUDA running threads like threads on a CPU host.  In the following
311 section the GPU parallel implementation of the Ehrlich-Aberth method with
312 OpenMP and MPI is presented.
313
314
315
316
317  
318 \section{The Ehrlich-Aberth algorithm on multiple GPUs}
319 \label{sec4}
320 \subsection{An OpenMP-CUDA approach}
321 Our OpenMP-CUDA implementation of EA algorithm is based on the hybrid
322 OpenMP and CUDA programming model. This algorithm is presented in
323 Algorithm~\ref{alg2-cuda-openmp}.  All the data are shared with OpenMP
324 among all the OpenMP threads. The shared data are the solution vector
325 $Z$, the polynomial to solve $P$, its derivative $P'$, and the error
326 vector $error$. The number of OpenMP threads is equal to the number of
327 GPUs, each OpenMP thread binds to one GPU, and it controls a part of
328 the shared memory. More precisely each OpenMP thread will be
329 responsible for updating its own part of the vector $Z$. This part is
330 called $Z_{loc}$ in the following. Then all GPUs will have a grid of
331 computation organized according to the device performance and the size
332 of data on which it runs the computation kernels.
333
334 To compute one iteration of the EA method each GPU performs the
335 followings steps. First, roots are shared with OpenMP and the
336 computation of the local size for each GPU is performed (line 4). Each
337 thread starts by copying all the previous roots inside its GPU (line
338 5). At each iteration, the following operations are performed. First
339 the vector $Z$ is transferred from the CPU to the GPU (line 7).  Each
340 GPU copies the previous roots (line 8) and it computes an iteration of
341 the EA method on its own roots (line 9).  For that all the other roots
342 are used. The local error is computed on the new roots (line 10) and
343 the maximum of the local errors is computed on all OpenMP threads (line 11). At
344 the end of an iteration, the updated roots are copied from the GPU to
345 the CPU (line 12) and each CPU directly updates its own roots in the shared
346 memory arrays containing all the roots.
347
348
349
350 \begin{algorithm}[htpb]
351 \label{alg2-cuda-openmp}
352 \LinesNumbered
353 \SetAlgoNoLine
354 \caption{Finding roots of polynomials with the Ehrlich-Aberth method on multiple GPUs using OpenMP}
355 \KwIn{ $\epsilon$ (tolerance threshold)}
356 \KwOut{$Z$ (solution vector of roots)}
357 Initialize the polynomial $P$ and its derivative $P'$\;
358 Set the initial values of vector $Z$\;
359 Start of a parallel part with OpenMP ($Z$, $error$, $P$, $P'$ are shared variables)\;
360 Determine the local part of the OpenMP thread\;
361 Copy $P$, $P'$ from CPU to GPU\;
362 \While{$error > \epsilon$}{
363   Copy $Z$ from CPU to GPU\;
364   $Z^{prev}_{loc}$ = KernelSave($Z_{loc}$)\;
365   $Z_{loc}$ = KernelUpdate($P,P',Z$)\;
366   $error_{loc}$ = KernelComputeError($Z_{loc},Z^{prev}_{loc}$)\;
367   $error = max(error_{loc})$\;
368   Copy $Z_{loc}$ from GPU to $Z$ in CPU\;
369 }
370 \end{algorithm}
371
372
373
374
375
376 \subsection{A MPI-CUDA approach}
377 Our parallel implementation of EA to find the roots of polynomials using a
378 CUDA-MPI approach follows a similar approach to the one used in
379 CUDA-OpenMP. Each processor is responsible for computing its own part of
380 roots using all the roots computed by other processors at the previous
381 iteration. The difference between both approaches lies in the way
382 processors communicate and exchange data. With MPI, processors need to
383 send and receive data explicitly. So in
384 Algorithm~\ref{alg2-cuda-mpi}, after the initialization phase all the
385 processors have the same $Z$ vector. Then they need to compute the
386 parameters used by the $MPI\_AlltoAll$ routines (line 4). In practice,
387 each processor needs to compute its offset and its local
388 size. Processors need to allocate memory on their GPU and need to copy
389 their data on the GPU (line 5). At the beginning of each iteration, a
390 processor starts by transferring the whole vector $Z$ from the CPU to the
391 GPU (line 7). Only the local part of $Z^{prev}$ is saved (line
392 8). After that, a processor is able to compute an updated version of
393 its own roots (line 9) with the EA method. The local error is computed
394 (line 10) and the global error is also computed using $MPI\_Reduce$ (line 11). Then
395 the local roots are transferred from the GPU memory to the CPU memory
396 (line 12) before being exchanged between all processors (line 13) in
397 order to give to all processors the last version of the roots (with
398 the $MPI\_AlltoAll$ routine). If the convergence is not satisfied, a
399 new iteration is executed.
400
401 \begin{algorithm}[htpb]
402 \label{alg2-cuda-mpi}
403 \LinesNumbered
404 \SetAlgoNoLine
405 \caption{Finding roots of polynomials with the Ehrlich-Aberth method on multiple GPUs using MPI}
406
407 \KwIn{  $\epsilon$ (tolerance threshold)}
408
409 \KwOut {$Z$ (solution vector of roots)}
410
411 \BlankLine
412 Initialize the polynomial $P$ and its derivative $P'$\;
413 Set the initial values of vector $Z$\;
414 Determine the local part of the MPI process\;
415 Computation of the parameters for the $MPI\_AlltoAll$\;
416 Copy $P$, $P'$ from CPU to GPU\;
417 \While {$error > \epsilon$}{
418   Copy $Z$ from CPU to GPU\;
419   $Z^{prev}_{loc}$ = KernelSave($Z_{loc}$)\;
420   $Z_{loc}$ = KernelUpdate($P,P',Z$)\;
421   $error_{loc}$ = KernelComputeError($Z_{loc},Z^{prev}_{loc}$)\;
422   $error=MPI\_Reduce(error_{loc})$\;
423   Copy $Z_{loc}$ from GPU to CPU\;
424   $Z=MPI\_AlltoAll(Z_{loc})$\;
425 }
426 \end{algorithm}
427
428
429 \section{Experiments}
430 \label{sec5}
431 We study two categories of polynomials: sparse polynomials and full polynomials.\\
432 {\it A sparse polynomial} is a polynomial for which only some coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles:
433 \begin{equation}
434         \forall \alpha_{1} \alpha_{2} \in \mathbb{C},\forall n_{1},n_{2} \in \mathbb{N}^{*}; p(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
435 \end{equation}\noindent
436 {\it A full polynomial} is, in contrast, a polynomial for which all the coefficients are not null. A full polynomial is defined by:
437
438 \begin{equation}
439      {\Large \forall \alpha_{i} \in \mathbb{C}, i\in \mathbb{N};  p(x)=\sum^{n}_{i=0} \alpha_{i}.x^{i}} 
440 \end{equation}
441
442 For our tests, 4 GPU cards Tesla Kepler K40 are used.  In order to
443 evaluate both the GPU and Multi-GPU approaches, we performed a set of
444 experiments on a single GPU and multiple GPUs using OpenMP or MPI with
445 the EA algorithm, for both sparse and full polynomials of different
446 degrees.  All experimental results obtained are performed with double
447 precision float data and the convergence threshold of the EA method is
448 set to $10^{-7}$.  The initialization values of the vector solution of
449 the methods are given by the Guggenheimer method~\cite{Gugg86}.
450
451 \subsection{Evaluation of the multi-GPUs approaches}
452 In this part, we evaluate the performances of the CUDA-OpenMP and
453 CUDA-MPI approaches of the EA algorithm on different GPU platforms
454 composed each of 1, 2, 3 or 4 GPUs. In this experiments we report the
455 experimental results of the EA algorithms to find the roots of different sparse and full polynomials of high degrees ranging from 100,000 to 1,400,000. Figures~\ref{fig:01} and~\ref{fig:02} show the execution times to solve, respectively, sparse and full polynomials with the CUDA-OpenMP algorithm, and Figures~\ref{fig:03} and~\ref{fig:04} show those to solve, respectively, sparse and full polynomials with the CUDA-MPI algorithm.
456
457 All these figures show that the CUDA-OpenMP and the CUDA-MPI approaches of the EA algorithm, compared to the single GPU version, are efficient and scale well with multiple GPUs. Both approaches allow us to solve sparse and full polynomials of very high degrees. Using 4 GPUs allows us to achieve a quasi-linear speedup.
458
459 \begin{figure}[htbp]
460 \centering
461 \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_omp}
462 \caption{Execution times in seconds of the Ehrlich-Aberth method to solve sparse polynomials on multiple GPUs with CUDA-OpenMP.}
463 \label{fig:01}
464 \end{figure}
465
466 \begin{figure}[htbp]
467 \centering
468 \includegraphics[angle=-90,width=0.5\textwidth]{Full_omp}
469 \caption{Execution times in seconds of the Ehrlich-Aberth method to solve full polynomials on multiple GPUs with CUDA-OpenMP.}
470 \label{fig:02}
471 \end{figure}
472
473 \begin{figure}[htbp]
474 \centering
475   \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_mpi}
476  \caption{Execution times in seconds of the Ehrlich-Aberth method to solve sparse polynomials on multiple GPUs with CUDA-MPI.}
477 \label{fig:03}
478  \end{figure}
479
480 \begin{figure}[htbp]
481  \centering
482   \includegraphics[angle=-90,width=0.5\textwidth]{Full_mpi}
483  \caption{Execution times in seconds of the Ehrlich-Aberth method for full polynomials on  multiple GPUs with CUDA-MPI.}
484  \label{fig:04}
485  \end{figure}
486
487
488 \subsection{Comparison between the CUDA-OpenMP and the CUDA-MPI approaches}
489 In the previous section we saw that both approaches are very efficient to reduce the execution times to solve sparse and full polynomials. In this section we try to compare these two approaches. In this experiment three sparse polynomials and three full polynomials of degrees 200,000, 800,000 and 1,400,000 are investigated. Figures~\ref{fig:05} and~\ref{fig:06} show the comparison between CUDA-OpenMP and CUDA-MPI algorithms of the EA method to solve sparse and full polynomials, respectively. 
490
491 \begin{figure}[htbp]
492 \centering
493  \includegraphics[angle=-90,width=0.5\textwidth]{Sparse}
494 \caption{Execution times  to solve sparse polynomials of three distinct degrees on multiple GPUs using OpenMP and MPI with the Ehrlich-Aberth method}
495 \label{fig:05}
496 \end{figure}
497
498 \begin{figure}[htbp]
499 \centering
500  \includegraphics[angle=-90,width=0.5\textwidth]{Full}
501 \caption{Execution times  to solve full polynomials of three distinct degrees on multiple GPUs using OpenMP and MPI with the Ehrlich-Aberth method}
502 \label{fig:06}
503 \end{figure}
504
505 In Figure~\ref{fig:05} there is one curve for CUDA-OpenMP and another one for CUDA-MPI for each polynomial investigated. We can see that the results are quite similar between OpenMP and MPI for the polynomial degree of 200K. For the degree of 800K, the MPI version is a little bit slower than the OpenMP version but for the degree of 1,4 million, there is a slight advantage for the MPI version. In Figure~\ref{fig:06}, we can see that when it comes to full polynomials, both approaches are almost equivalent.
506
507
508 \subsection{Solving sparse and full polynomials of the same degree on multiple GPUs}
509 In this experiment we compare the execution times of the EA algorithm
510 according to the number of GPUs to solve sparse and full polynomials
511 on multiple GPUs using OpenMP or MPI approaches. We chose three sparse
512 and three full polynomials of degrees 200,000, 800,000 and
513 1,400,000. Figures~\ref{fig:07} and~\ref{fig:08} show the execution
514 times to solve sparse and full polynomials of the same degrees with
515 the CUDA-OpenMP version and the CUDA-MPI version, respectively.
516
517 \begin{figure}[htbp]
518 \centering
519  \includegraphics[angle=-90,width=0.5\textwidth]{OMP}
520 \caption{Execution times to solve sparse and full polynomials of three distinct degrees on multiple GPUs using OpenMP.}
521 \label{fig:07}
522 \end{figure}
523
524 \begin{figure}[htbp]
525 \centering
526  \includegraphics[angle=-90,width=0.5\textwidth]{MPI}
527 \caption{Execution times to solve sparse and full polynomials of three distinct degrees on multiple GPUs using MPI.}
528 \label{fig:08}
529 \end{figure}
530
531 In Figure~\ref{fig:07} the execution times of the CUDA-OpenMP version to solve sparse polynomials are very low compared to those to solve full polynomials. With sparse polynomials the number of monomials is reduced, consequently the number of operations is reduced and the execution time decreases. Figure~\ref{fig:08} shows the impact of sparsity on the efficiency of the CUDA-MPI approach. We can see that the impact follows the same pattern, a difference in execution times in favor of the sparse polynomials.
532
533
534 \subsection{Scalability of the EA method on multiple GPUs to solve very high degree polynomials}
535 These experiments report the execution times of the EA method for sparse and full polynomials of high degrees ranging from 1,000,000 to 5,000,000. In Figure~\ref{fig:09} we can see that both approaches (CUDA-OpenMP and CUDA-MPI) are scalable and can solve very high degree polynomials. In addition, with full polynomial as well as sparse ones, both approaches give very similar results.
536
537 \begin{figure}[htbp]
538 \centering
539  \includegraphics[angle=-90,width=0.5\textwidth]{big}
540  \caption{Execution times in seconds of the Ehrlich-Aberth method to solve sparse and full polynomials of high degree on 4 GPUs for degrees ranging from 1M to 5M}
541 \label{fig:09}
542 \end{figure}
543  
544
545 \section{Conclusion}
546 \label{sec6}
547 In this paper, we have presented parallel implementations of the Ehrlich-Aberth algorithm to solve full and sparse polynomials, on a single GPU with CUDA and on multiple GPUs using two parallel paradigms: shared memory with OpenMP and distributed memory with MPI. These architectures were addressed by a CUDA-OpenMP approach and CUDA-MPI approach, respectively. Experiments show that, using parallel programming model like OpenMP or MPI, we can efficiently manage multiple graphics cards to solve the same problem and accelerate the parallel execution with 4 GPUs and solve a polynomial of degree up-to 5,000,000 four times faster than on a single GPU. 
548
549 Our next objective is to extend the model presented here to clusters of GPU nodes, with a three-level scheme: inter-node communications via MPI processes (distributed memory), management of multi-GPU nodes by OpenMP threads (shared memory). Actual platforms may probably also contain purely multi-core nodes without any GPU. This heterogeneous setting may lead to the integration of load balancing algorithms so as to allow an optimal use of hardware ressources. 
550
551
552 \section*{Acknowledgment}
553 This  paper  is   partially  funded  by  the  Labex   ACTION  program  (contract
554 ANR-11-LABX-01-01). Computations have been performed on the supercomputer facilities of the Mésocentre de calcul de Franche-Comté. We also would like to thank Nvidia for hardware donation under CUDA Research Center 2014.
555
556
557 \bibliography{mybibfile}
558
559 \end{document}
560
561