1 OpenMP Application Program Interface, 4th edition, July 2013.
2 URL: http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.
4 Peter Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1996.
7 ALTauthor = {Peter Pacheco},
9 title = {Parallel Programming with MPI},
10 publisher = {Morgan Kaufmann},
25 title = "OpenMP Application Program Interface",
31 Edition = "4th edition",
32 URL = "http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.",
38 title = "Iteration Methods for Finding all Zeros of a Polynomial Simultaneously",
39 journal = "Mathematics of Computation",
49 title = "On the approximations of Newton",
50 journal = "Annual Sofia Univ",
60 title = "An alternative method of Newton for simultaneous calculation of all the roots of a given algebraic equation",
61 journal = "Phys. Math. J",
70 author = "\'E. Durand",
71 publisher = "Masson, Paris",
72 title = "Solutions num\'eriques des \'equations alg\'ebriques.
73 {T}ome {I}: \'{E}quations du type {$F(x)=0$}; racines
79 author = "Immo O. Kerner",
80 title = "{Ein Gesamtschrittverfahren zur Berechnung der
81 Nullstellen von Polynomen}. ({German}) [{A} Complete
82 Step Method for the Computation of Zeros of
84 journal = "Numerische Mathematik",
91 ISSN = "0029-599X (print), 0945-3245 (electronic)",
92 bibdate = "Mon Oct 18 01:28:20 MDT 1999",
93 bibsource = "http://www.math.utah.edu/pub/tex/bib/nummath.bib",
94 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
95 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
96 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
97 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
98 \path|beebe@acm.org|, \path|beebe@computer.org|
100 \path|http://www.math.utah.edu/~beebe/|",
101 fjournal = "Numerische Mathematik",
102 journal-url = "http://link.springer.com/journal/211",
106 @Article{Borch-Supan63,
107 author = "W. Boersch-Supan",
108 title = "A Posteriori Error Bounds for the Zeros of
110 journal = "Numerische Mathematik",
116 bibdate = "Fri Jan 12 11:37:56 1996",
117 acknowledgement = "Jon Rokne, Department of Computer Science, The
118 University of Calgary, 2500 University Drive N.W.,
119 Calgary, Alberta T2N 1N4, Canada",
123 title = "A modified Newton method for polynomials",
124 author = "Louis W. Ehrlich",
125 journal = "Commun. ACM",
129 bibdate = "2003-11-20",
131 http://dblp.uni-trier.de/db/journals/cacm/cacm10.html#Ehrlich67",
133 URL = "http://doi.acm.org/10.1145/363067.363115",
136 title = "Higher-order iteration functions for simultaneously approximating polynomial zeros",
137 journal = " Intern. J. Computer Math",
142 author = "G. Loizou",
146 title = "Calculating polynomial zeros on a local memory
148 author = "T. L. Freeman",
149 journal = "Parallel Computing",
153 bibdate = "2011-09-09",
155 http://dblp.uni-trier.de/db/journals/pc/pc12.html#Freeman89",
157 URL = "http://dx.doi.org/10.1016/0167-8191(89)90093-8",
159 @Article{Freemanall90,
160 title = " Asynchronous polynomial zero-finding algorithms",
161 journal = " Parallel Computing",
166 author = "T.L. Freeman AND R.K. Brankin",
169 @Article{Raphaelall01,
170 title = " Extraction de racines dans des polynômes creux de degrées élevés. {RSRCP} (Réseaux et Systèmes Répartis, Calculateurs Parallèles)",
171 journal = " Algorithmes itératifs paralléles et distribués",
176 author = "R. Couturier AND F. Spies",
179 @Article{Ostrowski41,
180 title = " On a Theorem by {J. L. Walsh} Concerning the Moduli of Roots of Algebraic Equations. A.M.S.",
181 journal = " Algorithmes itératifs paralléles et distribués",
186 author = "A. Ostrowski",
191 title = {Compute Unified Device Architecture Programming Guide Version 3.0},
192 OPTkey = {NVIDIA CUDA},
194 OPTorganization = {NVIDIA CUDA},
199 OPTnote = {http://www.nvidia.com/object/cuda_develop.html},
204 title = "Parallel implementation of the {D}urand-{K}erner algorithm for polynomial root-finding on {GPU}",
205 journal = "IEEE. Conf. on advanced Networking, Distributed Systems and Applications",
210 author = "K. Ghidouche AND R. Couturier AND A. Sider",
215 title = " Perfectionnements de la méthode asynchrone de {D}urand-{K}erner pour les polynômes complexes",
216 journal = " Calculateurs Parallèles",
221 author = "K. Rhofir AND F. Spies AND Jean-Claude Miellou",
225 title = "Numerical computation of polynomial zeros by means of
228 journal = "Numerical Algorithms",
232 bibdate = "2015-09-27",
234 http://dblp.uni-trier.de/db/journals/na/na13.html#Bini96",
236 URL = "http://dx.doi.org/10.1007/BF02207694",
239 title = " Parallel methods for approximating the roots of a function",
240 journal = " IBM Res Dev",
245 author = "WL. Mirankar",
249 title = " A survey of parallelism in numerical analysis",
250 journal = " SIAM Rev",
255 author = "WL. Mirankar",
259 title = " Parallel Numerical Methods for Solution of Equations",
260 journal = " Commun ACM ",
265 author = "GS. Schedler",
268 @InProceedings{Winogard72,
269 title = "Parallel Iteration Methods",
270 author = "S. Winograd",
271 bibdate = "2011-09-13",
273 http://dblp.uni-trier.de/db/conf/coco/cocc1972.html#Winograd72",
274 booktitle = "Complexity of Computer Computations",
275 publisher = "Plenum Press, New York",
277 editor = "Raymond E. Miller and James W. Thatcher",
278 ISBN = "0-306-30707-3",
280 series = "The IBM Research Symposia Series",
284 title = " A fast parallel algorithm for determining all roots of a polynomial with real roots",
285 journal = " Int: Proc of ACM",
290 author = "M. Ben-Or AND E. Feig AND D. Kozzen AND P. Tiwary",
294 title = " A highly parallel algorithm for root extraction",
295 journal = " IEEE Trans Comp",
300 author = "TA. Rice AND LH. Jamieson",
304 title = " Finding the roots of a polynomial on an MIMD multicomputer",
305 journal = " Parallel Comput",
310 author = "M. Cosnard AND P. Fraigniaud",
314 title = " Efficient parallel algorithms for finding polynomial zeroes",
315 journal = "Proc of the 6th int conference on advance computing, CDAC, Pune University Campus,India",
320 author = "PK. Jana AND BP. Sinha AND R. Datta Gupta",
324 title = " Polynomial interpolation and polynomial root finding on OTIS-Mesh",
325 journal = " Parallel Comput",
335 author = {B. Kalantari},
336 title = {Polynomial root finding and polynomiography},
337 publisher = {World Scientifict},
344 OPTmonth = {December},
350 title = " Structured matrix methods for polynomial root finding",
351 journal = " n: Proc of the 2007 Intl symposium on symbolic and algebraic computation",
356 author = "V. Skachek",
361 @InProceedings{Gemignani07,
362 author = "L. Gemignani",
363 title = "Structured matrix methods for polynomial
365 editor = "C. W. Brown",
366 booktitle = "Proceedings of the 2007 International Symposium on
367 Symbolic and Algebraic Computation, July 29--August 1,
368 2007, University of Waterloo, Waterloo, Ontario,
370 publisher = "ACM Press",
371 address = "pub-ACM:adr",
372 ISBN = "1-59593-743-9 (print), 1-59593-742-0 (CD-ROM)",
373 isbn-13 = "978-1-59593-743-8 (print), 978-1-59593-742-1
377 doi = "http://doi.acm.org/10.1145/1277548.1277573",
378 bibdate = "Fri Jun 20 08:46:50 MDT 2008",
379 bibsource = "http://portal.acm.org/;
380 http://www.math.utah.edu/pub/tex/bib/issac.bib",
381 abstract = "In this paper we discuss the use of structured matrix
382 methods for the numerical approximation of the zeros of
383 a univariate polynomial. In particular, it is shown
384 that root-finding algorithms based on floating-point
385 eigenvalue computation can benefit from the structure
386 of the matrix problem to reduce their complexity and
387 memory requirements by an order of magnitude.",
388 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
389 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
390 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
391 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
392 \path|beebe@acm.org|, \path|beebe@computer.org|
394 \path|http://www.math.utah.edu/~beebe/|",
395 keywords = "complexity; eigenvalue computation; polynomial
396 root-finding; rank-structured matrices",
397 doi-url = "http://dx.doi.org/10.1145/1277548.1277573",
401 title = "Probabilistic algorithm for finding roots of
402 linearized polynomials",
403 author = "V. Skachek AND M. Roth",
404 journal = "Des. Codes Cryptography",
408 bibdate = "2008-03-11",
410 http://dblp.uni-trier.de/db/journals/dcc/dcc46.html#SkachekR08",
412 URL = "http://dx.doi.org/10.1007/s10623-007-9125-y",
416 title = " A constrained learning algorithm for finding multiple real roots of polynomial",
417 journal = " In: Proc of the 2008 intl symposium on computational intelligence and design",
422 author = "X. Zhanc AND M. Wan,Z.Yi",
426 @InProceedings{Zhuall08,
427 title = "An Adaptive Algorithm Finding Multiple Roots of Polynomials",
428 author = "W. Zhu AND Z. Zeng AND Dm. Lin",
429 bibdate = "2008-09-25",
431 http://dblp.uni-trier.de/db/conf/isnn/isnn2008-2.html#ZhuZL08",
432 booktitle = "ISNN (2)",
433 publisher = "Springer",
436 editor = "Fuchun Sun and Jianwei Zhang 0001 and Ying Tan and
437 Jinde Cao and Wen Yu 0001",
438 ISBN = "978-3-540-87733-2",
440 series = "Lecture Notes in Computer Science",
441 URL = "http://dx.doi.org/10.1007/978-3-540-87734-9_77",
445 title = " The performance of synchronous parallel polynomial root extraction on a ring multicomputer",
446 journal = " Clust Comput ",
458 title = " Inverse power and Durand Kerner iterations for univariate polynomial root finding",
459 journal = " Comput Math Appl ",
464 author = "DA. Bini AND L. Gemignani",
468 title = " Finding polynomial zeroes on a Multi-mesh of trees (MMT)",
469 journal = " In: Proc of the 2nd int conference on information technology",
477 @Article{Weierstrass03,
478 title = " Neuer Beweis des Satzes, dass jede ganze rationale function einer veranderlichen dagestellt werden kann als ein product aus linearen functionen derselben veranderlichen",
479 journal = " Ges. Werke",
484 author = "K. Weierstrass",
487 title = {NVIDIA CUDA C Programming Guide},
489 OPTauthor = {NVIDIA Corporation},
490 OPTorganization = {Design Guide},