]> AND Private Git Repository - kahina_paper2.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
25a169dda86bcd4c918377d559c199142723f0d9
[kahina_paper2.git] / paper.tex
1
2 %% bare_conf.tex
3 %% V1.4b
4 %% 2015/08/26
5 %% by Michael Shell
6 %% See:
7 %% http://www.michaelshell.org/
8 %% for current contact information.
9 %%
10 %% This is a skeleton file demonstrating the use of IEEEtran.cls
11 %% (requires IEEEtran.cls version 1.8b or later) with an IEEE
12 %% conference paper.
13 %%
14 %% Support sites:
15 %% http://www.michaelshell.org/tex/ieeetran/
16 %% http://www.ctan.org/pkg/ieeetran
17 %% and
18 %% http://www.ieee.org/
19
20 %%*************************************************************************
21 %% Legal Notice:
22 %% This code is offered as-is without any warranty either expressed or
23 %% implied; without even the implied warranty of MERCHANTABILITY or
24 %% FITNESS FOR A PARTICULAR PURPOSE! 
25 %% User assumes all risk.
26 %% In no event shall the IEEE or any contributor to this code be liable for
27 %% any damages or losses, including, but not limited to, incidental,
28 %% consequential, or any other damages, resulting from the use or misuse
29 %% of any information contained here.
30 %%
31 %% All comments are the opinions of their respective authors and are not
32 %% necessarily endorsed by the IEEE.
33 %%
34 %% This work is distributed under the LaTeX Project Public License (LPPL)
35 %% ( http://www.latex-project.org/ ) version 1.3, and may be freely used,
36 %% distributed and modified. A copy of the LPPL, version 1.3, is included
37 %% in the base LaTeX documentation of all distributions of LaTeX released
38 %% 2003/12/01 or later.
39 %% Retain all contribution notices and credits.
40 %% ** Modified files should be clearly indicated as such, including  **
41 %% ** renaming them and changing author support contact information. **
42 %%*************************************************************************
43
44
45 % *** Authors should verify (and, if needed, correct) their LaTeX system  ***
46 % *** with the testflow diagnostic prior to trusting their LaTeX platform ***
47 % *** with production work. The IEEE's font choices and paper sizes can   ***
48 % *** trigger bugs that do not appear when using other class files.       ***                          ***
49 % The testflow support page is at:
50 % http://www.michaelshell.org/tex/testflow/
51
52
53
54 \documentclass[conference]{IEEEtran}
55 % Some Computer Society conferences also require the compsoc mode option,
56 % but others use the standard conference format.
57 %
58 % If IEEEtran.cls has not been installed into the LaTeX system files,
59 % manually specify the path to it like:
60 % \documentclass[conference]{../sty/IEEEtran}
61
62
63
64
65
66 % Some very useful LaTeX packages include:
67 % (uncomment the ones you want to load)
68
69
70 % *** MISC UTILITY PACKAGES ***
71 %
72 %\usepackage{ifpdf}
73 % Heiko Oberdiek's ifpdf.sty is very useful if you need conditional
74 % compilation based on whether the output is pdf or dvi.
75 % usage:
76 % \ifpdf
77 %   % pdf code
78 % \else
79 %   % dvi code
80 % \fi
81 % The latest version of ifpdf.sty can be obtained from:
82 % http://www.ctan.org/pkg/ifpdf
83 % Also, note that IEEEtran.cls V1.7 and later provides a builtin
84 % \ifCLASSINFOpdf conditional that works the same way.
85 % When switching from latex to pdflatex and vice-versa, the compiler may
86 % have to be run twice to clear warning/error messages.
87
88
89
90
91
92
93 % *** CITATION PACKAGES ***
94 %
95 %\usepackage{cite}
96 % cite.sty was written by Donald Arseneau
97 % V1.6 and later of IEEEtran pre-defines the format of the cite.sty package
98 % \cite{} output to follow that of the IEEE. Loading the cite package will
99 % result in citation numbers being automatically sorted and properly
100 % "compressed/ranged". e.g., [1], [9], [2], [7], [5], [6] without using
101 % cite.sty will become [1], [2], [5]--[7], [9] using cite.sty. cite.sty's
102 % \cite will automatically add leading space, if needed. Use cite.sty's
103 % noadjust option (cite.sty V3.8 and later) if you want to turn this off
104 % such as if a citation ever needs to be enclosed in parenthesis.
105 % cite.sty is already installed on most LaTeX systems. Be sure and use
106 % version 5.0 (2009-03-20) and later if using hyperref.sty.
107 % The latest version can be obtained at:
108 % http://www.ctan.org/pkg/cite
109 % The documentation is contained in the cite.sty file itself.
110
111
112
113
114
115
116 % *** GRAPHICS RELATED PACKAGES ***
117 %
118 \ifCLASSINFOpdf
119    \usepackage[pdftex]{graphicx}
120    
121   % declare the path(s) where your graphic files are
122   % \graphicspath{{../pdf/}{../jpeg/}}
123   % and their extensions so you won't have to specify these with
124   % every instance of \includegraphics
125   % \DeclareGraphicsExtensions{.pdf,.jpeg,.png}
126 \else
127   % or other class option (dvipsone, dvipdf, if not using dvips). graphicx
128   % will default to the driver specified in the system graphics.cfg if no
129   % driver is specified.
130   % \usepackage[dvips]{graphicx}
131   % declare the path(s) where your graphic files are
132   % \graphicspath{{../eps/}}
133   % and their extensions so you won't have to specify these with
134   % every instance of \includegraphics
135   % \DeclareGraphicsExtensions{.eps}
136 \fi
137 % graphicx was written by David Carlisle and Sebastian Rahtz. It is
138 % required if you want graphics, photos, etc. graphicx.sty is already
139 % installed on most LaTeX systems. The latest version and documentation
140 % can be obtained at: 
141 % http://www.ctan.org/pkg/graphicx
142 % Another good source of documentation is "Using Imported Graphics in
143 % LaTeX2e" by Keith Reckdahl which can be found at:
144 % http://www.ctan.org/pkg/epslatex
145 %
146 % latex, and pdflatex in dvi mode, support graphics in encapsulated
147 % postscript (.eps) format. pdflatex in pdf mode supports graphics
148 % in .pdf, .jpeg, .png and .mps (metapost) formats. Users should ensure
149 % that all non-photo figures use a vector format (.eps, .pdf, .mps) and
150 % not a bitmapped formats (.jpeg, .png). The IEEE frowns on bitmapped formats
151 % which can result in "jaggedy"/blurry rendering of lines and letters as
152 % well as large increases in file sizes.
153 %
154 % You can find documentation about the pdfTeX application at:
155 % http://www.tug.org/applications/pdftex
156
157
158
159
160
161 % *** MATH PACKAGES ***
162 %
163 \usepackage{amsmath}
164 % A popular package from the American Mathematical Society that provides
165 % many useful and powerful commands for dealing with mathematics.
166 %
167 % Note that the amsmath package sets \interdisplaylinepenalty to 10000
168 % thus preventing page breaks from occurring within multiline equations. Use:
169 %\interdisplaylinepenalty=2500
170 % after loading amsmath to restore such page breaks as IEEEtran.cls normally
171 % does. amsmath.sty is already installed on most LaTeX systems. The latest
172 % version and documentation can be obtained at:
173 % http://www.ctan.org/pkg/amsmath
174
175
176
177
178
179 % *** SPECIALIZED LIST PACKAGES ***
180 %
181
182 % algorithmic.sty was written by Peter Williams and Rogerio Brito.
183 % This package provides an algorithmic environment fo describing algorithms.
184 % You can use the algorithmic environment in-text or within a figure
185 % environment to provide for a floating algorithm. Do NOT use the algorithm
186 % floating environment provided by algorithm.sty (by the same authors) or
187 % algorithm2e.sty (by Christophe Fiorio) as the IEEE does not use dedicated
188 % algorithm float types and packages that provide these will not provide
189 % correct IEEE style captions. The latest version and documentation of
190 % algorithmic.sty can be obtained at:
191 % http://www.ctan.org/pkg/algorithms
192 % Also of interest may be the (relatively newer and more customizable)
193 % algorithmicx.sty package by Szasz Janos:
194 % http://www.ctan.org/pkg/algorithmicx
195 \usepackage[ruled,vlined]{algorithm2e}
196
197
198
199 % *** ALIGNMENT PACKAGES ***
200 %
201 %\usepackage{array}
202 % Frank Mittelbach's and David Carlisle's array.sty patches and improves
203 % the standard LaTeX2e array and tabular environments to provide better
204 % appearance and additional user controls. As the default LaTeX2e table
205 % generation code is lacking to the point of almost being broken with
206 % respect to the quality of the end results, all users are strongly
207 % advised to use an enhanced (at the very least that provided by array.sty)
208 % set of table tools. array.sty is already installed on most systems. The
209 % latest version and documentation can be obtained at:
210 % http://www.ctan.org/pkg/array
211
212
213 % IEEEtran contains the IEEEeqnarray family of commands that can be used to
214 % generate multiline equations as well as matrices, tables, etc., of high
215 % quality.
216
217
218
219
220 % *** SUBFIGURE PACKAGES ***
221 %\ifCLASSOPTIONcompsoc
222 %  \usepackage[caption=false,font=normalsize,labelfont=sf,textfont=sf]{subfig}
223 %\else
224 %  \usepackage[caption=false,font=footnotesize]{subfig}
225 %\fi
226 % subfig.sty, written by Steven Douglas Cochran, is the modern replacement
227 % for subfigure.sty, the latter of which is no longer maintained and is
228 % incompatible with some LaTeX packages including fixltx2e. However,
229 % subfig.sty requires and automatically loads Axel Sommerfeldt's caption.sty
230 % which will override IEEEtran.cls' handling of captions and this will result
231 % in non-IEEE style figure/table captions. To prevent this problem, be sure
232 % and invoke subfig.sty's "caption=false" package option (available since
233 % subfig.sty version 1.3, 2005/06/28) as this is will preserve IEEEtran.cls
234 % handling of captions.
235 % Note that the Computer Society format requires a larger sans serif font
236 % than the serif footnote size font used in traditional IEEE formatting
237 % and thus the need to invoke different subfig.sty package options depending
238 % on whether compsoc mode has been enabled.
239 %
240 % The latest version and documentation of subfig.sty can be obtained at:
241 % http://www.ctan.org/pkg/subfig
242
243
244
245
246 % *** FLOAT PACKAGES ***
247 %
248 %\usepackage{fixltx2e}
249 % fixltx2e, the successor to the earlier fix2col.sty, was written by
250 % Frank Mittelbach and David Carlisle. This package corrects a few problems
251 % in the LaTeX2e kernel, the most notable of which is that in current
252 % LaTeX2e releases, the ordering of single and double column floats is not
253 % guaranteed to be preserved. Thus, an unpatched LaTeX2e can allow a
254 % single column figure to be placed prior to an earlier double column
255 % figure.
256 % Be aware that LaTeX2e kernels dated 2015 and later have fixltx2e.sty's
257 % corrections already built into the system in which case a warning will
258 % be issued if an attempt is made to load fixltx2e.sty as it is no longer
259 % needed.
260 % The latest version and documentation can be found at:
261 % http://www.ctan.org/pkg/fixltx2e
262
263
264 %\usepackage{stfloats}
265 % stfloats.sty was written by Sigitas Tolusis. This package gives LaTeX2e
266 % the ability to do double column floats at the bottom of the page as well
267 % as the top. (e.g., "\begin{figure*}[!b]" is not normally possible in
268 % LaTeX2e). It also provides a command:
269 %\fnbelowfloat
270 % to enable the placement of footnotes below bottom floats (the standard
271 % LaTeX2e kernel puts them above bottom floats). This is an invasive package
272 % which rewrites many portions of the LaTeX2e float routines. It may not work
273 % with other packages that modify the LaTeX2e float routines. The latest
274 % version and documentation can be obtained at:
275 % http://www.ctan.org/pkg/stfloats
276 % Do not use the stfloats baselinefloat ability as the IEEE does not allow
277 % \baselineskip to stretch. Authors submitting work to the IEEE should note
278 % that the IEEE rarely uses double column equations and that authors should try
279 % to avoid such use. Do not be tempted to use the cuted.sty or midfloat.sty
280 % packages (also by Sigitas Tolusis) as the IEEE does not format its papers in
281 % such ways.
282 % Do not attempt to use stfloats with fixltx2e as they are incompatible.
283 % Instead, use Morten Hogholm'a dblfloatfix which combines the features
284 % of both fixltx2e and stfloats:
285 %
286 % \usepackage{dblfloatfix}
287 % The latest version can be found at:
288 % http://www.ctan.org/pkg/dblfloatfix
289
290
291
292
293 % *** PDF, URL AND HYPERLINK PACKAGES ***
294 %
295 %\usepackage{url}
296 % url.sty was written by Donald Arseneau. It provides better support for
297 % handling and breaking URLs. url.sty is already installed on most LaTeX
298 % systems. The latest version and documentation can be obtained at:
299 % http://www.ctan.org/pkg/url
300 % Basically, \url{my_url_here}.
301
302
303
304
305 % *** Do not adjust lengths that control margins, column widths, etc. ***
306 % *** Do not use packages that alter fonts (such as pslatex).         ***
307 % There should be no need to do such things with IEEEtran.cls V1.6 and later.
308 % (Unless specifically asked to do so by the journal or conference you plan
309 % to submit to, of course. )
310
311
312 % correct bad hyphenation here
313 \hyphenation{op-tical net-works semi-conduc-tor}
314 %\usepackage{graphicx}
315 \bibliographystyle{IEEEtran}
316 % argument is your BibTeX string definitions and bibliography database(s)
317 %\bibliography{IEEEabrv,../bib/paper}
318 %\bibliographystyle{elsarticle-num}
319
320
321
322
323 \usepackage{amsfonts}
324 \usepackage[utf8]{inputenc}
325 \usepackage[T1]{fontenc}
326 \usepackage[textsize=footnotesize]{todonotes}
327 \newcommand{\LZK}[2][inline]{%
328   \todo[color=red!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
329 \newcommand{\RC}[2][inline]{%
330   \todo[color=blue!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
331 \newcommand{\KG}[2][inline]{%
332   \todo[color=green!10,#1]{\sffamily\textbf{KG:} #2}\xspace}
333 \newcommand{\AS}[2][inline]{%
334   \todo[color=orange!10,#1]{\sffamily\textbf{AS:} #2}\xspace}
335
336
337
338
339
340 \begin{document}
341 %
342 % paper title
343 % Titles are generally capitalized except for words such as a, an, and, as,
344 % at, but, by, for, in, nor, of, on, or, the, to and up, which are usually
345 % not capitalized unless they are the first or last word of the title.
346 % Linebreaks \\ can be used within to get better formatting as desired.
347 % Do not put math or special symbols in the title.
348 \title{Two parallel implementations of Ehrlich-Aberth algorithm for root-finding of polynomials on multiple GPUs with OpenMP and MPI}
349
350
351 % author names and affiliations
352 % use a multiple column layout for up to three different
353 % affiliations
354 \author{\IEEEauthorblockN{Kahina Guidouche, Abderrahmane Sider }
355   \IEEEauthorblockA{Laboratoire LIMED\\
356     Faculté des sciences exactes\\
357     Université de Bejaia, 06000, Algeria\\
358 Email: \{kahina.ghidouche,ar.sider\}@univ-bejaia.dz}
359 \and
360 \IEEEauthorblockN{Lilia Ziane Khodja, Raphaël Couturier}
361 \IEEEauthorblockA{FEMTO-ST Institute\\
362   University of   Bourgogne Franche-Comte, France\\
363 Email: zianekhodja.lilia@gmail.com\\ raphael.couturier@univ-fcomte.fr}}
364
365 % conference papers do not typically use \thanks and this command
366 % is locked out in conference mode. If really needed, such as for
367 % the acknowledgment of grants, issue a \IEEEoverridecommandlockouts
368 % after \documentclass
369
370 % for over three affiliations, or if they all won't fit within the width
371 % of the page, use this alternative format:
372
373 %\author{\IEEEauthorblockN{Michael Shell\IEEEauthorrefmark{1},
374 %Homer Simpson\IEEEauthorrefmark{2},
375 %James Kirk\IEEEauthorrefmark{3}, 
376 %Montgomery Scott\IEEEauthorrefmark{3} and
377 %Eldon Tyrell\IEEEauthorrefmark{4}}
378 %\IEEEauthorblockA{\IEEEauthorrefmark{1}School of Electrical and Computer Engineering\\
379 %Georgia Institute of Technology,
380 %Atlanta, Georgia 30332--0250\\ Email: see http://www.michaelshell.org/contact.html}
381 %\IEEEauthorblockA{\IEEEauthorrefmark{2}Twentieth Century Fox, Springfield, USA\\
382 %Email: homer@thesimpsons.com}
383 %\IEEEauthorblockA{\IEEEauthorrefmark{3}Starfleet Academy, San Francisco, California 96678-2391\\
384 %Telephone: (800) 555--1212, Fax: (888) 555--1212}
385 %\IEEEauthorblockA{\IEEEauthorrefmark{4}Tyrell Inc., 123 Replicant Street, Los Angeles, California 90210--4321}}
386
387
388
389
390 % use for special paper notices
391 %\IEEEspecialpapernotice{(Invited Paper)}
392
393
394
395
396 % make the title area
397 \maketitle
398
399 % As a general rule, do not put math, special symbols or citations
400 % in the abstract
401 \begin{abstract}
402 Finding roots of polynomials is a very important part of solving
403 real-life problems but it is not so easy for polynomials of high
404 degrees. In this paper, we present two different parallel algorithms
405 of the Ehrlich-Aberth method to find roots of sparse and fully defined
406 polynomials of high degrees. Both algorithms are based on CUDA
407 technology to be implemented on multi-GPU computing platforms but each
408 using different parallel paradigms: OpenMP or MPI. The experiments
409 show a quasi-linear speedup by using up-to 4 GPU devices compared to 1
410 GPU to find roots of polynomials of degree up-to 1.4
411 million. Moreover, other experiments show it is possible to find roots
412 of polynomials of degree up to 5 millions.
413 \end{abstract}
414
415 % no keywords
416
417
418
419
420 % For peer review papers, you can put extra information on the cover
421 % page as needed:
422 % \ifCLASSOPTIONpeerreview
423 % \begin{center} \bfseries EDICS Category: 3-BBND \end{center}
424 % \fi
425 %
426 % For peerreview papers, this IEEEtran command inserts a page break and
427 % creates the second title. It will be ignored for other modes.
428 \IEEEpeerreviewmaketitle
429
430
431 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
432 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
433 \section{Introduction}
434 %Polynomials are mathematical algebraic structures that play an important role in science and engineering by capturing physical phenomena and expressing any outcome as a function of some unknown variables. Formally speaking, a polynomial $p(x)$ of degree $n$ having $n$ coefficients in the complex plane $\mathbb{C}$ is:
435 %\begin{equation}
436 %p(x)=\sum_{i=0}^{n}{a_ix^i}.
437 %\end{equation}
438 %\LZK{Dans ce cas le polynôme a $n+1$ coefficients et non pas $n$!}
439
440 %The issue of finding the roots of polynomials of very high degrees arises in many complex problems in various fields, such as algebra, biology, finance, physics or climatology [1]. In algebra for example, finding eigenvalues or eigenvectors of any real/complex matrix amounts to that of finding the roots of the so-called characteristic polynomial.
441
442 Finding roots of polynomials of very high degrees arises in many complex problems in various domains such as algebra, biology or physics. A polynomial $p(x)$ in $\mathbb{C}$ in one variable $x$ is an algebraic expression in $x$ of the form:
443 \begin{equation}
444 p(x) = \displaystyle\sum^n_{i=0}{a_ix^i},a_n\neq 0. 
445 \end{equation}
446 where $\{a_i\}_{0\leq i\leq n}$ are complex coefficients and $n$ is a high integer number. If $a_n\neq0$ then $n$ is called the degree of the polynomial. The root-finding problem consists in finding the $n$ different values of the unknown variable $x$ for which $p(x)=0$. Such values are called roots of $p(x)$. Let $\{z_i\}_{1\leq i\leq n}$ be the roots of polynomial $p(x)$, then $p(x)$ can be written as :
447 \begin{equation}
448  p(x)=a_n\displaystyle\prod_{i=1}^n(x-z_i), a_n\neq 0.
449 \end{equation}
450 %\LZK{Pourquoi $a_0a_n\neq 0$ ?: $a_0$ pour la premiere equation et $a_n$ pour la deuxieme equation }
451
452 %The problem of finding the roots of polynomials can be encountered in numerous applications. \LZK{A mon avis on peut supprimer cette phrase}
453 Most of the numerical methods that deal with the polynomial root-finding problem are simultaneous methods, \textit{i.e.} the iterative methods to find simultaneous approximations of the $n$ polynomial roots. These methods start from the initial approximations of all $n$ polynomial roots and give a sequence of approximations that converge to the roots of the polynomial. Two examples of well-known simultaneous methods for root-finding problem of polynomials are  Durand-Kerner method~\cite{Durand60,Kerner66} and Ehrlich-Aberth method~\cite{Ehrlich67,Aberth73}.
454 %\LZK{Pouvez-vous donner des références pour les deux méthodes?, c'est fait}
455
456 %The first method of this group is Durand-Kerner method:
457 %\begin{equation}
458 %\label{DK}
459 % DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, \ldots, n,
460 %\end{equation}
461 %where $z_i^k$ is the $i^{th}$ root of the polynomial $p$ at the iteration $k$. Another method discovered by Borsch-Supan~\cite{ Borch-Supan63} and also described by Ehrlich~\cite{Ehrlich67} and Aberth~\cite{Aberth73} uses a different iteration form as follows:
462 %%\begin{center}
463 %\begin{equation}
464 %\label{Eq:EA}
465  %EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, \ldots, n,
466 %\end{equation}
467 %%\end{center}
468 %where $p'(z)$ is the polynomial derivative of $p$ evaluated in the point $z$.
469
470 %Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
471 %the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of %convergence.
472
473 The main problem of the simultaneous methods is that the necessary
474 time needed for the convergence increases with the increasing of the
475 polynomial's degree. Many authors have treated the problem of
476 implementing  simultaneous methods in
477 parallel. Freeman~\cite{Freeman89} implemented and compared
478 Durand-Kerner method, Ehrlich-Aberth method and another method of the
479 fourth order of convergence proposed by Farmer and
480 Loizou~\cite{Loizou83} on a 8-processor linear chain, for polynomials
481 of degree up-to 8. The method of Farmer and Loizou~\cite{Loizou83}
482 often diverges, but the first two methods (Durand-Kerner and
483 Ehrlich-Aberth methods) have a speed-up equals to 5.5. Later, Freeman
484 and Bane~\cite{Freemanall90} considered asynchronous algorithms in
485 which each processor continues to update its approximations even
486 though the latest values of other approximations $z^{k}_{i}$ have not
487 been received from the other processors, in contrast with synchronous
488 algorithms where it would wait those values before making a new
489 iteration. Couturier et al.~\cite{Raphaelall01} proposed two methods
490 of parallelization for a shared memory architecture with OpenMP and
491 for a distributed memory one with MPI. They are able to compute the
492 roots of sparse polynomials of degree 10,000 in 116 seconds with
493 OpenMP and 135 seconds with MPI only by using 8 personal computers and
494 2 communications per iteration. \RC{si on donne des temps faut donner
495   le proc, comme c'est vieux à mon avis faut supprimer ca, votre avis?} The authors showed an interesting
496 speedup comparing to the sequential implementation which takes up-to
497 3,300 seconds to obtain same results. 
498 \LZK{``only by using 8 personal computers and 2 communications per iteration''. Pour MPI? et Pour OpenMP: Rep: c'est MPI seulement}
499
500 Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA)~\cite{CUDA15}, a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Units) has exceeded that of traditional processors CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by the GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche et al.~\cite{Kahinall14} proposed an implementation of the Durand-Kerner method on a single GPU. Their main results showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.
501
502 %Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on multi-GPU platforms. We consider two architectures: shared memory and distributed memory computers. The first parallel algorithm is implemented on shared memory computers by using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory. The second parallel algorithm uses the MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on distributed memory clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.
503 %\LZK{Cette partie est réécrite. \\ Sinon qu'est ce qui a été fait pour l'accuracy dans ce papier (Finding polynomial roots rapidly and accurately is the main objective of our work.)?}
504 %\LZK{Les contributions ne sont pas définies !!}
505
506 In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on CUDA multi-GPU platforms. Our CUDA/MPI and CUDA/OpenMP codes are the first implementations of Ehrlich-Aberth method with multiple GPUs for finding roots of polynomials. Our major contributions include:
507 \LZK{Pourquoi la méthode Ehrlich-Aberth et pas autres? the Ehrlich-Aberth have very good convergence  and it is suitable to be implemented in parallel computers.}
508  \begin{itemize}
509  \item An improvements for the Ehrlich-Aberth method using the exponential logarithm in order to be able to solve sparse and full polynomial of degree up to 1, 000, 000.\RC{j'ai envie de virer ca, car c'est pas la nouveauté dans ce papier}
510  \item A parallel implementation of Ehrlich-Aberth method on single GPU with CUDA.\RC{idem}
511 \item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a shared memory using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory.
512 \item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a distributed memory using MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.
513  \end{itemize}
514 \LZK{Pas d'autres contributions possibles?: j'ai rajouté 2}
515
516 %This paper is organized as follows. In Section~\ref{sec2} we recall the Ehrlich-Aberth method. In section~\ref{sec3} we present EA algorithm on single GPU. In section~\ref{sec4} we propose the EA algorithm implementation on Multi-GPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In sectioné\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.}
517
518 The paper is organized as follows. In Section~\ref{sec2} we present three different parallel programming models OpenMP, MPI and CUDA. In Section~\ref{sec3} we present the implementation of the Ehrlich-Aberth algorithm on a single GPU. In Section~\ref{sec4} we present the parallel implementations of the Ehrlich-Aberth algorithm on Multi-GPU using the OpenMP and MPI approaches. In section\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic. 
519 %\LZK{A revoir toute cette organization: je viens de la revoir}
520
521 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
522 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
523  
524 \section{Parallel programming models}
525 \label{sec2}
526 Our objective consists in implementing a root-finding algorithm of polynomials on multiple GPUs. To this end, it is primordial to know how to manage CUDA contexts of different GPUs. A direct method for controlling the various GPUs is to use as many threads or processes as GPU devices. We investigate two parallel paradigms: OpenMP and MPI. In this case, the GPU indices are defined according to the identifiers of the OpenMP threads or the ranks of the MPI processes. In this section we present the parallel programming models: OpenMP, MPI and CUDA.
527  
528 \subsection{OpenMP}
529 %Open Multi-Processing (OpenMP) is a shared memory architecture API that provides multi thread capacity~\cite{openmp13}. OpenMP is a portable approach for parallel programming on shared memory systems based on compiler directives, that can be included in order to parallelize a loop. In this way, a set of loops can be distributed along the different threads that will access to different data allocated in local shared memory. One of the advantages of OpenMP is its global view of application memory address space that allows relatively fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of performance in large scale applications. Although usage of OpenMP  threads and managed data explicitly done with MPI can be considered, this approcache undermines the advantages of OpenMP.
530
531 %\subsection{OpenMP} 
532 %OpenMP is a shared memory programming API based on threads from
533 %the same system process. Designed for multiprocessor shared memory UMA or
534 %NUMA [10], it relies on the execution model SPMD ( Single Program, Multiple Data Stream )
535 %where the thread "master" and threads "slaves" asynchronously execute their codes
536 %communicate / synchronize via shared memory [7]. It also helps to build
537 %the loop parallelism and is very suitable for an incremental code parallelization
538 %Sequential natively. Threads share some or all of the available memory and can
539 %have private memory areas [6].
540
541 OpenMP (Open Multi-processing) is an application programming interface for parallel programming~\cite{openmp13}. It is a portable approach based on the multithreading designed for shared memory computers, where a master thread forks a number of slave threads which execute blocks of code in parallel. An OpenMP program alternates sequential regions and parallel regions of code, where the sequential regions are executed by the master thread and the parallel ones may be executed by multiple threads. During the execution of an OpenMP program the threads communicate their data (read and modified) in the shared memory. One advantage of OpenMP is the global view of the memory address space of an application. This allows relatively a fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of performances in large scale-applications. 
542
543 \subsection{MPI} 
544 %The MPI (Message Passing Interface) library allows to create computer programs that run on a distributed memory architecture. The various processes have their own environment of execution and execute their code in a asynchronous way, according to the MIMD model  (Multiple Instruction streams, Multiple Data streams); they communicate and synchronize by exchanging messages~\cite{Peter96}. MPI messages are explicitly sent, while the exchanges are implicit within the framework of a multi-thread programming environment like OpenMP or Pthreads.
545
546 MPI (Message Passing Interface) is a portable message passing style of the parallel programming designed especially for the distributed memory architectures~\cite{Peter96}. In most MPI implementations, a computation contains a fixed set of processes created at the initialization of the program in such way one process is created per processor. The processes synchronize their computations and communicate by sending/receiving messages to/from other processes. In this case, the data are explicitly exchanged by message passing while the data exchanges are implicit in a multithread programming model like OpenMP and Pthreads. However in the MPI programming model, the processes may either execute different programs referred to as multiple program multiple data (MPMD) or every process executes the same program (SPMD). The MPI approach is one of most used HPC programming model to solve large scale and complex applications.
547  
548 \subsection{CUDA}
549 %CUDA (is an acronym of the Compute Unified Device Architecture) is a parallel computing architecture developed by NVIDIA~\cite{CUDA10}.The unit of execution in CUDA is called a thread. Each thread executes a kernel by the streaming processors in parallel. In CUDA, a group of threads that are executed together is called a thread block, and the computational grid consists of a grid of thread blocks. Additionally, a thread block can use the shared memory on a single multiprocessor while the grid executes a single CUDA program logically in parallel. Thus in CUDA programming, it is necessary to design carefully the arrangement of the thread blocks in order to ensure low latency and a proper usage of shared memory, since it can be shared only in a thread block scope. The effective bandwidth of each memory space depends on the memory access pattern. Since the global memory has lower bandwidth than the shared memory, the global memory accesses should be minimized.
550
551 CUDA (Compute Unified Device Architecture) is a parallel computing architecture developed by NVIDIA~\cite{CUDA15} for GPUs. It provides a high level GPGPU-based programming model to program GPUs for general purpose computations and non-graphic applications. The GPU is viewed as an accelerator such that data-parallel operations of a CUDA program running on a CPU are off-loaded onto GPU and executed by this later. The data-parallel operations executed by GPUs are called kernels. The same kernel is executed in parallel by a large number of threads organized in grids of thread blocks, such that each GPU multiprocessor executes one or more thread blocks in SIMD fashion (Single Instruction, Multiple Data) and in turn each core of the multiprocessor executes one or more threads within a block. Threads within a block can cooperate by sharing data through a fast shared memory and coordinate their execution through synchronization points. In contrast, within a grid of thread blocks, there is no synchronization at all between blocks. The GPU only works on data filled in the global memory and the final results of the kernel executions must be transferred out of the GPU. In the GPU, the global memory has lower bandwidth than the shared memory associated to each multiprocessor. Thus in the CUDA programming, it is necessary to design carefully the arrangement of the thread blocks in order to ensure low latency and a proper usage of the shared memory, and the global memory accesses should be minimized.
552
553 %We introduced three paradigms of parallel programming. Our objective consists in implementing a root finding polynomial algorithm on multiple GPUs. To this end, it is primordial to know how to manage CUDA contexts of different GPUs. A direct method for controlling the various GPUs is to use as many threads or processes as GPU devices. We can choose the GPU index based on the identifier of OpenMP thread or the rank of the MPI process. Both approaches will be investigated.
554
555 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
556 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
557
558 \section{The Ehrlich-Aberth algorithm on a GPU}
559 \label{sec3}
560
561 \subsection{The Ehrlich-Aberth method}
562 %A cubically convergent iteration method to find zeros of
563 %polynomials was proposed by O. Aberth~\cite{Aberth73}. The
564 %Ehrlich-Aberth (EA is short) method contains 4 main steps, presented in what
565 %follows.
566
567 %The Aberth method is a purely algebraic derivation. 
568 %To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors 
569
570 %\begin{equation}
571 %w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
572 %\end{equation}
573
574 %And let a rational function $R_{i}(z)$ be the correction term of the
575 %Weistrass method~\cite{Weierstrass03}
576
577 %\begin{equation}
578 %R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
579 %\end{equation}
580
581 %Differentiating the rational function $R_{i}(z)$ and applying the
582 %Newton method, we have:
583
584 %\begin{equation}
585 %\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
586 %\end{equation}
587 %where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z 
588 %Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.% 
589
590
591 %\subsubsection{Polynomials Initialization}
592 %The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients %$a_{i}$:
593
594 %\begin{equation}
595 %\label{eq:SimplePolynome}
596 %  p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
597 %\end{equation}
598
599
600 %\subsubsection{Vector $Z^{(0)}$ Initialization}
601 %\label{sec:vec_initialization}
602 %As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , %n.$
603 %The initial guess is very important since the number of steps needed by the iterative method to %reach
604 %a given approximation strongly depends on it.
605 %In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
606 %equi-distant points on a circle of center 0 and radius r, where r is
607 %an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
608 %performed this choice by selecting complex numbers along different
609 %circles which relies on the result of~\cite{Ostrowski41}.
610
611 %\begin{equation}
612 %\label{eq:radiusR}
613 %%\begin{align}
614 %\sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
615 %v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
616 %%\end{align}
617 %\end{equation}
618 %Where:
619 %\begin{equation}
620 %u_{i}=2.|a_{i}|^{\frac{1}{i}};
621 %v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
622 %\end{equation}
623
624 %\subsubsection{Iterative Function}
625 %The operator used by the Aberth method  corresponds to the
626 %equation~\ref{Eq:EA1}, it enables the convergence towards
627 %the polynomials zeros, provided all the roots are distinct.
628
629 %Here we give a second form of the iterative function used by the Ehrlich-Aberth method: 
630
631 %\begin{equation}
632 %\label{Eq:EA-1}
633 %EA: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
634 %{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, %i=1,. . . .,n
635 %\end{equation}
636
637 %\subsubsection{Convergence Condition}
638 %The convergence condition determines the termination of the algorithm. It consists in stopping the %iterative function  when the roots are sufficiently stable. We consider that the method converges %sufficiently when:
639
640 %\begin{equation}
641 %\label{eq:AAberth-Conv-Cond}
642 %\forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
643 %\end{equation}
644
645
646 %\begin{figure}[htbp]
647 %\centering
648  % \includegraphics[angle=-90,width=0.5\textwidth]{EA-Algorithm}
649 %\caption{The Ehrlich-Aberth algorithm on single GPU}
650 %\label{fig:03}
651 %\end{figure}
652
653 %the Ehrlich-Aberth method is an iterative  method, contain 4 steps, start from the initial approximations of all the roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer method to assure the distinction of the initial vector roots, than in step 3 we apply the the iterative function based on the Newton's method and Weiestrass operator~\cite{,}, witch will make it possible to converge to the roots solution, provided that all the root are different.
654
655 The Ehrlich-Aberth method is a simultaneous method~\cite{Aberth73} using the following iteration
656 \begin{equation}
657 \label{Eq:EA1}
658 EA: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
659 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n
660 \end{equation}
661
662 This methods contains 4 steps. The first step consists of the initial
663 approximations of all the roots of the polynomial. The second step
664 initializes the solution vector $Z$ using the Guggenheimer
665 method~\cite{Gugg86} to ensure the distinction of the initial vector
666 roots. In step 3, the iterative function based on the Newton's
667 method~\cite{newt70} and Weiestrass operator~\cite{Weierstrass03} is
668 applied. With this step the computation of roots will converge,
669 provided that all roots are different.
670
671
672 In order to stop the iterative function, a stop condition is
673 applied. This condition checks that all the root modules are lower
674 than a fixed value $\xi$.
675
676 \begin{equation}
677 \label{eq:Aberth-Conv-Cond}
678 \forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
679 \end{equation}
680 \subsection{Improving Ehrlich-Aberth method}
681 With high degree polynomials, the Ehrlich-Aberth method suffers from
682 floating point overflows due to the mantissa of floating points
683 representations. This induces errors in the computation of $p(z)$ when
684 $z$ is large.
685  
686 %Experimentally, it is very difficult to solve polynomials with the Ehrlich-Aberth method and have roots which except the circle of unit, represented by the radius $r$ evaluated as: 
687
688 %\begin{equation}
689 %\label{R.EL}
690 %R = exp(log(DBL\_MAX)/(2*n) );
691 %\end{equation}
692
693
694
695 % where \verb=DBL_MAX= stands for the maximum representable \verb=double= value.
696  
697 In order to solve this problem, we propose to modify the iterative
698 function by using the logarithm and the exponential of a complex and
699 we propose a new version of the Ehrlich-Aberth method.  This method
700 allows us to exceed the computation of the polynomials of degree
701 100,000 and to reach a degree up to more than 1,000,000. This new
702 version of the Ehrlich-Aberth method with exponential and logarithm is
703 defined as follows:
704
705 \begin{equation}
706 \label{Log_H2}
707 z^{k+1}_{i}=z_{i}^{k}-\exp \left(\ln \left(
708 p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln\left(1-Q(z^{k}_{i})\right)\right),
709 \end{equation}
710
711 where:
712
713 \begin{eqnarray}
714 \label{Log_H1}
715 Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
716 \sum_{i\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right) \nonumber  \\
717 i=1,...,n  
718 \end{eqnarray}
719
720
721 %We propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent. 
722 Using the logarithm  and the exponential operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations manipulate lower absolute values~\cite{Karimall98}.
723
724 %This problem was discussed earlier in~\cite{Karimall98} for the Durand-Kerner method. The authors
725 %propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent. Using the logarithm  and the exponential operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations manipulate lower absolute values and the roots for large polynomial degrees can be looked for successfully~\cite{Karimall98}.
726
727 \subsection{Ehrlich-Aberth parallel implementation on CUDA}
728 %We introduced three paradigms of parallel programming.
729
730 Our objective consists in implementing a root finding polynomial
731 algorithm on multiple GPUs. To this end, it is primordial to know how
732 to manage CUDA contexts of different GPUs. A direct method for
733 controlling the various GPUs is to use as many threads or processes as
734 GPU devices. We can choose the GPU index based on the identifier of
735 OpenMP thread or the rank of the MPI process. Both approaches will be
736 investigated.
737
738
739
740
741 Like any parallel code, a GPU parallel implementation first requires
742 to determine the sequential tasks and the parallelizable parts of the
743 sequential version of the program/algorithm. In our case, all the
744 operations that are easy to execute in parallel must be made by the
745 GPU to accelerate the execution of the application, like the step 3
746 and step 4. On the other hand, all the sequential operations and the
747 operations that have data dependencies between threads or recursive
748 computations must be executed by only one CUDA or CPU thread (step 1
749 and step 2). Initially, we specify the organization of parallel
750 threads, by specifying the dimension of the grid Dimgrid, the number
751 of blocks per grid DimBlock and the number of threads per block.
752
753 The code is organized kernels which are part of code that are run on
754 GPU devices. For step 3, there are two kernels, the first named
755 \textit{save} is used to save vector $Z^{K-1}$ and the second one is
756 named \textit{update} and is used to update the $Z^{K}$ vector. For
757 step 4, a kernel tests the convergence of the method. In order to
758 compute the function H, we have two possibilities: either to use the
759 Jacobi mode, or the Gauss-Seidel mode of iterating which uses the most
760 recent computed roots. It is well known that the Gauss-Seidel mode
761 converges more quickly. So, we use Gauss-Seidel iterations. To
762 parallelize the code, we create kernels and many functions to be
763 executed on the GPU for all the operations dealing with the
764 computation on complex numbers and the evaluation of the
765 polynomials. As said previously, we manage both functions of
766 evaluation: the normal method, based on the method of
767 Horner and the method based on the logarithm of the polynomial. All
768 these methods were rather long to implement, as the development of
769 corresponding kernels with CUDA is longer than on a CPU host. This
770 comes in particular from the fact that it is very difficult to debug
771 CUDA running threads like threads on a CPU host. In the following
772 paragraph Algorithm~\ref{alg1-cuda} shows the GPU parallel
773 implementation of Ehrlich-Aberth method.
774
775 \begin{algorithm}[htpb]
776 \label{alg1-cuda}
777 \LinesNumbered
778 \SetAlgoNoLine
779 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
780
781 \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
782   threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z_{max}$ (Maximum value of stop condition)}
783
784 \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
785
786 %\BlankLine
787
788 Initialization of P\;
789 Initialization of Pu\;
790 Initialization of the solution vector $Z^{0}$\;
791 Allocate and copy initial data to the GPU global memory\;
792 \While {$\Delta z_{max} > \epsilon$}{
793    $ kernel\_save(ZPrec,Z)$\;
794    $ kernel\_update(Z,P,Pu)$\;
795  $\Delta z_{max}=kernel\_testConverge(Z,ZPrec)$\;
796
797 }
798 Copy results from GPU memory to CPU memory\;
799 \end{algorithm}
800
801  
802 \section{The EA algorithm on Multiple GPUs}
803 \label{sec4}
804 \subsection{M-GPU : an OpenMP-CUDA approach}
805 Our OpenMP-CUDA implementation of EA algorithm is based on the hybrid
806 OpenMP and CUDA programming model.  All the data
807 are shared with OpenMP amoung all the OpenMP threads. The shared data
808 are the solution vector $Z$, the polynomial to solve $P$, and the
809 error vector $\Delta z$. The number of OpenMP threads is equal to the
810 number of GPUs, each OpenMP thread binds to one GPU, and it controls a
811 part of the shared memory. More precisely each OpenMP thread owns of
812 the vector Z, that is $(n/num\_gpu)$ roots where $n$ is the
813 polynomial's degree and $num\_gpu$ the total number of available
814 GPUs. Then all GPUs will have a grid of computation organized
815 according to the device performance and the size of data on which it
816 runs the computation kernels.
817
818 To compute one iteration of the EA method each GPU performs the
819 followings steps. First roots are shared with OpenMP. Each thread
820 starts by copying all the previous roots inside its GPU. Then each GPU
821 will compute an iteration of the EA method on its own roots. For that
822 all the other roots are used. At the end of an iteration, the updated
823 roots are copied from the GPU to the CPU. The convergence is checked
824 on the new roots. Finally each CPU will update its own roots in the
825 shared memory arrays containing all the roots.
826
827 %In principle a grid is set by two parameter DimGrid, the number of block per grid, DimBloc: the number of threads per block. The following schema  shows the architecture of (CUDA,OpenMP).
828
829 %\begin{figure}[htbp]
830 %\centering
831  % \includegraphics[angle=-90,width=0.5\textwidth]{OpenMP-CUDA}
832 %\caption{The OpenMP-CUDA architecture}
833 %\label{fig:03}
834 %\end{figure}
835 %Each thread OpenMP compute the kernels on GPUs,than after each iteration they copy out the data from GPU memory to CPU shared memory. The kernels are re-runs is up to the roots converge sufficiently. Here are below the corresponding algorithm:
836
837 %% \RC{Surement à virer ou réécrire pour etre compris sans algo}
838 %% $num\_gpus$ OpenMP threads  are created using
839 %% \verb=omp_set_num_threads();=function (step $3$, Algorithm
840 %% \ref{alg2-cuda-openmp}), the shared memory is created using
841 %% \verb=#pragma omp parallel shared()= OpenMP function (line $5$,
842 %% Algorithm\ref{alg2-cuda-openmp}), then each OpenMP thread allocates
843 %% memory and copies initial data from CPU memory to GPU global memory,
844 %% executes the kernels on GPU, but computes only his portion of roots
845 %% indicated with variable \textit{index} initialized in (line 5,
846 %% Algorithm \ref{alg2-cuda-openmp}), used as input data in the
847 %% $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-openmp}). After
848 %% each iteration, all OpenMP threads synchronize using
849 %% \verb=#pragma omp barrier;= to gather all the correct values of
850 %% $\Delta z$, thus allowing the computation the maximum stop condition
851 %% on vector $\Delta z$ (line 12, Algorithm
852 %% \ref{alg2-cuda-openmp}). Finally, threads copy the results from GPU
853 %% memories to CPU memory. The OpenMP threads execute kernels until the
854 %% roots sufficiently converge.
855
856
857 \begin{algorithm}[htpb]
858 \label{alg2-cuda-openmp}
859 \LinesNumbered
860 \SetAlgoNoLine
861 \caption{CUDA-OpenMP Algorithm to find roots with the Ehrlich-Aberth method}
862
863 \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
864   threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degree), $\Delta z$ ( Vector of errors for stop condition), $num\_gpus$ (number of OpenMP threads/ Number of GPUs), $Size$ (number of roots)}
865
866 \KwOut {$Z$ ( Root's vector), $ZPrec$ (Previous root's vector)}
867
868 \BlankLine
869
870 Initialization of P\;
871 Initialization of Pu\;
872 Initialization of the solution vector $Z^{0}$\;
873 omp\_set\_num\_threads(num\_gpus)\;
874 \#pragma omp parallel shared(Z,$\Delta$ z,P)\;
875 \Indp
876 {
877 gpu\_id=cudaGetDevice()\;
878 Allocate memory on GPU\;
879 Compute local size and offet according to gpu\_id\;
880 \While {$error > \epsilon$}{
881   copy Z from CPU to GPU\;
882 $ ZPrec_{loc}=kernel\_save(Z_{loc})$\;
883 $ Z_{loc}=kernel\_update(Z,P,Pu)$\;
884 $\Delta z[gpu\_id] = kernel\_testConv(Z_{loc},ZPrec_{loc})$\;
885 $  error= Max(\Delta z)$\;
886   copy $Z_{loc}$ from GPU to Z in CPU
887 }
888 \Indm}
889 \end{algorithm}
890
891
892
893 \subsection{Multi-GPU : an MPI-CUDA approach}
894 %\begin{figure}[htbp]
895 %\centering
896  % \includegraphics[angle=-90,width=0.2\textwidth]{MPI-CUDA}
897 %\caption{The MPI-CUDA architecture }
898 %\label{fig:03}
899 %\end{figure}
900 Our parallel implementation of EA to find root of polynomials using a CUDA-MPI approach is a data parallel approach. It splits input data of the polynomial to solve among MPI processes. In Algorithm \ref{alg2-cuda-mpi}, input data are the polynomial to solve $P$, the solution vector $Z$, the previous solution vector $ZPrev$, and the value of errors of stop condition $\Delta z$. Let $p$ denote the number of MPI processes on and $n$ the degree of the polynomial to be solved. The algorithm performs a simple data partitioning by creating $p$ portions, of at most $\lceil n/p \rceil$ roots to find per MPI process, for each $Z$ and $ZPrec$. Consequently, each MPI process of rank $k$ will have its own solution vector $Z_{k}$ and $ZPrec$, the error related to the stop condition $\Delta z_{k}$, enabling each MPI process to compute $\lceil n/p \rceil$ roots.
901
902 Since a GPU works only on data already allocated in its memory, all local input data, $Z_{k}$, $ZPrec$ and $\Delta z_{k}$, must be transferred from CPU memories to the corresponding GPU memories. Afterwards, the same EA algorithm (Algorithm \ref{alg1-cuda}) is run by all processes but on different polynomial subset of roots $ p(x)_{k}=\sum_{i=1}^{n} a_{i}x^{i}, k=1,...,p$.  Each MPI process executes the  loop \verb=(While(...)...do)= containing the CUDA kernels but each MPI process  computes only its own portion of the roots according to the rule ``''owner computes``''. The local range of roots is indicated with the \textit{index} variable initialized at (line 5, Algorithm \ref{alg2-cuda-mpi}), and passed as an input variable to $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-mpi}). After each iteration, MPI processes synchronize  (\verb=MPI_Allreduce= function) by a reduction on $\Delta z_{k}$ in order to compute the maximum error related to the stop condition.   Finally, processes copy the values of new computed roots  from GPU memories to CPU memories, then communicate their results to other processes with \verb=MPI_Alltoall= broadcast. If the stop condition is not verified ($error > \epsilon$) then processes stay withing the loop \verb= while(...)...do= until all the roots sufficiently converge.
903
904 %% \begin{enumerate}
905 %% \begin{algorithm}[htpb]
906 %% \label{alg2-cuda-mpi}
907 %% %\LinesNumbered
908 %% \caption{CUDA-MPI Algorithm to find roots with the Ehrlich-Aberth method}
909
910 %% \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
911 %%   threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z$ ( error of stop condition), $num_gpus$ (number of MPI processes/ number of GPUs), Size (number of roots)}
912
913 %% \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
914
915 %% \BlankLine
916 %% \item Initialization of P\;
917 %% \item Initialization of Pu\;
918 %% \item Initialization of the solution vector $Z^{0}$\;
919 %% \item Allocate and copy initial data from CPU memories to GPU global memories\;
920 %% \item $index= Size/num_gpus$\;
921 %% \item k=0\;
922 %% \While {$error > \epsilon$}{
923 %% \item Let $\Delta z=0$\;
924 %% \item $kernel\_save(ZPrec,Z)$\;
925 %% \item  k=k+1\;
926 %% \item $kernel\_update(Z,P,Pu,index)$\;
927 %% \item $kernel\_testConverge(\Delta z,Z,ZPrec)$\;
928 %% \item ComputeMaxError($\Delta z$,error)\;
929 %% \item Copy results from GPU memories to CPU memories\;
930 %% \item Send $Z[id]$ to all processes\;
931 %% \item Receive $Z[j]$ from every other process j\;
932 %% }
933 %% \end{algorithm}
934 %% \end{enumerate}
935 %% ~\\ 
936
937 %% \RC{ENCORE ENCORE PIRE}
938
939 \section{Experiments}
940 \label{sec5}
941 We study two categories of polynomials: sparse polynomials and full polynomials.\\
942 {\it A sparse polynomial} is a polynomial for which only some coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles:
943 \begin{equation}
944         \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
945 \end{equation}\noindent
946 {\it A full polynomial} is, in contrast, a polynomial for which all the coefficients are not null. A full polynomial is defined by:
947 %%\begin{equation}
948         %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
949 %%\end{equation}
950
951 \begin{equation}
952      {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
953 \end{equation}
954
955 For our test, 4 cards GPU tesla Kepler K40 are used.  In order to
956 evaluate both the GPU and Multi-GPU approaches, we performed a set of
957 experiments on a single GPU and multiple GPUs using OpenMP or MPI with
958 the EA algorithm, for both sparse and full polynomials of different
959 sizes.  All experimental results obtained are perfomed with double
960 precision float data and the convergence threshold of the EA method is
961 set to $10^{-7}$.  The initialization values of the vector solution of
962 the methods are given by Guggenheimer method~\cite{Gugg86}.
963
964
965 \subsection{Evaluation of the CUDA-OpenMP approach}
966
967 Here we report some experiments witt full and sparse polynomials of
968 different degrees with multiple GPUs.
969 \subsubsection{Execution times of the EA method to solve sparse polynomials on multiple GPUs}
970  
971 In this experiments we report the execution time of the EA algorithm, on single GPU and multi-GPUs with (2,3,4) GPUs, for different sparse polynomial degrees ranging from 100,000 to 1,400,000.
972
973 \begin{figure}[htbp]
974 \centering
975   \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_omp}
976 \caption{Execution time in seconds of the Ehrlich-Aberth method to
977   solve sparse polynomials on multiple GPUs with CUDA-OpenMP.}
978 \label{fig:01}
979 \end{figure}
980
981 Figure~\ref{fig:01} shows that the CUDA-OpenMP approach scales well
982 with multiple GPUs. This version allows us to solve sparse polynomials
983 of very high degrees.
984
985 \subsubsection{Execution times of the EA method to solve full polynomials on multiple GPUs}
986
987 These experiments show the execution times of the EA algorithm, on a single GPU and on multiple GPUs using the CUDA OpenMP approach for full polynomials of degrees ranging from 100,000 to 1,400,000.
988
989 \begin{figure}[htbp]
990 \centering
991   \includegraphics[angle=-90,width=0.5\textwidth]{Full_omp}
992 \caption{Execution time in seconds of the Ehrlich-Aberth method to
993   solve full polynomials on multiple GPUs with CUDA-OpenMP.}
994 \label{fig:02}
995 \end{figure}
996
997 In Figure~\ref{fig:02}, we can observe that with full polynomials the EA version with
998 CUDA-OpenMP scales also well. Using 4 GPUs allows us to achieve a
999 quasi-linear speedup.
1000
1001 \subsection{Evaluation of the CUDA-MPI approach}
1002 In this part we perform some experiments to evaluate the CUDA-MPI
1003 approach to solve full and sparse polynomials of degrees ranging from
1004 100,000 to 1,400,000.
1005
1006 \subsubsection{Execution times of the EA method to solve sparse polynomials on multiple GPUs}
1007
1008 \begin{figure}[htbp]
1009 \centering
1010   \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_mpi}
1011 \caption{Execution time in seconds of the Ehrlich-Aberth method to
1012   solve sparse polynomials on multiple GPUs with CUDA-MPI.}
1013 \label{fig:03}
1014 \end{figure}
1015 Figure~\ref{fig:03} shows the execution times of te EA algorithm,
1016 for a single GPU, and multiple GPUs (2, 3, 4) with the CUDA-MPI approach.
1017
1018 \subsubsection{Execution time of the Ehrlich-Aberth method for solving full polynomials on multiple GPUs using the Multi-GPU appraoch}
1019
1020 \begin{figure}[htbp]
1021 \centering
1022  \includegraphics[angle=-90,width=0.5\textwidth]{Full_mpi}
1023 \caption{Execution times in seconds of the Ehrlich-Aberth method for
1024   full polynomials on  multiple GPUs with CUDA-MPI.}
1025 \label{fig:04}
1026 \end{figure}
1027
1028 In Figure~\ref{fig:04}, we can also observe that the CUDA-MPI approach
1029 is also efficient to solve full polynimails on multiple GPUs.
1030
1031 \subsection{Comparison of  the CUDA-OpenMP and the CUDA-MPI approaches}
1032
1033 In the previuos section we saw that both approches are very effecient
1034 to  reduce the execution times the  sparse and full polynomials. In
1035 this section we try to compare these two approaches.
1036
1037 \subsubsection{Solving sparse polynomials}
1038 In this experiment three sparse polynomials of size 200K, 800K and 1,4M are investigated.
1039 \begin{figure}[htbp]
1040 \centering
1041  \includegraphics[angle=-90,width=0.5\textwidth]{Sparse}
1042 \caption{Execution times  to solvs sparse polynomials of three
1043   distinct sizes on multiple GPUs using MPI and OpenMP with the
1044   Ehrlich-Aberth method}
1045 \label{fig:05}
1046 \end{figure}
1047 In Figure~\ref{fig:05} there is one curve for CUDA-MPI and another one
1048 for CUDA-OpenMP. We can see that the results are quite similar between
1049 OpenMP and MPI for the polynomials size of 200K. For the size of 800K,
1050 the MPI version is a little bit slower than the OpenMP approach but for
1051 the 1,4 millions size, there is a slight advantage for the MPI
1052 version.
1053
1054 \subsubsection{Solving full polynomials}
1055 \begin{figure}[htbp]
1056 \centering
1057  \includegraphics[angle=-90,width=0.5\textwidth]{Full}
1058 \caption{Execution time for solving full polynomials of three distinct sizes on multiple GPUs using MPI and OpenMP approaches using Ehrlich-Aberth}
1059 \label{fig:06}
1060 \end{figure}
1061 In Figure~\ref{fig:06}, we can see that when it comes to full polynomials, both approaches are almost equivalent.
1062
1063 \subsubsection{Solving sparse and full polynomials of the same size with CUDA-MPI}
1064
1065 In this experiment we compare the execution time of the EA algorithm
1066 according to the number of GPUs to solve sparse and full
1067 polynomials on multiples GPUs using MPI. We chose three sparse and full
1068 polynomials of size 200K, 800K and 1,4M.
1069 \begin{figure}[htbp]
1070 \centering
1071  \includegraphics[angle=-90,width=0.5\textwidth]{MPI}
1072 \caption{Execution times to solve sparse and full polynomials of three distinct sizes on multiple GPUs using MPI.}
1073 \label{fig:07}
1074 \end{figure}
1075 In Figure~\ref{fig:07} we can see that CUDA-MPI can solve sparse and
1076 full polynomials of high degrees, the execution times with sparse
1077 polynomial are very low compared to full polynomials. With sparse
1078 polynomials the number of monomials is reduced, consequently the number
1079 of operations is reduced and the execution time decreases.
1080
1081 \subsubsection{Solving sparse and full polynomials of the same size with CUDA-OpenMP}
1082
1083 \begin{figure}[htbp]
1084 \centering
1085  \includegraphics[angle=-90,width=0.5\textwidth]{OMP}
1086 \caption{Execution time for solving sparse and full polynomials of three distinct sizes on multiple GPUs using OpenMP}
1087 \label{fig:08}
1088 \end{figure}
1089
1090 Figure ~\ref{fig:08} shows the impact of sparsity on the effectiveness of the CUDA-OpenMP approach. We can see that the impact follows the same pattern, a difference in execution time in favor of the sparse polynomials. 
1091
1092 \subsection{Scalability of the EA method on multiple GPUs to solve very high degree polynomials}
1093 These experiments report the execution times of the EA method for
1094 sparse and full polynomials ranging from 1,000,000 to 5,000,000.
1095 \begin{figure}[htbp]
1096 \centering
1097  \includegraphics[angle=-90,width=0.5\textwidth]{big}
1098  \caption{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials of high degree on 4 GPUs for sizes ranging from 1M to 5M}
1099 \label{fig:09}
1100 \end{figure}
1101 In Figure~\ref{fig:09} we can see that both approaches are scalable
1102 and can solve very high degree polynomials. In addition, with full polynomial as well as sparse ones, both
1103 approaches give very similar results.
1104
1105 %SIDER JE viens de virer \c ca For sparse polynomials here are a noticeable difference in favour of MPI when the degree is
1106 %above 4 millions. Between 1  and 3 millions, OpenMP is more effecient.
1107 %Under 1 million, OpenMPI and MPI are almost equivalent.
1108
1109 %SIDER : il faut une explication sur les différences ici aussi.
1110  
1111 %for sparse and full polynomials
1112 % An example of a floating figure using the graphicx package.
1113 % Note that \label must occur AFTER (or within) \caption.
1114 % For figures, \caption should occur after the \includegraphics.
1115 % Note that IEEEtran v1.7 and later has special internal code that
1116 % is designed to preserve the operation of \label within \caption
1117 % even when the captionsoff option is in effect. However, because
1118 % of issues like this, it may be the safest practice to put all your
1119 % \label just after \caption rather than within \caption{}.
1120 %
1121 % Reminder: the "draftcls" or "draftclsnofoot", not "draft", class
1122 % option should be used if it is desired that the figures are to be
1123 % displayed while in draft mode.
1124 %
1125 %\begin{figure}[!t]
1126 %\centering
1127 %\includegraphics[width=2.5in]{myfigure}
1128 % where an .eps filename suffix will be assumed under latex, 
1129 % and a .pdf suffix will be assumed for pdflatex; or what has been declared
1130 % via \DeclareGraphicsExtensions.
1131 %\caption{Simulation results for the network.}
1132 %\label{fig_sim}
1133 %\end{figure}
1134
1135 % Note that the IEEE typically puts floats only at the top, even when this
1136 % results in a large percentage of a column being occupied by floats.
1137
1138
1139 % An example of a double column floating figure using two subfigures.
1140 % (The subfig.sty package must be loaded for this to work.)
1141 % The subfigure \label commands are set within each subfloat command,
1142 % and the \label for the overall figure must come after \caption.
1143 % \hfil is used as a separator to get equal spacing.
1144 % Watch out that the combined width of all the subfigures on a 
1145 % line do not exceed the text width or a line break will occur.
1146 %
1147 %\begin{figure*}[!t]
1148 %\centering
1149 %\subfloat[Case I]{\includegraphics[width=2.5in]{box}%
1150 %\label{fig_first_case}}
1151 %\hfil
1152 %\subfloat[Case II]{\includegraphics[width=2.5in]{box}%
1153 %\label{fig_second_case}}
1154 %\caption{Simulation results for the network.}
1155 %\label{fig_sim}
1156 %\end{figure*}
1157 %
1158 % Note that often IEEE papers with subfigures do not employ subfigure
1159 % captions (using the optional argument to \subfloat[]), but instead will
1160 % reference/describe all of them (a), (b), etc., within the main caption.
1161 % Be aware that for subfig.sty to generate the (a), (b), etc., subfigure
1162 % labels, the optional argument to \subfloat must be present. If a
1163 % subcaption is not desired, just leave its contents blank,
1164 % e.g., \subfloat[].
1165
1166
1167 % An example of a floating table. Note that, for IEEE style tables, the
1168 % \caption command should come BEFORE the table and, given that table
1169 % captions serve much like titles, are usually capitalized except for words
1170 % such as a, an, and, as, at, but, by, for, in, nor, of, on, or, the, to
1171 % and up, which are usually not capitalized unless they are the first or
1172 % last word of the caption. Table text will default to \footnotesize as
1173 % the IEEE normally uses this smaller font for tables.
1174 % The \label must come after \caption as always.
1175 %
1176 %\begin{table}[!t]
1177 %% increase table row spacing, adjust to taste
1178 %\renewcommand{\arraystretch}{1.3}
1179 % if using array.sty, it might be a good idea to tweak the value of
1180 % \extrarowheight as needed to properly center the text within the cells
1181 %\caption{An Example of a Table}
1182 %\label{table_example}
1183 %\centering
1184 %% Some packages, such as MDW tools, offer better commands for making tables
1185 %% than the plain LaTeX2e tabular which is used here.
1186 %\begin{tabular}{|c||c|}
1187 %\hline
1188 %One & Two\\
1189 %\hline
1190 %Three & Four\\
1191 %\hline
1192 %\end{tabular}
1193 %\end{table}
1194
1195
1196 % Note that the IEEE does not put floats in the very first column
1197 % - or typically anywhere on the first page for that matter. Also,
1198 % in-text middle ("here") positioning is typically not used, but it
1199 % is allowed and encouraged for Computer Society conferences (but
1200 % not Computer Society journals). Most IEEE journals/conferences use
1201 % top floats exclusively. 
1202 % Note that, LaTeX2e, unlike IEEE journals/conferences, places
1203 % footnotes above bottom floats. This can be corrected via the
1204 % \fnbelowfloat command of the stfloats package.
1205
1206
1207
1208
1209 \section{Conclusion}
1210 \label{sec6}
1211 In this paper, we have presented a parallel implementation of
1212 Ehrlich-Aberth algorithm to solve full and sparse polynomials, on
1213 single GPU with CUDA and on multiple GPUs using two parallel
1214 paradigms: shared memory with OpenMP and distributed memory with
1215 MPI. These architectures were addressed by a CUDA-OpenMP approach and
1216 CUDA-MPI approach, respectively.  Experiments show that, using
1217 parallel programming model like (OpenMP, MPI). We can efficiently
1218 manage multiple graphics cards to solve the same
1219 problem and accelerate the parallel execution with 4 GPUs and solve a
1220 polynomial of degree up to 5,000,000, four times faster than on single
1221 GPU. 
1222
1223
1224 %In future, we will evaluate our parallel implementation of Ehrlich-Aberth algorithm on other parallel programming model 
1225
1226 Our next objective is to extend the model presented here with clusters
1227 of GPU nodes, with a three-level scheme: inter-node communication via
1228 MPI processes (distributed memory), management of multi-GPU node by
1229 OpenMP threads (shared memory).
1230
1231 %present a communication approach between multiple GPUs. The comparison between MPI and OpenMP as GPUs controllers shows that these
1232 %solutions can effectively manage multiple graphics cards to work together
1233 %to solve the same problem
1234
1235
1236  %than we have presented two communication approach between multiple GPUs.(CUDA-OpenMP) approach and (CUDA-MPI) approach, in the objective to manage multiple graphics cards to work together and solve the same problem. in the objective to manage multiple graphics cards to work together and solve the same problem. 
1237
1238
1239
1240
1241 % conference papers do not normally have an appendix
1242
1243
1244 % use section* for acknowledgment
1245 \section*{Acknowledgment}
1246
1247 Computations have been performed on the supercomputer facilities of
1248 the Mésocentre de calcul de Franche-Comté. We also would like to thank
1249 Nvidia for hardware donation under CUDA Research Center 2014.
1250
1251
1252
1253
1254
1255
1256 % trigger a \newpage just before the given reference
1257 % number - used to balance the columns on the last page
1258 % adjust value as needed - may need to be readjusted if
1259 % the document is modified later
1260 %\IEEEtriggeratref{8}
1261 % The "triggered" command can be changed if desired:
1262 %\IEEEtriggercmd{\enlargethispage{-5in}}
1263
1264 % references section
1265
1266 % can use a bibliography generated by BibTeX as a .bbl file
1267 % BibTeX documentation can be easily obtained at:
1268 % http://mirror.ctan.org/biblio/bibtex/contrib/doc/
1269 % The IEEEtran BibTeX style support page is at:
1270 % http://www.michaelshell.org/tex/ieeetran/bibtex/
1271 %\bibliographystyle{IEEEtran}
1272 % argument is your BibTeX string definitions and bibliography database(s)
1273 %\bibliography{IEEEabrv,../bib/paper}
1274 %\bibliographystyle{./IEEEtran}
1275 \bibliography{mybibfile}
1276
1277 %
1278 % <OR> manually copy in the resultant .bbl file
1279 % set second argument of \begin to the number of references
1280 % (used to reserve space for the reference number labels box)
1281 %\begin{thebibliography}{1}
1282
1283 %\bibitem{IEEEhowto:kopka}
1284 %H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus
1285  % 0.5em minus 0.4em\relax Harlow, England: Addison-Wesley, 1999.
1286   
1287 %\bibitem{IEEEhowto:NVIDIA12} 
1288  %NVIDIA Corporation, \textit{Whitepaper NVIDA’s Next Generation CUDATM Compute
1289 %Architecture: KeplerTM }, 1st ed., 2012.
1290
1291 %\end{thebibliography}
1292
1293
1294
1295
1296 % that's all folks
1297 \end{document}
1298
1299