6 zone limite de 'log-exp' 1.00356
7 (1 +i*0)*x^0 + (-0.1 +i*0)*x^40000 + (-10 +i*0)*x^60000 + (1 +i*0)*x^100000
9 (-4000 +i*0)*x^39999 + (-600000 +i*0)*x^59999 + (100000 +i*0)*x^99999
11 zone limite de 'log-exp' 1.00356
12 dimgrid 391 dimblock 256 degrePoly 100000
13 proc 1, start 50048 size 50048
14 dimgrid 391 dimblock 256 degrePoly 100000
15 proc 0, start 0 size 50048
16 proc 0 start 0 size 50048
17 proc 1 start 50048 size 50048
18 iter : 1 Arret : 0.00432033 s/iter 0.441987
19 iter : 2 Arret : 0.00333072 s/iter 0.441990
20 iter : 3 Arret : 0.00502267 s/iter 0.441993
21 iter : 4 Arret : 0.00355231 s/iter 0.441871
22 iter : 5 Arret : 0.0357862 s/iter 0.440469
23 iter : 6 Arret : 0.0383168 s/iter 0.439919
24 iter : 7 Arret : 0.017297 s/iter 0.440045
25 iter : 8 Arret : 0.00624379 s/iter 0.441957
26 iter : 9 Arret : 0.00761733 s/iter 0.441910
27 iter : 10 Arret : 0.00478678 s/iter 0.441922
28 iter : 11 Arret : 0.00280171 s/iter 0.441920
29 iter : 12 Arret : 0.00259688 s/iter 0.441891
30 iter : 13 Arret : 0.000264933 s/iter 0.441883
31 iter : 14 Arret : 0.000412627 s/iter 0.441836
32 iter : 15 Arret : 6.13378E-05 s/iter 0.441759
33 iter : 16 Arret : 7.28496E-05 s/iter 0.441775
34 iter : 17 Arret : 2.00235E-05 s/iter 0.441823
35 iter : 18 Arret : 1.13127E-07 s/iter 0.441777
36 iter : 19 Arret : 3.56513E-10 s/iter 0.441789
37 iter : 20 Arret : 3.22954E-12 s/iter 0.441727
38 iter : 21 Arret : 4.80642E-14 s/iter 0.441805
39 temps : 9.36197 seconde(s)
41 Nb de depassements de capacite exponentielle : 0
42 Precision : 2.61117E-09
43 Stabilite : 4.80642E-14
44 +---+----------------------------+------------+----------------------------+
45 | i | Zi | mod(Zi) | P(Zi) |
46 +---+----------------------------+------------+----------------------------+
47 | 1| 0.54036 +i* 0.841503| 1.00006|-5.00602E-11 +i* 9.0853E-12|
48 | 2| -0.113164 +i* 0.993538| 0.999962|-4.34919E-12 +i* 9.60242E-13|
49 | 3| -0.226732 +i* -0.974016| 1.00006|-1.34468E-09 +i*-3.70749E-10|
50 | 4| -0.715763 +i* 0.698289| 0.999962| 9.11271E-13 +i* 2.47219E-12|
51 | 5| 0.439922 +i* -0.897993| 0.999962|-3.49498E-13 +i* 1.66432E-12|
52 | 6| -0.996122 +i* 0.0886386| 1.00006| 4.72785E-10 +i* 4.13616E-11|
53 | 7| 0.908546 +i* -0.417692| 0.999962| 2.07334E-12 +i* 2.33003E-12|
54 | 8| -0.827813 +i* -0.560935| 0.999962| 9.76996E-13 +i*-2.04309E-12|
55 | 9| 0.968129 +i* 0.250682| 1.00006| 1.35693E-10 +i*-3.47657E-10|
56 | 10| -0.286842 +i* -0.958038| 1.00006|-5.93554E-10 +i*-2.45345E-10|
57 | 11| 0.591653 +i* 0.806145| 0.999962|-9.87654E-13 +i*-3.03635E-12|
58 | 12| -0.0511836 +i* 0.998651| 0.999962|-2.22622E-12 +i*-3.69013E-14|
59 | 13| -0.67097 +i* 0.741432| 0.999962|-8.03801E-14 +i*-1.68204E-12|
60 | 14| 0.383249 +i* -0.923603| 0.999962|-1.29119E-12 +i*-1.37426E-12|
61 | 15| -0.988685 +i* 0.15039| 1.00006|-1.61051E-10 +i* 7.18515E-11|
62 | 16| 0.880824 +i* -0.473363| 0.999962| 1.58029E-12 +i*-2.34379E-12|
63 | 17| -0.861082 +i* -0.508391| 0.999962| 9.8066E-13 +i* 3.40478E-12|
64 | 18| 0.98184 +i* 0.190015| 1.00006| 8.88373E-10 +i*-2.66385E-10|
65 | 19| -0.345842 +i* -0.938354| 1.00006| 1.38421E-10 +i*-2.31696E-10|
66 | 20| 0.640621 +i* 0.767807| 0.999962|-6.98774E-13 +i* 1.13798E-12|
67 +---+----------------------------+------------+----------------------------+
68 40000 racines de module = 1.00006
69 60000 racines de module = 0.999962
72 zone limite de 'log-exp' 1.00178
73 (1 +i*0)*x^0 + (-0.1 +i*0)*x^50000 + (-10 +i*0)*x^150000 + (1 +i*0)*x^200000
75 (-5000 +i*0)*x^49999 + (-1.5E+06 +i*0)*x^149999 + (200000 +i*0)*x^199999
77 zone limite de 'log-exp' 1.00178
78 dimgrid 782 dimblock 256 degrePoly 200000
79 proc 1, start 100096 size 100096
80 dimgrid 782 dimblock 256 degrePoly 200000
81 proc 0, start 0 size 100096
82 proc 0 start 0 size 100096
83 proc 1 start 100096 size 100096
84 iter : 1 Arret : 0.000100259 s/iter 1.549219
85 iter : 2 Arret : 0.000107922 s/iter 1.549203
86 iter : 3 Arret : 0.000171733 s/iter 1.549184
87 iter : 4 Arret : 0.00061185 s/iter 1.549411
88 iter : 5 Arret : 0.0010321 s/iter 1.549237
89 iter : 6 Arret : 0.00450241 s/iter 1.549129
90 iter : 7 Arret : 0.041795 s/iter 1.549197
91 iter : 8 Arret : 0.017223 s/iter 1.549305
92 iter : 9 Arret : 0.0533779 s/iter 1.550585
93 iter : 10 Arret : 0.039107 s/iter 1.552343
94 iter : 11 Arret : 0.123151 s/iter 1.553157
95 iter : 12 Arret : 0.359595 s/iter 1.709131
96 iter : 13 Arret : 0.290348 s/iter 1.553214
97 iter : 14 Arret : 0.203399 s/iter 1.553134
98 iter : 15 Arret : 0.149431 s/iter 1.553275
99 iter : 16 Arret : 0.216969 s/iter 1.550621
100 iter : 17 Arret : 0.18978 s/iter 1.549079
101 iter : 18 Arret : 0.0852654 s/iter 1.549166
102 iter : 19 Arret : 0.0104045 s/iter 1.549193
103 iter : 20 Arret : 0.00205472 s/iter 1.549164
104 iter : 21 Arret : 3.35711E-06 s/iter 1.549109
105 iter : 22 Arret : 4.32566E-10 s/iter 1.549175
106 iter : 23 Arret : 4.32822E-14 s/iter 1.549174
107 temps : 35.9288 seconde(s)
109 Nb de depassements de capacite exponentielle : 0
110 Precision : 2.16329E-05
111 Stabilite : 2.48322E-14
112 +---+----------------------------+------------+----------------------------+
113 | i | Zi | mod(Zi) | P(Zi) |
114 +---+----------------------------+------------+----------------------------+
115 | 1| 0.540303 +i* 0.841453| 0.999985| 1.08703E-11 +i*-2.49217E-12|
116 | 2| -0.837195 +i* 0.546877| 0.999985| -5.4492E-12 +i* 1.09163E-12|
117 | 3| -0.553418 +i* -0.832885| 0.999985| -1.9722E-12 +i*-7.40397E-12|
118 | 4| 0.828599 +i* -0.559925| 1.00005|-7.54521E-09 +i* 1.47059E-08|
119 | 5| -0.8197 +i* 0.572767| 0.999985|-4.21663E-13 +i* -2.8616E-12|
120 | 6| -0.57917 +i* -0.815188| 0.999985|-5.13034E-12 +i*-1.52645E-12|
121 | 7| 0.810626 +i* -0.585537| 0.999985| 8.64808E-12 +i* 7.46794E-12|
122 | 8| 0.591872 +i* 0.806089| 1.00005|-1.69803E-09 +i* 9.43795E-09|
123 | 9| -0.801454 +i* 0.598134| 1.00005| 5.92533E-09 +i* 3.55911E-08|
124 | 10| -0.604356 +i* -0.796695| 0.999985|-1.64091E-13 +i* 1.59084E-12|
125 | 11| 0.791937 +i* -0.610578| 0.999985| 6.0707E-13 +i* 1.52922E-12|
126 | 12| 0.616763 +i* 0.78713| 0.999985|-4.48042E-12 +i* -2.6295E-12|
127 | 13| -0.782301 +i* 0.622877| 0.999985| 5.05185E-12 +i* 1.08102E-12|
128 | 14| -0.628991 +i* -0.777472| 1.00005| 6.93065E-09 +i*-8.65443E-09|
129 | 15| 0.772474 +i* -0.635023| 0.999985| 1.54783E-11 +i*-1.81338E-12|
130 | 16| 0.641054 +i* 0.767476| 0.999985|-3.47633E-12 +i* 1.20617E-11|
131 | 17| -0.762458 +i* 0.647014| 0.999985|-7.74447E-12 +i* 7.566E-12|
132 | 18| -0.652967 +i* -0.757366| 0.999985|-6.31406E-12 +i* 8.49495E-12|
133 | 19| 0.752302 +i* -0.658888| 1.00005| 3.99107E-09 +i* 1.02117E-08|
134 | 20| 0.66472 +i* 0.747072| 0.999985|-7.79776E-12 +i*-2.52076E-13|
135 +---+----------------------------+------------+----------------------------+
136 150000 racines de module = 0.999985
137 50000 racines de module = 1.00005
140 (1 +i*0)*x^0 + (-0.1 +i*0)*x^100000 + (-10 +i*0)*x^200000 + (1 +i*0)*x^300000
142 (-10000 +i*0)*x^99999 + (-2E+06 +i*0)*x^199999 + (300000 +i*0)*x^299999
144 zone limite de 'log-exp' 1.00118
145 zone limite de 'log-exp' 1.00118
146 dimgrid 1172 dimblock 256 degrePoly 300000
147 proc 1, start 150016 size 150016
148 dimgrid 1172 dimblock 256 degrePoly 300000
149 proc 0, start 0 size 150016
150 proc 1 start 150016 size 150016
151 proc 0 start 0 size 150016
152 iter : 1 Arret : 0.000350738 s/iter 3.329326
153 iter : 2 Arret : 0.00157404 s/iter 3.329147
154 iter : 3 Arret : 0.00192403 s/iter 3.329061
155 iter : 4 Arret : 0.00130168 s/iter 3.328994
156 iter : 5 Arret : 0.000986381 s/iter 3.329125
157 iter : 6 Arret : 0.00219179 s/iter 3.329118
158 iter : 7 Arret : 0.00236138 s/iter 3.329265
159 iter : 8 Arret : 0.00514705 s/iter 3.568724
160 iter : 9 Arret : 0.00503492 s/iter 3.575793
161 iter : 10 Arret : 0.00232055 s/iter 3.329310
162 iter : 11 Arret : 0.00230282 s/iter 3.328796
163 iter : 12 Arret : 0.00149448 s/iter 3.329192
164 iter : 13 Arret : 0.00191413 s/iter 3.329083
165 iter : 14 Arret : 0.000976148 s/iter 3.329104
166 iter : 15 Arret : 0.000659825 s/iter 3.329080
167 iter : 16 Arret : 0.000174592 s/iter 3.329074
168 iter : 17 Arret : 0.000151348 s/iter 3.329099
169 iter : 18 Arret : 7.09586E-06 s/iter 3.329000
170 iter : 19 Arret : 8.2328E-09 s/iter 3.329043
171 iter : 20 Arret : 8.22354E-12 s/iter 3.329180
172 iter : 21 Arret : 8.27046E-15 s/iter 3.329003
173 temps : 70.5379 seconde(s)
175 Nb de depassements de capacite exponentielle : 0
176 Precision : 2.05848E-08
177 Stabilite : 8.27046E-15
178 +---+----------------------------+------------+----------------------------+
179 | i | Zi | mod(Zi) | P(Zi) |
180 +---+----------------------------+------------+----------------------------+
181 | 1| 0.540341 +i* 0.841474| 1.00002| 2.17368E-09 +i*-4.61298E-09|
182 | 2| -0.940582 +i* 0.339532| 0.999988|-1.00517E-11 +i* 8.96228E-13|
183 | 3| -0.851937 +i* -0.523689| 1.00002|-1.15969E-09 +i* 6.49452E-10|
184 | 4| -0.121715 +i* -0.992553| 0.999988|-4.05498E-12 +i*-3.39981E-14|
185 | 5| 0.700112 +i* -0.714017| 0.999988| 6.43741E-12 +i* -3.3944E-12|
186 | 6| 0.994789 +i* 0.102177| 1.00002| 6.46977E-09 +i* 6.38228E-10|
187 | 7| -0.26109 +i* 0.965338| 1.00002|-9.81343E-10 +i*-1.42942E-09|
188 | 8| -0.917494 +i* 0.39772| 0.999988|-1.15596E-11 +i*-7.01551E-13|
189 | 9| -0.883005 +i* -0.46934| 0.999988| 2.43294E-12 +i*-2.16579E-12|
190 | 10| -0.183619 +i* -0.983021| 1.00002|-8.44931E-09 +i*-4.25695E-09|
191 | 11| 0.654063 +i* -0.756425| 0.999988| 9.35807E-13 +i*-7.47193E-12|
192 | 12| 0.999199 +i* 0.0397302| 0.999988| 3.35743E-12 +i* -3.4849E-13|
193 | 13| 0.591959 +i* 0.805996| 1.00002| 3.13249E-09 +i* 3.04465E-09|
194 | 14| -0.200169 +i* 0.97975| 0.999988|-2.70206E-12 +i* 4.98612E-12|
195 | 15| -0.890827 +i* 0.454393| 1.00002|-1.29544E-09 +i* 3.49694E-09|
196 | 16| -0.910641 +i* -0.41317| 0.999988| 3.06566E-12 +i*-6.62351E-12|
197 | 17| -0.24476 +i* -0.969572| 0.999988|-3.79541E-12 +i* -1.5516E-12|
198 | 18| 0.605447 +i* -0.795915| 1.00002| 7.04828E-09 +i*-6.85556E-09|
199 | 19| 0.999727 +i* -0.0228685| 0.999988|-4.59166E-12 +i* -1.8699E-15|
200 | 20| 0.641209 +i* 0.767351| 0.999988|-3.81029E-12 +i*-1.94543E-11|
201 +---+----------------------------+------------+----------------------------+
202 100000 racines de module = 1.00002
203 200000 racines de module = 0.999988
206 (1 +i*0)*x^0 + (-0.1 +i*0)*x^100000 + (-10 +i*0)*x^300000 + (1 +i*0)*x^400000
208 (-10000 +i*0)*x^99999 + (-3E+06 +i*0)*x^299999 + (400000 +i*0)*x^399999
210 zone limite de 'log-exp' 1.00089
211 zone limite de 'log-exp' 1.00089
212 dimgrid 1563 dimblock 256 degrePoly 400000
213 proc 0, start 0 size 200064
214 proc 0 start 0 size 200064
215 dimgrid 1563 dimblock 256 degrePoly 400000
216 proc 1, start 200064 size 200064
217 proc 1 start 200064 size 200064
218 iter : 1 Arret : 2.70449E-05 s/iter 6.080628
219 iter : 2 Arret : 8.55377E-05 s/iter 6.079128
220 iter : 3 Arret : 8.01541E-05 s/iter 6.078702
221 iter : 4 Arret : 0.000836335 s/iter 6.078771
222 iter : 5 Arret : 0.00112834 s/iter 6.078043
223 iter : 6 Arret : 0.00153926 s/iter 6.074392
224 iter : 7 Arret : 0.00692735 s/iter 6.073723
225 iter : 8 Arret : 0.359844 s/iter 6.126030
226 iter : 9 Arret : 0.696974 s/iter 6.120213
227 iter : 10 Arret : 0.180896 s/iter 6.126025
228 iter : 11 Arret : 0.12097 s/iter 6.132943
229 iter : 12 Arret : 0.123917 s/iter 6.137122
230 iter : 13 Arret : 0.12419 s/iter 6.408387
231 iter : 14 Arret : 0.030029 s/iter 6.141954
232 iter : 15 Arret : 0.0151653 s/iter 6.158909
233 iter : 16 Arret : 0.0123978 s/iter 6.085327
234 iter : 17 Arret : 0.00611505 s/iter 6.145435
235 iter : 18 Arret : 0.00889837 s/iter 6.136736
236 iter : 19 Arret : 0.00133991 s/iter 6.077519
237 iter : 20 Arret : 0.0020353 s/iter 6.077274
238 iter : 21 Arret : 0.00162759 s/iter 6.079445
239 iter : 22 Arret : 7.43551E-05 s/iter 6.079157
240 iter : 23 Arret : 5.96398E-06 s/iter 6.080003
241 iter : 24 Arret : 1.78133E-09 s/iter 6.079570
242 iter : 25 Arret : 1.78104E-13 s/iter 6.080063
243 temps : 152.99 seconde(s)
245 Nb de depassements de capacite exponentielle : 0
246 Precision : 0.000178078
247 Stabilite : 1.5701E-16
248 +---+----------------------------+------------+----------------------------+
249 | i | Zi | mod(Zi) | P(Zi) |
250 +---+----------------------------+------------+----------------------------+
251 | 1| 0.540307 +i* 0.841459| 0.999992|-1.25993E-11 +i* -8.4544E-12|
252 | 2| -0.998331 +i* 0.0576263| 0.999992| 5.58298E-12 +i* 4.97158E-13|
253 | 3| 0.439898 +i* -0.898039| 0.999992| -1.2891E-11 +i* 1.03312E-11|
254 | 4| -0.996068 +i* 0.0888546| 1.00002|-2.25841E-08 +i*-1.11107E-08|
255 | 5| 0.411581 +i* -0.911398| 1.00002|-9.60735E-09 +i* 4.19844E-08|
256 | 6| 0.591959 +i* 0.805996| 1.00002| 3.13531E-08 +i* 3.04739E-08|
257 | 7| -0.992793 +i* 0.120036| 1.00002| 1.16144E-08 +i* 3.80768E-11|
258 | 8| 0.382808 +i* -0.923853| 1.00002| 2.56498E-08 +i* -3.4639E-08|
259 | 9| 0.616935 +i* 0.787044| 1.00002| 5.20474E-08 +i*-6.74682E-08|
260 | 10| -0.988512 +i* 0.151094| 0.999992| 5.88174E-12 +i* 3.10009E-12|
261 | 11| 0.353648 +i* -0.93537| 0.999992| 1.43463E-12 +i* 1.47159E-13|
262 | 12| 0.641284 +i* 0.767294| 0.999992|-7.43627E-13 +i* 2.49052E-11|
263 | 13| -0.983293 +i* 0.181987| 0.999992|-8.33267E-12 +i*-2.27485E-12|
264 | 14| 0.324173 +i* -0.94599| 0.999992| 1.35322E-11 +i* 9.09395E-12|
265 | 15| 0.665006 +i* 0.746827| 0.999992|-2.12212E-11 +i* 1.51281E-11|
266 | 16| -0.977144 +i* 0.212687| 1.00002|-3.41559E-08 +i*-3.75875E-08|
267 | 17| 0.294407 +i* -0.955704| 1.00002| 3.17084E-08 +i*-1.83133E-08|
268 | 18| 0.688082 +i* 0.725665| 1.00002| 9.43862E-09 +i* 1.53247E-08|
269 | 19| -0.969996 +i* 0.243214| 1.00002|-1.54208E-08 +i* 7.9786E-09|
270 | 20| 0.264303 +i* -0.964463| 1.00002|-1.81472E-08 +i* 2.32076E-08|
271 +---+----------------------------+------------+----------------------------+
272 300000 racines de module = 0.999992
273 100000 racines de module = 1.00002
276 (1 +i*0)*x^0 + (-0.1 +i*0)*x^200000 + (-10 +i*0)*x^300000 + (1 +i*0)*x^500000
278 (-20000 +i*0)*x^199999 + (-3E+06 +i*0)*x^299999 + (500000 +i*0)*x^499999
280 zone limite de 'log-exp' 1.00071
281 zone limite de 'log-exp' 1.00071
282 dimgrid 1954 dimblock 256 degrePoly 500000
283 proc 0, start 0 size 250112
284 proc 0 start 0 size 250112
285 dimgrid 1954 dimblock 256 degrePoly 500000
286 proc 1, start 250112 size 250112
287 proc 1 start 250112 size 250112
288 iter : 1 Arret : 0.000560826 s/iter 9.386475
289 iter : 2 Arret : 0.00121661 s/iter 9.384388
290 iter : 3 Arret : 0.00253039 s/iter 9.381871
291 iter : 4 Arret : 0.0184372 s/iter 9.380264
292 iter : 5 Arret : 0.0487456 s/iter 9.377672
293 iter : 6 Arret : 0.0675294 s/iter 9.697915
294 iter : 7 Arret : 0.0667528 s/iter 9.369579
295 iter : 8 Arret : 0.109644 s/iter 9.812668
296 iter : 9 Arret : 0.158422 s/iter 9.721849
297 iter : 10 Arret : 0.0573651 s/iter 9.872267
298 iter : 11 Arret : 0.0691162 s/iter 9.427634
299 iter : 12 Arret : 0.0242612 s/iter 9.431453
300 iter : 13 Arret : 0.0134344 s/iter 9.390613
301 iter : 14 Arret : 0.00585738 s/iter 9.397259
302 iter : 15 Arret : 0.00251107 s/iter 9.379384
303 iter : 16 Arret : 0.0020852 s/iter 9.380217
304 iter : 17 Arret : 0.00047844 s/iter 9.379843
305 iter : 18 Arret : 0.000164691 s/iter 9.379998
306 iter : 19 Arret : 2.79982E-05 s/iter 9.380085
307 iter : 20 Arret : 1.18647E-06 s/iter 9.380312
308 iter : 21 Arret : 4.77071E-09 s/iter 9.379907
309 iter : 22 Arret : 1.5072E-11 s/iter 9.380265
310 iter : 23 Arret : 4.77391E-14 s/iter 9.380119
311 temps : 217.632 seconde(s)
313 Nb de depassements de capacite exponentielle : 0
314 Precision : 3.01672E-06
315 Stabilite : 1.35172E-14
316 +---+----------------------------+------------+----------------------------+
317 | i | Zi | mod(Zi) | P(Zi) |
318 +---+----------------------------+------------+----------------------------+
319 | 1| 0.540307 +i* 0.841459| 0.999992|-1.19362E-11 +i*-9.05032E-12|
320 | 2| 0.561258 +i* 0.827655| 1.00001| 2.3059E-10 +i* 2.96606E-09|
321 | 3| 0.571586 +i* 0.820533| 0.999992|-7.69917E-12 +i*-9.08884E-12|
322 | 4| 0.581835 +i* 0.813298| 0.999992| 8.15192E-12 +i* -1.8458E-11|
323 | 5| 0.591992 +i* 0.805934| 0.999992| -1.4418E-11 +i*-5.03328E-12|
324 | 6| 0.602059 +i* 0.798466| 1.00001| -3.2519E-09 +i* 1.73026E-09|
325 | 7| 0.61202 +i* 0.790857| 1.00001|-1.75659E-10 +i*-1.26024E-09|
326 | 8| 0.621881 +i* 0.783102| 0.999992| 8.42737E-12 +i*-9.22235E-12|
327 | 9| 0.631656 +i* 0.775238| 0.999992| 4.94815E-12 +i* 2.88148E-11|
328 | 10| 0.641332 +i* 0.767253| 0.999992| 3.71225E-12 +i* 1.15249E-11|
329 | 11| 0.650912 +i* 0.759169| 1.00001| 2.14506E-09 +i*-3.89557E-09|
330 | 12| 0.660376 +i* 0.75095| 1.00001| 2.31005E-09 +i* 8.36898E-10|
331 | 13| 0.669732 +i* 0.742592| 0.999992| 1.96547E-11 +i* 7.83706E-12|
332 | 14| 0.678995 +i* 0.734132| 0.999992|-3.14309E-11 +i* 7.8838E-12|
333 | 15| 0.688152 +i* 0.725556| 0.999992|-3.69482E-12 +i*-1.48935E-11|
334 | 16| 0.697206 +i* 0.716887| 1.00001|-5.46993E-09 +i* 2.27433E-10|
335 | 17| 0.706137 +i* 0.708092| 1.00001| 4.73455E-09 +i* 2.18669E-09|
336 | 18| 0.714951 +i* 0.699164| 0.999992| 6.56786E-12 +i*-9.19531E-12|
337 | 19| 0.723665 +i* 0.69014| 0.999992|-9.73066E-12 +i*-4.22218E-13|
338 | 20| 0.732266 +i* 0.681007| 0.999992| -7.9714E-14 +i* 2.11116E-11|
339 +---+----------------------------+------------+----------------------------+
340 300000 racines de module = 0.999992
341 200000 racines de module = 1.00001
344 (1 +i*0)*x^0 + (-0.1 +i*0)*x^200000 + (-10 +i*0)*x^400000 + (1 +i*0)*x^600000
346 (-20000 +i*0)*x^199999 + (-4E+06 +i*0)*x^399999 + (600000 +i*0)*x^599999
348 zone limite de 'log-exp' 1.00059
349 zone limite de 'log-exp' 1.00059
350 dimgrid 2344 dimblock 256 degrePoly 600000
351 proc 0, start 0 size 300032
352 proc 0 start 0 size 300032
353 dimgrid 2344 dimblock 256 degrePoly 600000
354 proc 1, start 300032 size 300032
355 proc 1 start 300032 size 300032
356 iter : 1 Arret : 0.000139108 s/iter 13.284207
357 iter : 2 Arret : 0.00103064 s/iter 13.284506
358 iter : 3 Arret : 0.00376302 s/iter 13.288826
359 iter : 4 Arret : 0.0089325 s/iter 13.284675
360 iter : 5 Arret : 0.00838884 s/iter 13.774996
361 iter : 6 Arret : 0.0130991 s/iter 13.764246
362 iter : 7 Arret : 0.0156318 s/iter 13.285444
363 iter : 8 Arret : 0.0431568 s/iter 13.311139
364 iter : 9 Arret : 0.0553139 s/iter 13.697939
365 iter : 10 Arret : 0.127024 s/iter 13.771788
366 iter : 11 Arret : 0.117589 s/iter 14.506251
367 iter : 12 Arret : 0.496219 s/iter 14.146763
368 iter : 13 Arret : 0.438276 s/iter 13.886143
369 iter : 14 Arret : 0.294771 s/iter 13.781667
370 iter : 15 Arret : 0.217718 s/iter 13.747097
371 iter : 16 Arret : 0.101343 s/iter 13.715808
372 iter : 17 Arret : 0.0579738 s/iter 13.753474
373 iter : 18 Arret : 0.0363669 s/iter 13.714089
374 iter : 19 Arret : 0.0468756 s/iter 13.716097
375 iter : 20 Arret : 0.0263899 s/iter 13.284344
376 iter : 21 Arret : 0.00931987 s/iter 13.282901
377 iter : 22 Arret : 0.00229649 s/iter 13.284224
378 iter : 23 Arret : 0.000242115 s/iter 13.284172
379 iter : 24 Arret : 2.62247E-08 s/iter 13.284381
380 iter : 25 Arret : 2.63796E-11 s/iter 13.284068
381 iter : 26 Arret : 2.63887E-14 s/iter 13.284231
382 temps : 352.926 seconde(s)
384 Nb de depassements de capacite exponentielle : 0
385 Precision : 5.28608E-06
386 Stabilite : 1.5701E-16
387 +---+----------------------------+------------+----------------------------+
388 | i | Zi | mod(Zi) | P(Zi) |
389 +---+----------------------------+------------+----------------------------+
390 | 1| 0.540312 +i* 0.841458| 0.999994| 1.62056E-11 +i* 1.50318E-11|
391 | 2| -0.553436 +i* -0.832885| 0.999994|-2.25986E-11 +i* 1.15206E-11|
392 | 3| -0.579286 +i* -0.815117| 0.999994| 1.00446E-11 +i* 1.52601E-12|
393 | 4| 0.592006 +i* 0.805927| 0.999994|-3.60267E-12 +i* 1.19892E-11|
394 | 5| -0.604566 +i* -0.796547| 0.999994|-2.52776E-12 +i*-5.35546E-12|
395 | 6| 0.616979 +i* 0.786972| 0.999994|-2.27955E-11 +i* 6.27034E-12|
396 | 7| -0.629239 +i* -0.777204| 0.999994|-8.09952E-12 +i* 2.92867E-11|
397 | 8| 0.641358 +i* 0.767235| 0.999994|-1.28961E-11 +i*-1.47377E-11|
398 | 9| -0.653306 +i* -0.757086| 0.999994|-1.65734E-12 +i*-1.07858E-11|
399 | 10| 0.665105 +i* 0.746742| 0.999994|-1.94866E-12 +i* 1.19335E-11|
400 | 11| -0.676729 +i* -0.736224| 0.999994| 1.49339E-11 +i* 2.83465E-12|
401 | 12| 0.688187 +i* 0.725525| 0.999994| 2.23388E-12 +i*-2.05627E-11|
402 | 13| -0.699476 +i* -0.714648| 0.999994| 4.9627E-14 +i*-1.17691E-11|
403 | 14| 0.710604 +i* 0.703584| 0.999994|-2.99494E-11 +i*-8.92773E-12|
404 | 15| -0.721546 +i* -0.692358| 0.999994| 3.05347E-11 +i*-1.91617E-11|
405 | 16| 0.732321 +i* 0.680951| 0.999994|-2.19358E-12 +i*-2.44729E-12|
406 | 17| -0.742906 +i* -0.669387| 0.999994| 4.37561E-12 +i*-5.72887E-13|
407 | 18| 0.753308 +i* 0.657659| 0.999994|-8.91731E-12 +i*-1.03275E-11|
408 | 19| -0.763525 +i* -0.64577| 0.999994| 4.63933E-11 +i* 1.31129E-11|
409 | 20| 0.773564 +i* 0.633709| 0.999994| 2.96472E-11 +i* 6.43669E-12|
410 +---+----------------------------+------------+----------------------------+
411 400000 racines de module = 0.999994
412 200000 racines de module = 1.00001
415 (1 +i*0)*x^0 + (-0.1 +i*0)*x^300000 + (-10 +i*0)*x^400000 + (1 +i*0)*x^700000
417 (-30000 +i*0)*x^299999 + (-4E+06 +i*0)*x^399999 + (700000 +i*0)*x^699999
419 zone limite de 'log-exp' 1.00051
420 zone limite de 'log-exp' 1.00051
421 dimgrid 2735 dimblock 256 degrePoly 700000
422 proc 0, start 0 size 350080
423 proc 0 start 0 size 350080
424 dimgrid 2735 dimblock 256 degrePoly 700000
425 proc 1, start 350080 size 350080
426 proc 1 start 350080 size 350080
427 iter : 1 Arret : 0.000480207 s/iter 17.875355
428 iter : 2 Arret : 0.0025759 s/iter 17.873495
429 iter : 3 Arret : 0.00647257 s/iter 17.897993
430 iter : 4 Arret : 0.00685914 s/iter 18.181807
431 iter : 5 Arret : 0.00652113 s/iter 18.064343
432 iter : 6 Arret : 0.00820597 s/iter 18.458174
433 iter : 7 Arret : 0.0257869 s/iter 18.432658
434 iter : 8 Arret : 0.0271004 s/iter 18.251779
435 iter : 9 Arret : 0.0100722 s/iter 18.184242
436 iter : 10 Arret : 0.00233728 s/iter 17.989539
437 iter : 11 Arret : 0.00236829 s/iter 18.013265
438 iter : 12 Arret : 0.000876403 s/iter 17.984441
439 iter : 13 Arret : 0.000565418 s/iter 17.883843
440 iter : 14 Arret : 0.000239545 s/iter 17.888414
441 iter : 15 Arret : 8.39512E-05 s/iter 17.889871
442 iter : 16 Arret : 2.61265E-05 s/iter 17.887200
443 iter : 17 Arret : 2.81016E-06 s/iter 17.886275
444 iter : 18 Arret : 4.32913E-08 s/iter 17.886013
445 iter : 19 Arret : 5.75165E-10 s/iter 17.887340
446 iter : 20 Arret : 7.66715E-12 s/iter 17.886809
447 iter : 21 Arret : 1.02289E-13 s/iter 17.874929
448 temps : 378.42 seconde(s)
450 Nb de depassements de capacite exponentielle : 0
451 Precision : 1.32898E-07
452 Stabilite : 4.78945E-15
453 +---+----------------------------+------------+----------------------------+
454 | i | Zi | mod(Zi) | P(Zi) |
455 +---+----------------------------+------------+----------------------------+
456 | 1| 0.540339 +i* 0.841441| 0.999994| 1.55423E-11 +i*-3.21137E-12|
457 | 2| -0.996047 +i* 0.0889158| 1.00001|-1.33614E-09 +i* 3.82261E-11|
458 | 3| 0.43988 +i* -0.89805| 0.999994| 3.89233E-12 +i*-2.03002E-11|
459 | 4| 0.38271 +i* -0.923862| 0.999994| 1.82103E-11 +i*-3.83834E-12|
460 | 5| -0.988495 +i* 0.151219| 0.999994|-1.74496E-11 +i*-2.12581E-12|
461 | 6| 0.641382 +i* 0.767214| 0.999994| 1.32709E-11 +i* -1.4984E-12|
462 | 7| 0.324059 +i* -0.946045| 1.00001| 5.813E-10 +i* -1.8896E-09|
463 | 8| -0.977072 +i* 0.212881| 0.999994| 8.90621E-13 +i* 9.78296E-12|
464 | 9| 0.688221 +i* 0.725493| 0.999994|-2.62901E-12 +i* 1.4823E-11|
465 | 10| 0.264053 +i* -0.964502| 0.999994|-8.41882E-12 +i* 8.23244E-14|
466 | 11| -0.961803 +i* 0.273721| 0.999994|-6.28075E-12 +i*-5.80324E-12|
467 | 12| 0.732363 +i* 0.680926| 1.00001| 1.44886E-09 +i* 4.36706E-10|
468 | 13| 0.203078 +i* -0.979157| 0.999994|-1.05764E-11 +i* 3.92495E-12|
469 | 14| -0.942775 +i* 0.333454| 1.00001| 1.23271E-09 +i* 1.60621E-09|
470 | 15| 0.773623 +i* 0.633637| 0.999994| -5.6215E-12 +i*-3.10796E-12|
471 | 16| 0.141289 +i* -0.989963| 0.999994|-7.88014E-12 +i*-4.66243E-12|
472 | 17| -0.91998 +i* 0.39195| 0.999994|-1.45786E-11 +i*-1.68564E-11|
473 | 18| 0.811819 +i* 0.583899| 0.999994| 1.65953E-11 +i* 1.64316E-12|
474 | 19| 0.0789817 +i* -0.996884| 1.00001| 4.10806E-10 +i*-1.81025E-09|
475 | 20| -0.893597 +i* 0.448858| 0.999994| 4.98546E-12 +i* 1.13569E-11|
476 +---+----------------------------+------------+----------------------------+
477 400000 racines de module = 0.999994
478 300000 racines de module = 1.00001
481 (1 +i*0)*x^0 + (-0.1 +i*0)*x^300000 + (-10 +i*0)*x^500000 + (1 +i*0)*x^800000
483 (-30000 +i*0)*x^299999 + (-5E+06 +i*0)*x^499999 + (800000 +i*0)*x^799999
485 zone limite de 'log-exp' 1.00044
486 zone limite de 'log-exp' 1.00044
487 dimgrid 3125 dimblock 256 degrePoly 800000
488 proc 0, start 0 size 400000
489 proc 0 start 0 size 400000
490 dimgrid 3125 dimblock 256 degrePoly 800000
491 proc 1, start 400000 size 400000
492 proc 1 start 400000 size 400000
493 iter : 1 Arret : 0.00154598 s/iter 23.641498
494 iter : 2 Arret : 0.00308403 s/iter 23.689211
495 iter : 3 Arret : 0.696808 s/iter 23.718117
496 iter : 4 Arret : 1.04427 s/iter 24.422407
497 iter : 5 Arret : 2.45904 s/iter 23.773400
498 iter : 6 Arret : 1.50502 s/iter 24.348280
499 iter : 7 Arret : 1.16302 s/iter 23.900737
500 iter : 8 Arret : 4.42701 s/iter 24.406308
501 iter : 9 Arret : 2.43977 s/iter 24.474909
502 iter : 10 Arret : 0.949756 s/iter 24.184065
503 iter : 11 Arret : 0.590066 s/iter 23.843450
504 iter : 12 Arret : 0.701807 s/iter 23.823797
505 iter : 13 Arret : 0.367324 s/iter 23.798052
506 iter : 14 Arret : 0.192724 s/iter 23.748906
507 iter : 15 Arret : 0.107963 s/iter 23.746151
508 iter : 16 Arret : 0.0715182 s/iter 23.724682
509 iter : 17 Arret : 0.0741566 s/iter 23.664800
510 iter : 18 Arret : 0.0142322 s/iter 23.666585
511 iter : 19 Arret : 0.000167342 s/iter 23.668213
512 iter : 20 Arret : 2.06052E-06 s/iter 23.625267
513 iter : 21 Arret : 2.57416E-09 s/iter 23.666791
514 iter : 22 Arret : 5.5448E-12 s/iter 23.667046
515 iter : 23 Arret : 3.88536E-14 s/iter 23.627564
516 temps : 549.079 seconde(s)
518 Nb de depassements de capacite exponentielle : 0
519 Precision : 1.6026E-06
520 Stabilite : 1.19683E-14
521 +---+----------------------------+------------+----------------------------+
522 | i | Zi | mod(Zi) | P(Zi) |
523 +---+----------------------------+------------+----------------------------+
524 | 1| 0.540305 +i* 0.841464| 0.999995|-5.33817E-12 +i*-1.81878E-11|
525 | 2| 0.592014 +i* 0.805922| 0.999995|-1.82734E-11 +i* 2.10218E-11|
526 | 3| 0.617007 +i* 0.786952| 0.999995| 4.23442E-11 +i* -6.2147E-12|
527 | 4| 0.641392 +i* 0.767207| 0.999995|-4.99742E-11 +i* 1.43873E-11|
528 | 5| 0.665146 +i* 0.746707| 0.999995| 2.02977E-11 +i* 7.48579E-12|
529 | 6| 0.688245 +i* 0.725472| 0.999995|-1.73153E-11 +i* -1.2656E-11|
530 | 7| 0.710675 +i* 0.703514| 0.999995|-8.58691E-12 +i* 2.79902E-11|
531 | 8| 0.732397 +i* 0.680871| 0.999995| 4.17444E-13 +i* 2.18881E-11|
532 | 9| 0.753381 +i* 0.657577| 0.999995|-1.40248E-11 +i* 5.11502E-11|
533 | 10| 0.77364 +i* 0.633618| 0.999995|-1.72307E-11 +i* 1.22723E-11|
534 | 11| 0.793138 +i* 0.609034| 0.999995| 3.89222E-12 +i* 2.21356E-11|
535 | 12| 0.811855 +i* 0.583851| 0.999995|-1.28337E-11 +i*-5.47207E-12|
536 | 13| 0.829772 +i* 0.558094| 0.999995|-1.63114E-11 +i*-1.64246E-12|
537 | 14| 0.846873 +i* 0.531786| 0.999995|-1.80345E-12 +i* 5.96675E-11|
538 | 15| 0.863146 +i* 0.504945| 0.999995|-1.01228E-11 +i* 1.20409E-11|
539 | 16| 0.878563 +i* 0.477617| 0.999995| -6.5763E-12 +i*-3.68384E-13|
540 | 17| 0.893104 +i* 0.449841| 0.999995|-1.48552E-11 +i* 1.06063E-11|
541 | 18| 0.906777 +i* 0.4216| 0.999995|-1.38745E-11 +i* 5.33384E-12|
542 | 19| 0.919557 +i* 0.392944| 0.999995|-3.33245E-11 +i* 5.94386E-12|
543 | 20| 0.931433 +i* 0.363901| 0.999995| 4.93219E-11 +i*-2.82651E-11|
544 +---+----------------------------+------------+----------------------------+
545 500000 racines de module = 0.999995
546 300000 racines de module = 1.00001
549 (1 +i*0)*x^0 + (-0.1 +i*0)*x^400000 + (-10 +i*0)*x^500000 + (1 +i*0)*x^900000
551 (-40000 +i*0)*x^399999 + (-5E+06 +i*0)*x^499999 + (900000 +i*0)*x^899999
553 zone limite de 'log-exp' 1.00039
554 zone limite de 'log-exp' 1.00039
555 dimgrid 3516 dimblock 256 degrePoly 900000
556 proc 1, start 450048 size 450048
557 proc 1 start 450048 size 450048
558 dimgrid 3516 dimblock 256 degrePoly 900000
559 proc 0, start 0 size 450048
560 proc 0 start 0 size 450048
561 iter : 1 Arret : 0.00121557 s/iter 29.882978
562 iter : 2 Arret : 0.00266321 s/iter 30.212321
563 iter : 3 Arret : 0.00698209 s/iter 30.354056
564 iter : 4 Arret : 0.0148351 s/iter 30.311016
565 iter : 5 Arret : 0.0254879 s/iter 30.543289
566 iter : 6 Arret : 0.0391455 s/iter 30.509994
567 iter : 7 Arret : 0.0468587 s/iter 31.164830
568 iter : 8 Arret : 0.03704 s/iter 30.514962
569 iter : 9 Arret : 0.0222242 s/iter 31.274989
570 iter : 10 Arret : 0.028881 s/iter 30.534122
571 iter : 11 Arret : 0.0333163 s/iter 30.219491
572 iter : 12 Arret : 0.0167061 s/iter 30.532081
573 iter : 13 Arret : 0.00481283 s/iter 29.867742
574 iter : 14 Arret : 0.00203862 s/iter 29.872720
575 iter : 15 Arret : 0.00568854 s/iter 29.880724
576 iter : 16 Arret : 0.00780623 s/iter 29.879087
577 iter : 17 Arret : 0.000606741 s/iter 29.885905
578 iter : 18 Arret : 0.000108362 s/iter 29.795992
579 iter : 19 Arret : 7.21858E-06 s/iter 29.796175
580 iter : 20 Arret : 1.24491E-06 s/iter 29.880024
581 iter : 21 Arret : 8.78945E-09 s/iter 29.878537
582 iter : 22 Arret : 4.95509E-11 s/iter 29.795981
583 iter : 23 Arret : 2.78691E-13 s/iter 29.800776
584 temps : 694.659 seconde(s)
586 Nb de depassements de capacite exponentielle : 0
587 Precision : 1.32509E-06
588 Stabilite : 2.78691E-13
589 +---+----------------------------+------------+----------------------------+
590 | i | Zi | mod(Zi) | P(Zi) |
591 +---+----------------------------+------------+----------------------------+
592 | 1| 0.540305 +i* 0.841464| 0.999995|-4.82703E-12 +i*-1.87313E-11|
593 | 2| 0.641413 +i* 0.767203| 1.00001|-4.21144E-09 +i* 5.82291E-10|
594 | 3| 0.688263 +i* 0.725455| 0.999995| -1.6052E-11 +i* 1.13947E-11|
595 | 4| 0.732394 +i* 0.68089| 1.00001| 5.22032E-10 +i* 3.10541E-09|
596 | 5| 0.773672 +i* 0.633579| 0.999995|-3.17741E-11 +i*-1.05103E-11|
597 | 6| 0.811877 +i* 0.583821| 0.999995| 3.67913E-11 +i* 5.72664E-12|
598 | 7| 0.846906 +i* 0.531733| 0.999995|-4.94516E-11 +i*-1.19133E-11|
599 | 8| 0.878587 +i* 0.477572| 0.999995| 1.93007E-11 +i* 5.20278E-12|
600 | 9| 0.90674 +i* 0.42168| 0.999995|-2.15687E-11 +i* 1.9707E-11|
601 | 10| 0.931465 +i* 0.363819| 0.999995| 4.43436E-11 +i*-2.40268E-11|
602 | 11| 0.95246 +i* 0.304683| 1.00001| 2.0412E-09 +i* 4.76319E-10|
603 | 12| 0.969685 +i* 0.244341| 0.999995|-1.80025E-11 +i* 2.82213E-12|
604 | 13| 0.983105 +i* 0.183076| 1.00001| 1.20329E-09 +i* 1.15884E-09|
605 | 14| 0.992646 +i* 0.121018| 0.999995|-2.17162E-11 +i* 7.29261E-12|
606 | 15| 0.998281 +i* 0.0585381| 0.999995| 2.19857E-12 +i* 2.81219E-13|
607 | 16| 0.999987 +i* -0.0042097| 0.999995| 2.32575E-11 +i* 1.25245E-13|
608 | 17| 0.997754 +i* -0.0669158| 0.999995| 1.33051E-11 +i*-5.99909E-13|
609 | 18| 0.991609 +i* -0.129234| 0.999995|-1.51263E-11 +i*-1.81488E-12|
610 | 19| 0.981526 +i* -0.191304| 0.999995|-1.66676E-11 +i*-1.32172E-12|
611 | 20| 0.967605 +i* -0.252493| 1.00001| 3.24031E-09 +i* 6.02796E-10|
612 +---+----------------------------+------------+----------------------------+
613 500000 racines de module = 0.999995
614 400000 racines de module = 1.00001
617 (1 +i*0)*x^0 + (-0.1 +i*0)*x^400000 + (-10 +i*0)*x^600000 + (1 +i*0)*x^1000000
619 (-40000 +i*0)*x^399999 + (-6E+06 +i*0)*x^599999 + (1E+06 +i*0)*x^999999
621 zone limite de 'log-exp' 1.00035
622 zone limite de 'log-exp' 1.00035
623 dimgrid 3907 dimblock 256 degrePoly 1000000
624 proc 1, start 500096 size 500096
625 dimgrid 3907 dimblock 256 degrePoly 1000000
626 proc 0, start 0 size 500096
627 proc 0 start 0 size 500096
628 proc 1 start 500096 size 500096
629 iter : 1 Arret : 0.00206654 s/iter 36.741684
630 iter : 2 Arret : 0.00304484 s/iter 36.720047
631 iter : 3 Arret : 0.138241 s/iter 36.670400
632 iter : 4 Arret : 0.0991964 s/iter 36.602400
633 iter : 5 Arret : 0.239898 s/iter 36.648493
634 iter : 6 Arret : 0.537848 s/iter 37.269055
635 iter : 7 Arret : 0.201109 s/iter 37.234327
636 iter : 8 Arret : 0.06495 s/iter 37.421457
637 iter : 9 Arret : 0.0371654 s/iter 37.975356
638 iter : 10 Arret : 0.100022 s/iter 37.066598
639 iter : 11 Arret : 0.0826191 s/iter 36.612779
640 iter : 12 Arret : 0.0102103 s/iter 36.564357
641 iter : 13 Arret : 0.00423111 s/iter 36.539264
642 iter : 14 Arret : 0.00136233 s/iter 36.536899
643 iter : 15 Arret : 0.00076322 s/iter 36.585718
644 iter : 16 Arret : 0.000907413 s/iter 36.539795
645 iter : 17 Arret : 0.000139383 s/iter 36.537622
646 iter : 18 Arret : 4.83074E-05 s/iter 36.577364
647 iter : 19 Arret : 5.0365E-05 s/iter 36.539365
648 iter : 20 Arret : 2.79471E-06 s/iter 36.540661
649 iter : 21 Arret : 4.61365E-09 s/iter 36.541612
650 iter : 22 Arret : 1.46164E-11 s/iter 36.540725
651 iter : 23 Arret : 6.03314E-14 s/iter 36.586394
652 temps : 850.618 seconde(s)
654 Nb de depassements de capacite exponentielle : 0
655 Precision : 5.84601E-06
656 Stabilite : 6.2656E-15
657 +---+----------------------------+------------+----------------------------+
658 | i | Zi | mod(Zi) | P(Zi) |
659 +---+----------------------------+------------+----------------------------+
660 | 1| 0.5403 +i* 0.841468| 0.999996| 5.07216E-12 +i* 6.41236E-12|
661 | 2| 0.529755 +i* 0.848157| 1.00001|-3.10004E-09 +i* 3.19196E-09|
662 | 3| 0.524361 +i* 0.851491| 0.999996|-2.47296E-11 +i* 1.78327E-11|
663 | 4| 0.51901 +i* 0.854764| 0.999996| 9.45599E-12 +i* 2.07434E-11|
664 | 5| 0.513629 +i* 0.858008| 0.999996| 2.32483E-11 +i* 6.70747E-12|
665 | 6| 0.508237 +i* 0.861213| 0.999996|-1.34339E-11 +i* 9.87854E-12|
666 | 7| 0.502825 +i* 0.864384| 0.999996|-3.18459E-11 +i* 7.64744E-12|
667 | 8| 0.497384 +i* 0.867526| 0.999996| 2.97429E-11 +i*-6.06626E-13|
668 | 9| 0.491932 +i* 0.870629| 0.999996|-2.65525E-11 +i* 1.22525E-11|
669 | 10| 0.486452 +i* 0.873703| 0.999996| 3.0312E-11 +i* 1.02214E-11|
670 | 11| 0.480962 +i* 0.876737| 0.999996|-3.09397E-11 +i*-1.68578E-11|
671 | 12| 0.475453 +i* 0.879736| 0.999996| 3.09861E-11 +i* 4.093E-12|
672 | 13| 0.469917 +i* 0.882706| 0.999996|-1.29106E-11 +i*-2.31489E-11|
673 | 14| 0.46437 +i* 0.885637| 0.999996|-5.47384E-12 +i* 1.02452E-11|
674 | 15| 0.458797 +i* 0.888537| 0.999996| 2.78862E-11 +i* 1.10441E-11|
675 | 16| 0.453214 +i* 0.891397| 0.999996| 2.45506E-11 +i* 3.1726E-11|
676 | 17| 0.447613 +i* 0.894234| 1.00001|-1.86454E-09 +i* 6.81847E-10|
677 | 18| 0.441986 +i* 0.897017| 0.999996| 2.72476E-11 +i* 3.22485E-11|
678 | 19| 0.436351 +i* 0.899772| 0.999996|-1.24334E-11 +i*-2.66317E-11|
679 | 20| 0.430689 +i* 0.902496| 0.999996|-1.25435E-11 +i* 3.86925E-13|
680 +---+----------------------------+------------+----------------------------+
681 600000 racines de module = 0.999996
682 400000 racines de module = 1.00001
685 (1 +i*0)*x^0 + (-0.1 +i*0)*x^400000 + (-10 +i*0)*x^700000 + (1 +i*0)*x^1100000
687 (-40000 +i*0)*x^399999 + (-7E+06 +i*0)*x^699999 + (1.1E+06 +i*0)*x^1099999
689 zone limite de 'log-exp' 1.00032
690 zone limite de 'log-exp' 1.00032
691 dimgrid 4297 dimblock 256 degrePoly 1100000
692 proc 0, start 0 size 550016
693 proc 0 start 0 size 550016
694 dimgrid 4297 dimblock 256 degrePoly 1100000
695 proc 1, start 550016 size 550016
696 proc 1 start 550016 size 550016
697 iter : 1 Arret : 0.00128135 s/iter 44.441578
698 iter : 2 Arret : 0.672467 s/iter 44.418534
699 iter : 3 Arret : 0.34525 s/iter 44.423689
700 iter : 4 Arret : 0.41467 s/iter 44.608125
701 iter : 5 Arret : 0.480235 s/iter 44.793479
702 iter : 6 Arret : 0.333845 s/iter 44.759922
703 iter : 7 Arret : 0.558615 s/iter 44.882122
704 iter : 8 Arret : 0.393506 s/iter 44.800454
705 iter : 9 Arret : 0.0930108 s/iter 44.643878
706 iter : 10 Arret : 0.0245359 s/iter 44.693318
707 iter : 11 Arret : 0.00657388 s/iter 44.465198
708 iter : 12 Arret : 0.00151041 s/iter 44.396765
709 iter : 13 Arret : 0.000748904 s/iter 44.434286
710 iter : 14 Arret : 8.23083E-05 s/iter 44.409808
711 iter : 15 Arret : 3.54559E-05 s/iter 44.405119
712 iter : 16 Arret : 0.000205565 s/iter 44.394242
713 iter : 17 Arret : 0.000162209 s/iter 44.384127
714 iter : 18 Arret : 4.9486E-08 s/iter 44.394458
715 iter : 19 Arret : 8.73126E-11 s/iter 44.403940
716 iter : 20 Arret : 1.55236E-13 s/iter 44.394338
717 temps : 890.844 seconde(s)
719 Nb de depassements de capacite exponentielle : 0
720 Precision : 3.49195E-05
721 Stabilite : 2.2902E-14
722 +---+----------------------------+------------+----------------------------+
723 | i | Zi | mod(Zi) | P(Zi) |
724 +---+----------------------------+------------+----------------------------+
725 | 1| 0.540304 +i* 0.841466| 0.999997| 3.05426E-11 +i* 2.22433E-11|
726 | 2| 0.486464 +i* 0.873697| 0.999997| 5.31286E-12 +i* 2.0108E-11|
727 | 3| 0.430685 +i* 0.902499| 0.999997|-2.73115E-13 +i* -1.1846E-11|
728 | 4| 0.373217 +i* 0.927741| 0.999997|-7.13307E-11 +i*-1.23969E-11|
729 | 5| 0.314287 +i* 0.949325| 0.999997| 6.92779E-12 +i*-1.65982E-11|
730 | 6| 0.25411 +i* 0.967172| 0.999997| 7.74336E-12 +i*-2.48442E-11|
731 | 7| 0.192932 +i* 0.981209| 0.999997|-1.14437E-11 +i* 7.96955E-12|
732 | 8| 0.131003 +i* 0.991379| 0.999997| 6.58806E-13 +i* 4.16117E-12|
733 | 9| 0.0685494 +i* 0.997644| 0.999997| 4.07008E-12 +i*-8.91343E-13|
734 | 10| 0.00582765 +i* 0.999989| 1.00001| 1.03606E-10 +i*-7.91025E-09|
735 | 11| -0.0569127 +i* 0.998376| 0.999997| 3.60831E-11 +i*-2.16827E-12|
736 | 12| -0.119435 +i* 0.992839| 0.999997| 2.51194E-11 +i* 3.43808E-13|
737 | 13| -0.18147 +i* 0.983393| 0.999997|-7.95386E-12 +i* -4.0582E-12|
738 | 14| -0.242816 +i* 0.970069| 0.999997| 3.0371E-11 +i*-2.18866E-11|
739 | 15| -0.303197 +i* 0.952925| 0.999997|-7.62945E-12 +i* 9.24305E-12|
740 | 16| -0.362375 +i* 0.932029| 0.999997|-1.84204E-11 +i* 1.52254E-11|
741 | 17| -0.420133 +i* 0.907459| 0.999997|-7.40252E-12 +i* 1.01516E-11|
742 | 18| -0.476237 +i* 0.879313| 0.999997| 7.20424E-13 +i*-3.01965E-11|
743 | 19| -0.530456 +i* 0.847708| 0.999997| 2.33888E-11 +i* 3.96226E-11|
744 | 20| -0.582594 +i* 0.812759| 0.999997| 4.87606E-11 +i*-7.17615E-12|
745 +---+----------------------------+------------+----------------------------+
746 700000 racines de module = 0.999997
747 400000 racines de module = 1.00001
750 (1 +i*0)*x^0 + (-0.1 +i*0)*x^500000 + (-10 +i*0)*x^700000 + (1 +i*0)*x^1200000
752 (-50000 +i*0)*x^499999 + (-7E+06 +i*0)*x^699999 + (1.2E+06 +i*0)*x^1199999
754 zone limite de 'log-exp' 1.0003
755 zone limite de 'log-exp' 1.0003
756 dimgrid 4688 dimblock 256 degrePoly 1200000
757 proc 1, start 600064 size 600064
758 proc 1 start 600064 size 600064
759 dimgrid 4688 dimblock 256 degrePoly 1200000
760 proc 0, start 0 size 600064
761 proc 0 start 0 size 600064
762 iter : 1 Arret : 0.0192558 s/iter 52.960628
763 iter : 2 Arret : 1.52993 s/iter 53.726451
764 iter : 3 Arret : 1.57846 s/iter 55.069236
765 iter : 4 Arret : 0.845408 s/iter 55.777517
766 iter : 5 Arret : 0.71635 s/iter 56.721413
767 iter : 6 Arret : 1.46585 s/iter 56.534038
768 iter : 7 Arret : 1.1218 s/iter 57.267005
769 iter : 8 Arret : 4.01626 s/iter 57.314636
770 iter : 9 Arret : 1.34471 s/iter 57.324463
771 iter : 10 Arret : 2.6084 s/iter 57.355312
772 iter : 11 Arret : 1.31728 s/iter 57.114144
773 iter : 12 Arret : 1.32153 s/iter 56.819810
774 iter : 13 Arret : 2.27727 s/iter 56.127438
775 iter : 14 Arret : 1.52932 s/iter 56.022121
776 iter : 15 Arret : 13.8075 s/iter 55.921339
777 iter : 16 Arret : 2.8505 s/iter 55.415583
778 iter : 17 Arret : 1.95461 s/iter 55.244431
779 iter : 18 Arret : 7.92706 s/iter 55.291756
780 iter : 19 Arret : 2.70082 s/iter 55.289573
781 iter : 20 Arret : 2.30918 s/iter 55.039824
782 iter : 21 Arret : 17.0062 s/iter 55.047733
783 iter : 22 Arret : 77.2901 s/iter 54.941912
784 iter : 23 Arret : 1.34406 s/iter 55.107945
785 iter : 24 Arret : 0.55761 s/iter 54.874451
786 iter : 25 Arret : 1.1056 s/iter 54.956355
787 iter : 26 Arret : 1.52819 s/iter 55.141282
788 iter : 27 Arret : 0.843396 s/iter 54.859886
789 iter : 28 Arret : 1.36441 s/iter 54.895520
790 iter : 29 Arret : 2.97504 s/iter 55.009992
791 iter : 30 Arret : 0.866871 s/iter 54.858974
792 iter : 31 Arret : 2.17475 s/iter 54.574532
793 iter : 32 Arret : 0.53802 s/iter 54.376801
794 iter : 33 Arret : 0.716132 s/iter 54.305870
795 iter : 34 Arret : 2.72889 s/iter 54.124344
796 iter : 35 Arret : 1.77992 s/iter 53.893397
797 iter : 36 Arret : 0.78833 s/iter 53.796969
798 iter : 37 Arret : 1.32348 s/iter 53.798545
799 iter : 38 Arret : 0.443391 s/iter 53.761392
800 iter : 39 Arret : 0.206056 s/iter 53.081321
801 iter : 40 Arret : 0.229367 s/iter 53.131045
802 iter : 41 Arret : 0.226009 s/iter 53.125440
803 iter : 42 Arret : 0.302974 s/iter 53.052749
804 iter : 43 Arret : 0.291496 s/iter 53.095787
805 iter : 44 Arret : 0.066367 s/iter 52.984786
806 iter : 45 Arret : 0.0226439 s/iter 53.013802
807 iter : 46 Arret : 0.00729856 s/iter 52.924670
808 iter : 47 Arret : 0.00459442 s/iter 52.919117
809 iter : 48 Arret : 0.000464509 s/iter 52.934570
810 iter : 49 Arret : 2.92101E-06 s/iter 52.929937
811 iter : 50 Arret : 5.61742E-08 s/iter 52.931524
812 iter : 51 Arret : 7.98318E-10 s/iter 52.938217
813 iter : 52 Arret : 1.13868E-11 s/iter 52.933400
814 iter : 53 Arret : 1.62433E-13 s/iter 52.929879
815 temps : 2896.13 seconde(s)
817 Nb de depassements de capacite exponentielle : 0
818 Precision : 1.09941E-07
819 Stabilite : 2.48252E-16
820 +---+----------------------------+------------+----------------------------+
821 | i | Zi | mod(Zi) | P(Zi) |
822 +---+----------------------------+------------+----------------------------+
823 | 1| 0.54031 +i* 0.841472| 1| 1.4588E-09 +i* 4.51768E-09|
824 | 2| 0.513633 +i* 0.858015| 1| 1.54651E-09 +i*-2.27023E-10|
825 | 3| 0.486457 +i* 0.873701| 0.999997| 1.53235E-11 +i* 6.36435E-13|
826 | 4| 0.458797 +i* 0.888537| 0.999997| 1.72345E-11 +i* 1.48229E-11|
827 | 5| 0.430687 +i* 0.902506| 1| 4.61351E-09 +i* 3.50167E-09|
828 | 6| 0.402126 +i* 0.915589| 1| 2.50282E-09 +i*-6.10471E-09|
829 | 7| 0.3732 +i* 0.927747| 0.999997|-1.54374E-11 +i*-2.76083E-11|
830 | 8| 0.3439 +i* 0.939003| 0.999997|-1.12714E-11 +i* 1.5453E-11|
831 | 9| 0.314261 +i* 0.949333| 0.999997| 1.93628E-11 +i* 2.50909E-11|
832 | 10| 0.284313 +i* 0.958728| 0.999997| 2.69426E-11 +i* 2.77974E-11|
833 | 11| 0.254084 +i* 0.967179| 0.999997| 1.5277E-11 +i* 4.73027E-12|
834 | 12| 0.223605 +i* 0.974676| 0.999997| -8.1017E-11 +i*-3.77299E-11|
835 | 13| 0.192909 +i* 0.981221| 1|-1.95729E-09 +i* 4.84549E-09|
836 | 14| 0.162018 +i* 0.986792| 1| 1.80241E-09 +i* 1.03051E-10|
837 | 15| 0.130977 +i* 0.991382| 0.999997| 5.89659E-11 +i* 7.29122E-12|
838 | 16| 0.0997987 +i* 0.995004| 0.999997|-2.34084E-11 +i*-4.34534E-12|
839 | 17| 0.0685213 +i* 0.997654| 1|-1.58718E-09 +i*-5.09618E-09|
840 | 18| 0.0371504 +i* 0.999314| 1|-1.38879E-09 +i*-2.32658E-09|
841 | 19| 0.00578048 +i* 0.99998| 0.999997| 3.46787E-11 +i* 1.94857E-13|
842 | 20| -0.0256056 +i* 0.999669| 0.999997| 2.01068E-11 +i*-1.22213E-12|
843 +---+----------------------------+------------+----------------------------+
844 500000 racines de module = 1
845 700000 racines de module = 0.999997
848 (1 +i*0)*x^0 + (-0.1 +i*0)*x^600000 + (-10 +i*0)*x^700000 + (1 +i*0)*x^1300000
850 (-60000 +i*0)*x^599999 + (-7E+06 +i*0)*x^699999 + (1.3E+06 +i*0)*x^1299999
852 zone limite de 'log-exp' 1.00027
853 zone limite de 'log-exp' 1.00027
854 dimgrid 5079 dimblock 256 degrePoly 1300000
855 proc 0, start 0 size 650112
856 proc 0 start 0 size 650112
857 dimgrid 5079 dimblock 256 degrePoly 1300000
858 proc 1, start 650112 size 650112
859 proc 1 start 650112 size 650112
860 iter : 1 Arret : 0.00030907 s/iter 61.893247
861 iter : 2 Arret : 0.00112221 s/iter 61.894017
862 iter : 3 Arret : 0.00586468 s/iter 61.887659
863 iter : 4 Arret : 0.0107973 s/iter 61.879071
864 iter : 5 Arret : 0.00723639 s/iter 61.932176
865 iter : 6 Arret : 0.00529128 s/iter 62.965805
866 iter : 7 Arret : 0.00608822 s/iter 62.242809
867 iter : 8 Arret : 0.00343177 s/iter 62.798415
868 iter : 9 Arret : 0.00345988 s/iter 61.871751
869 iter : 10 Arret : 0.00159914 s/iter 61.881537
870 iter : 11 Arret : 0.00128582 s/iter 61.753650
871 iter : 12 Arret : 0.00115363 s/iter 61.879351
872 iter : 13 Arret : 0.00113258 s/iter 61.773270
873 iter : 14 Arret : 0.000455221 s/iter 61.755450
874 iter : 15 Arret : 0.000112238 s/iter 61.837269
875 iter : 16 Arret : 3.25526E-06 s/iter 61.887400
876 iter : 17 Arret : 5.22856E-08 s/iter 61.879748
877 iter : 18 Arret : 6.30762E-10 s/iter 61.885313
878 iter : 19 Arret : 7.63473E-12 s/iter 61.868408
879 iter : 20 Arret : 9.24144E-14 s/iter 61.890066
880 temps : 1240.04 seconde(s)
882 Nb de depassements de capacite exponentielle : 0
883 Precision : 6.36532E-08
884 Stabilite : 3.41879E-14
885 +---+----------------------------+------------+----------------------------+
886 | i | Zi | mod(Zi) | P(Zi) |
887 +---+----------------------------+------------+----------------------------+
888 | 1| 0.540304 +i* 0.841466| 0.999997| 3.11737E-11 +i* 2.17606E-11|
889 | 2| -0.999659 +i* 0.0262608| 1|-2.53959E-09 +i*-4.76805E-11|
890 | 3| 0.486438 +i* 0.87372| 1| 5.3465E-09 +i* -2.5151E-11|
891 | 4| -0.99933 +i* -0.0364971| 0.999997| 2.61718E-11 +i*-3.84481E-12|
892 | 5| 0.495351 +i* -0.868697| 1|-7.49992E-10 +i*-3.05039E-09|
893 | 6| 0.430673 +i* 0.902512| 1| -1.4767E-09 +i* -7.5316E-10|
894 | 7| -0.995071 +i* -0.0991289| 0.999997|-2.47551E-11 +i*-7.41962E-13|
895 | 8| 0.548886 +i* -0.835893| 0.999997| 1.45806E-11 +i* 2.7442E-11|
896 | 9| 0.373184 +i* 0.927762| 1| 2.83273E-09 +i*-1.84823E-09|
897 | 10| -0.986898 +i* -0.161367| 1|-7.18017E-10 +i* 2.17349E-09|
898 | 11| 0.600263 +i* -0.799807| 1|-4.58028E-09 +i*-6.62234E-10|
899 | 12| 0.314252 +i* 0.949344| 1|-4.85877E-09 +i* 2.6211E-09|
900 | 13| -0.974823 +i* -0.222966| 0.999997|-1.11207E-11 +i* 1.14155E-11|
901 | 14| 0.649251 +i* -0.760579| 1|-4.67903E-09 +i* 3.13049E-09|
902 | 15| 0.254067 +i* 0.967183| 0.999997| 2.38982E-11 +i* 1.80963E-11|
903 | 16| -0.958909 +i* -0.283702| 0.999997|-1.37188E-11 +i* 4.27691E-12|
904 | 17| 0.695705 +i* -0.718333| 1|-8.95195E-10 +i* 5.59437E-09|
905 | 18| 0.192872 +i* 0.981228| 1|-4.22421E-09 +i*-1.01597E-09|
906 | 19| -0.939235 +i* -0.343287| 1| 4.27818E-09 +i*-2.67367E-09|
907 | 20| 0.739394 +i* -0.673278| 1|-2.41988E-09 +i*-1.34465E-09|
908 +---+----------------------------+------------+----------------------------+
909 700000 racines de module = 0.999997
910 600000 racines de module = 1
913 (1 +i*0)*x^0 + (-0.1 +i*0)*x^600000 + (-10 +i*0)*x^800000 + (1 +i*0)*x^1400000
915 (-60000 +i*0)*x^599999 + (-8E+06 +i*0)*x^799999 + (1.4E+06 +i*0)*x^1399999
917 zone limite de 'log-exp' 1.00025
918 zone limite de 'log-exp' 1.00025
919 dimgrid 5469 dimblock 256 degrePoly 1400000
920 proc 1, start 700032 size 700032
921 proc 1 start 700032 size 700032
922 dimgrid 5469 dimblock 256 degrePoly 1400000
923 proc 0, start 0 size 700032
924 proc 0 start 0 size 700032
925 iter : 1 Arret : 0.0130461 s/iter 71.442195
926 iter : 2 Arret : 0.411805 s/iter 72.274146
927 iter : 3 Arret : 1.20356 s/iter 72.810258
928 iter : 4 Arret : 1.99302 s/iter 74.562703
929 iter : 5 Arret : 1.9829 s/iter 76.231832
930 iter : 6 Arret : 1.18987 s/iter 76.321139
931 iter : 7 Arret : 3.6297 s/iter 76.629541
932 iter : 8 Arret : 1.87039 s/iter 77.386566
933 iter : 9 Arret : 1.59601 s/iter 78.159169
934 iter : 10 Arret : 1.96521 s/iter 78.197113
935 iter : 11 Arret : 1.17806 s/iter 78.025691
936 iter : 12 Arret : 0.951246 s/iter 77.612336
937 iter : 13 Arret : 11.0901 s/iter 76.626625
938 iter : 14 Arret : 0.814154 s/iter 76.438092
939 iter : 15 Arret : 0.788314 s/iter 75.604546
940 iter : 16 Arret : 0.587164 s/iter 75.276003
941 iter : 17 Arret : 0.244083 s/iter 75.023803
942 iter : 18 Arret : 0.355939 s/iter 74.335212
943 iter : 19 Arret : 0.578321 s/iter 73.923548
944 iter : 20 Arret : 1.91762 s/iter 73.805985
945 iter : 21 Arret : 0.539781 s/iter 73.274791
946 iter : 22 Arret : 0.433508 s/iter 72.582370
947 iter : 23 Arret : 0.195622 s/iter 72.570163
948 iter : 24 Arret : 0.0596377 s/iter 72.315159
949 iter : 25 Arret : 0.0184505 s/iter 71.547319
950 iter : 26 Arret : 0.00979658 s/iter 71.453276
951 iter : 27 Arret : 0.00556007 s/iter 71.459605
952 iter : 28 Arret : 0.00220624 s/iter 71.439256
953 iter : 29 Arret : 0.000914955 s/iter 71.345197
954 iter : 30 Arret : 2.47611E-05 s/iter 71.449678
955 iter : 31 Arret : 1.04151E-08 s/iter 71.451164
956 iter : 32 Arret : 4.80972E-11 s/iter 71.450446
957 iter : 33 Arret : 2.2321E-13 s/iter 71.450645
958 temps : 2444.96 seconde(s)
960 Nb de depassements de capacite exponentielle : 0
961 Precision : 1.5829E-06
962 Stabilite : 2.2321E-13
963 +---+----------------------------+------------+----------------------------+
964 | i | Zi | mod(Zi) | P(Zi) |
965 +---+----------------------------+------------+----------------------------+
966 | 1| 0.5403 +i* 0.841469| 0.999997|-5.74141E-12 +i*-6.39521E-11|
967 | 2| 0.513623 +i* 0.858013| 0.999997|-2.15776E-11 +i*-2.98557E-11|
968 | 3| -0.52703 +i* -0.849843| 0.999997|-6.50922E-11 +i* 8.44216E-12|
969 | 4| 0.486439 +i* 0.873711| 0.999997| 5.60277E-11 +i* 4.36779E-11|
970 | 5| -0.500096 +i* -0.865967| 0.999997| 3.56147E-11 +i*-3.12713E-11|
971 | 6| 0.458776 +i* 0.888549| 0.999997|-1.89702E-11 +i* 4.08274E-12|
972 | 7| -0.472676 +i* -0.881233| 0.999997| 1.08734E-11 +i*-1.62599E-11|
973 | 8| 0.430668 +i* 0.902507| 0.999997|-3.60412E-11 +i*-2.17812E-11|
974 | 9| -0.444791 +i* -0.895631| 0.999997| 3.68259E-11 +i* 1.36002E-12|
975 | 10| 0.402136 +i* 0.915577| 0.999997| 6.5834E-12 +i* -1.3935E-11|
976 | 11| -0.416432 +i* -0.909164| 0.999997| 1.97816E-11 +i* 3.10848E-11|
977 | 12| 0.373171 +i* 0.927759| 0.999997|-2.17995E-11 +i*-2.96867E-12|
978 | 13| -0.387698 +i* -0.921783| 0.999997|-1.86324E-11 +i* -4.6545E-11|
979 | 14| 0.343875 +i* 0.939012| 0.999997|-1.30287E-11 +i*-2.87501E-11|
980 | 15| -0.358575 +i* -0.933498| 0.999997|-4.93405E-11 +i*-7.15173E-13|
981 | 16| 0.314233 +i* 0.949343| 0.999997| 1.02587E-11 +i*-4.25648E-11|
982 | 17| -0.329098 +i* -0.944293| 0.999997|-1.57903E-11 +i* 2.05052E-11|
983 | 18| 0.284281 +i* 0.958738| 0.999997| 2.51592E-11 +i* 2.09243E-11|
984 | 19| -0.299297 +i* -0.954157| 0.999997| 5.03608E-12 +i* 1.70503E-11|
985 | 20| 0.254048 +i* 0.967189| 0.999997|-2.81228E-11 +i*-1.66302E-11|
986 +---+----------------------------+------------+----------------------------+
987 800000 racines de module = 0.999997
988 600000 racines de module = 1