4 (1 +i*0)*x^0 + (-0.1 +i*0)*x^40000 + (-10 +i*0)*x^60000 + (1 +i*0)*x^100000
6 (-4000 +i*0)*x^39999 + (-600000 +i*0)*x^59999 + (100000 +i*0)*x^99999
8 zone limite de 'log-exp' 1.00356
9 dimgrid 391 dimblock 256 degrePoly 100000
10 proc 0, start 0 size 100096
11 proc 0 start 0 size 100096
12 iter : 1 Arret : 0.00526849 s/iter 0.771057
13 iter : 2 Arret : 0.00756635 s/iter 0.771023
14 iter : 3 Arret : 0.0103246 s/iter 0.771084
15 iter : 4 Arret : 0.0142527 s/iter 0.830006
16 iter : 5 Arret : 0.028078 s/iter 0.826227
17 iter : 6 Arret : 0.0181714 s/iter 0.831372
18 iter : 7 Arret : 0.00621577 s/iter 0.770752
19 iter : 8 Arret : 0.0106944 s/iter 0.771029
20 iter : 9 Arret : 0.010281 s/iter 0.770826
21 iter : 10 Arret : 0.00296987 s/iter 0.770678
22 iter : 11 Arret : 0.00110841 s/iter 0.770840
23 iter : 12 Arret : 0.00109962 s/iter 0.770464
24 iter : 13 Arret : 0.000703616 s/iter 0.770090
25 iter : 14 Arret : 0.000240198 s/iter 0.770180
26 iter : 15 Arret : 0.000152422 s/iter 0.770016
27 iter : 16 Arret : 4.10828E-06 s/iter 0.769964
28 iter : 17 Arret : 1.2856E-08 s/iter 0.770126
29 iter : 18 Arret : 4.06565E-11 s/iter 0.770112
30 iter : 19 Arret : 4.18363E-13 s/iter 0.769956
31 temps : 14.9007 seconde(s)
33 Nb de depassements de capacite exponentielle : 0
34 Precision : 5.46584E-09
35 Stabilite : 4.18363E-13
36 +---+----------------------------+------------+----------------------------+
37 | i | Zi | mod(Zi) | P(Zi) |
38 +---+----------------------------+------------+----------------------------+
39 | 1| 0.54036 +i* 0.841503| 1.00006|-5.00602E-11 +i* 9.0853E-12|
40 | 2| -0.113164 +i* 0.993538| 0.999962|-4.34919E-12 +i* 9.60242E-13|
41 | 3| -0.226711 +i* -0.973923| 0.999962|-4.27658E-13 +i* 6.01027E-13|
42 | 4| -0.715763 +i* 0.698289| 0.999962| 9.11271E-13 +i* 2.47219E-12|
43 | 5| 0.439922 +i* -0.897993| 0.999962|-3.49498E-13 +i* 1.66432E-12|
44 | 6| -0.996021 +i* 0.0886823| 0.999962| 1.17772E-12 +i* 6.16285E-13|
45 | 7| 0.908546 +i* -0.417692| 0.999962| 4.78506E-13 +i* 1.54377E-13|
46 | 8| -0.827813 +i* -0.560935| 0.999962| 9.76996E-13 +i*-2.04309E-12|
47 | 9| 0.968049 +i* 0.250607| 0.999962|-1.07025E-13 +i*-1.15224E-12|
48 | 10| -0.286815 +i* -0.957946| 0.999962|-6.55254E-13 +i* 1.20869E-12|
49 | 11| 0.591653 +i* 0.806145| 0.999962|-9.87654E-13 +i*-3.03635E-12|
50 | 12| -0.0511836 +i* 0.998651| 0.999962|-2.22622E-12 +i*-3.69013E-14|
51 | 13| -0.67097 +i* 0.741432| 0.999962|-8.03801E-14 +i*-1.68204E-12|
52 | 14| 0.383249 +i* -0.923603| 0.999962|-1.29119E-12 +i*-1.37426E-12|
53 | 15| -0.988582 +i* 0.150427| 0.999962|-1.54698E-12 +i*-6.48537E-13|
54 | 16| 0.880824 +i* -0.473363| 0.999962|-4.03455E-13 +i* 2.85139E-12|
55 | 17| -0.861082 +i* -0.508391| 0.999962| 9.8066E-13 +i* 3.40478E-12|
56 | 18| 0.981756 +i* 0.189945| 0.999962|-1.13665E-12 +i* 1.13043E-12|
57 | 19| -0.345809 +i* -0.938264| 0.999962| 1.03906E-12 +i* 1.95398E-12|
58 | 20| 0.640621 +i* 0.767807| 0.999962|-6.98774E-13 +i* 1.13798E-12|
59 +---+----------------------------+------------+----------------------------+
60 40000 racines de module = 1.00006
61 60000 racines de module = 0.999962
63 (1 +i*0)*x^0 + (-0.1 +i*0)*x^50000 + (-10 +i*0)*x^150000 + (1 +i*0)*x^200000
65 (-5000 +i*0)*x^49999 + (-1.5E+06 +i*0)*x^149999 + (200000 +i*0)*x^199999
67 zone limite de 'log-exp' 1.00178
68 dimgrid 782 dimblock 256 degrePoly 200000
69 proc 0, start 0 size 200192
70 proc 0 start 0 size 200192
71 iter : 1 Arret : 0.000172103 s/iter 3.015672
72 iter : 2 Arret : 0.000265956 s/iter 3.012750
73 iter : 3 Arret : 0.00016887 s/iter 3.013343
74 iter : 4 Arret : 0.00159503 s/iter 3.013060
75 iter : 5 Arret : 0.00118887 s/iter 3.012469
76 iter : 6 Arret : 0.0166018 s/iter 3.011931
77 iter : 7 Arret : 0.0242829 s/iter 3.046322
78 iter : 8 Arret : 0.0176015 s/iter 3.041962
79 iter : 9 Arret : 0.0305772 s/iter 3.002992
80 iter : 10 Arret : 0.092766 s/iter 3.023961
81 iter : 11 Arret : 0.053965 s/iter 3.038470
82 iter : 12 Arret : 0.02988 s/iter 3.021853
83 iter : 13 Arret : 0.010546 s/iter 3.022054
84 iter : 14 Arret : 0.00440126 s/iter 3.008053
85 iter : 15 Arret : 0.0040937 s/iter 3.011284
86 iter : 16 Arret : 0.000799409 s/iter 3.011969
87 iter : 17 Arret : 0.0001234 s/iter 3.010869
88 iter : 18 Arret : 2.81451E-05 s/iter 3.010986
89 iter : 19 Arret : 1.61357E-07 s/iter 3.011819
90 iter : 20 Arret : 1.6313E-11 s/iter 3.012323
91 iter : 21 Arret : 1.73414E-15 s/iter 3.011263
92 temps : 63.4688 seconde(s)
94 Nb de depassements de capacite exponentielle : 0
95 Precision : 9.52377E-08
96 Stabilite : 1.73414E-15
97 +---+----------------------------+------------+----------------------------+
98 | i | Zi | mod(Zi) | P(Zi) |
99 +---+----------------------------+------------+----------------------------+
100 | 1| 0.540195 +i* 0.841595| 1.00005|-2.98043E-09 +i*-3.27611E-08|
101 | 2| -0.837195 +i* 0.546877| 0.999985| 7.09943E-12 +i* 5.1133E-12|
102 | 3| -0.553418 +i* -0.832885| 0.999985| -1.9722E-12 +i*-7.40397E-12|
103 | 4| 0.828525 +i* -0.559925| 0.999985|-4.34675E-12 +i* 1.07137E-12|
104 | 5| -0.819774 +i* 0.572768| 1.00005| 2.53887E-08 +i* 2.42315E-09|
105 | 6| -0.57917 +i* -0.815188| 0.999985|-5.13034E-12 +i*-1.52645E-12|
106 | 7| 0.810626 +i* -0.585537| 0.999985| 8.64808E-12 +i* 7.46794E-12|
107 | 8| 0.591869 +i* 0.806015| 0.999985| 1.73195E-13 +i* 8.72591E-12|
108 | 9| -0.801379 +i* 0.598131| 0.999985| -1.2701E-12 +i* 3.96189E-12|
109 | 10| -0.60439 +i* -0.79667| 0.999985| 4.71623E-13 +i* 1.16721E-11|
110 | 11| 0.791937 +i* -0.610578| 0.999985| 6.0707E-13 +i* 1.52922E-12|
111 | 12| 0.616763 +i* 0.78713| 0.999985|-4.48042E-12 +i* -2.6295E-12|
112 | 13| -0.782301 +i* 0.622877| 0.999985|-2.15827E-12 +i*-6.27114E-12|
113 | 14| -0.628985 +i* -0.777398| 0.999985|-4.05476E-12 +i*-5.17236E-12|
114 | 15| 0.772447 +i* -0.635055| 0.999985|-1.73772E-12 +i*-6.03129E-13|
115 | 16| 0.641054 +i* 0.767476| 0.999985| 9.05009E-12 +i*-2.91295E-12|
116 | 17| -0.762458 +i* 0.647014| 0.999985| 5.81724E-12 +i*-9.99384E-12|
117 | 18| -0.652967 +i* -0.757366| 0.999985| 5.10392E-12 +i*-6.61069E-12|
118 | 19| 0.752229 +i* -0.658879| 0.999985|-5.97611E-12 +i* 1.03431E-11|
119 | 20| 0.664751 +i* 0.747045| 0.999985| 5.32885E-12 +i* 1.02546E-12|
120 +---+----------------------------+------------+----------------------------+
121 50000 racines de module = 1.00005
122 150000 racines de module = 0.999985
124 (1 +i*0)*x^0 + (-0.1 +i*0)*x^100000 + (-10 +i*0)*x^200000 + (1 +i*0)*x^300000
126 (-10000 +i*0)*x^99999 + (-2E+06 +i*0)*x^199999 + (300000 +i*0)*x^299999
128 zone limite de 'log-exp' 1.00118
129 dimgrid 1172 dimblock 256 degrePoly 300000
130 proc 0, start 0 size 300032
131 proc 0 start 0 size 300032
132 iter : 1 Arret : 0.000313792 s/iter 6.614110
133 iter : 2 Arret : 0.00305675 s/iter 6.613587
134 iter : 3 Arret : 0.00277809 s/iter 6.614036
135 iter : 4 Arret : 0.00291045 s/iter 6.614575
136 iter : 5 Arret : 0.00668137 s/iter 6.613769
137 iter : 6 Arret : 0.0066223 s/iter 6.828985
138 iter : 7 Arret : 0.00958195 s/iter 6.605856
139 iter : 8 Arret : 0.00939169 s/iter 6.859958
140 iter : 9 Arret : 0.00580581 s/iter 6.614606
141 iter : 10 Arret : 0.0103543 s/iter 6.614181
142 iter : 11 Arret : 0.00726016 s/iter 6.614376
143 iter : 12 Arret : 0.00175683 s/iter 6.614100
144 iter : 13 Arret : 0.00115396 s/iter 6.614812
145 iter : 14 Arret : 0.00126746 s/iter 6.614328
146 iter : 15 Arret : 0.000330481 s/iter 6.607394
147 iter : 16 Arret : 0.000111881 s/iter 6.614256
148 iter : 17 Arret : 4.26113E-05 s/iter 6.613688
149 iter : 18 Arret : 2.6878E-06 s/iter 6.613952
150 iter : 19 Arret : 2.75596E-09 s/iter 6.613819
151 iter : 20 Arret : 2.75548E-12 s/iter 6.613045
152 iter : 21 Arret : 2.77549E-15 s/iter 6.613338
153 temps : 139.471 seconde(s)
155 Nb de depassements de capacite exponentielle : 0
156 Precision : 2.05848E-08
157 Stabilite : 2.77549E-15
158 +---+----------------------------+------------+----------------------------+
159 | i | Zi | mod(Zi) | P(Zi) |
160 +---+----------------------------+------------+----------------------------+
161 | 1| 0.540341 +i* 0.841474| 1.00002| 2.17368E-09 +i*-4.61298E-09|
162 | 2| -0.940582 +i* 0.339532| 0.999988|-1.00517E-11 +i* 8.96228E-13|
163 | 3| -0.851907 +i* -0.523671| 0.999988| 5.67879E-13 +i* 1.02216E-11|
164 | 4| -0.121715 +i* -0.992553| 0.999988|-4.05498E-12 +i*-3.39981E-14|
165 | 5| 0.700112 +i* -0.714017| 0.999988| 6.43741E-12 +i* -3.3944E-12|
166 | 6| 0.994755 +i* 0.102173| 0.999988|-7.42606E-12 +i*-2.83986E-12|
167 | 7| -0.261081 +i* 0.965305| 0.999988|-2.78355E-12 +i* 3.7301E-12|
168 | 8| -0.917494 +i* 0.39772| 0.999988|-1.15596E-11 +i*-7.01551E-13|
169 | 9| -0.883005 +i* -0.46934| 0.999988| 2.43294E-12 +i*-2.16579E-12|
170 | 10| -0.183613 +i* -0.982987| 0.999988|-2.93521E-12 +i* 3.65429E-12|
171 | 11| 0.654063 +i* -0.756425| 0.999988| 9.35807E-13 +i*-7.47193E-12|
172 | 12| 0.999199 +i* 0.0397302| 0.999988| 4.01479E-12 +i* 4.95176E-13|
173 | 13| 0.591939 +i* 0.805969| 0.999988| 5.60618E-12 +i* 1.36161E-11|
174 | 14| -0.200169 +i* 0.97975| 0.999988|-2.70206E-12 +i* 4.98612E-12|
175 | 15| -0.890797 +i* 0.454377| 0.999988| -1.2778E-11 +i*-1.64648E-11|
176 | 16| -0.910641 +i* -0.41317| 0.999988| 3.06566E-12 +i*-6.62351E-12|
177 | 17| -0.24476 +i* -0.969572| 0.999988|-3.79541E-12 +i* -1.5516E-12|
178 | 18| 0.605426 +i* -0.795887| 0.999988| 2.39608E-12 +i*-6.07317E-12|
179 | 19| 0.999727 +i* -0.0228685| 0.999988|-4.59166E-12 +i* -1.8699E-15|
180 | 20| 0.641209 +i* 0.767351| 0.999988|-3.81029E-12 +i*-1.94543E-11|
181 +---+----------------------------+------------+----------------------------+
182 100000 racines de module = 1.00002
183 200000 racines de module = 0.999988
185 (1 +i*0)*x^0 + (-0.1 +i*0)*x^100000 + (-10 +i*0)*x^300000 + (1 +i*0)*x^400000
187 (-10000 +i*0)*x^99999 + (-3E+06 +i*0)*x^299999 + (400000 +i*0)*x^399999
189 zone limite de 'log-exp' 1.00089
190 dimgrid 1563 dimblock 256 degrePoly 400000
191 proc 0, start 0 size 400128
192 proc 0 start 0 size 400128
193 iter : 1 Arret : 0.000101217 s/iter 11.754850
194 iter : 2 Arret : 0.000115015 s/iter 11.749201
195 iter : 3 Arret : 0.000726976 s/iter 11.748136
196 iter : 4 Arret : 0.00226862 s/iter 11.747693
197 iter : 5 Arret : 0.00629965 s/iter 11.746773
198 iter : 6 Arret : 0.0197005 s/iter 11.782651
199 iter : 7 Arret : 0.0493965 s/iter 11.804867
200 iter : 8 Arret : 0.13013 s/iter 11.802995
201 iter : 9 Arret : 0.173538 s/iter 11.888769
202 iter : 10 Arret : 0.0463811 s/iter 12.156762
203 iter : 11 Arret : 0.0389696 s/iter 12.149404
204 iter : 12 Arret : 0.022765 s/iter 11.832891
205 iter : 13 Arret : 0.00729518 s/iter 11.818836
206 iter : 14 Arret : 0.0082289 s/iter 11.773992
207 iter : 15 Arret : 0.00359194 s/iter 11.775046
208 iter : 16 Arret : 0.00197638 s/iter 11.746029
209 iter : 17 Arret : 0.000496788 s/iter 11.752786
210 iter : 18 Arret : 1.07153E-05 s/iter 11.752654
211 iter : 19 Arret : 7.82152E-10 s/iter 11.750184
212 iter : 20 Arret : 7.82799E-14 s/iter 11.749506
213 temps : 236.422 seconde(s)
215 Nb de depassements de capacite exponentielle : 0
216 Precision : 2.06033E-07
217 Stabilite : 7.82799E-14
218 +---+----------------------------+------------+----------------------------+
219 | i | Zi | mod(Zi) | P(Zi) |
220 +---+----------------------------+------------+----------------------------+
221 | 1| 0.540307 +i* 0.841459| 0.999992|-1.25993E-11 +i* -8.4544E-12|
222 | 2| -0.998331 +i* 0.0576263| 0.999992| 5.58298E-12 +i* 4.97158E-13|
223 | 3| 0.439898 +i* -0.898039| 0.999992| 1.18832E-11 +i*-2.97085E-12|
224 | 4| -0.996068 +i* 0.0888546| 1.00002|-3.28771E-08 +i* 4.65803E-10|
225 | 5| 0.411581 +i* -0.911398| 1.00002|-9.60735E-09 +i* 4.19844E-08|
226 | 6| 0.591959 +i* 0.805996| 1.00002| 3.13531E-08 +i* 3.04739E-08|
227 | 7| -0.99276 +i* 0.120053| 0.999992| 1.33862E-11 +i* 5.56338E-12|
228 | 8| 0.382777 +i* -0.923832| 0.999992|-1.07905E-11 +i* 4.95248E-12|
229 | 9| 0.616932 +i* 0.787007| 0.999992| 5.97233E-12 +i* 9.44689E-12|
230 | 10| -0.988512 +i* 0.151094| 0.999992| 5.88174E-12 +i* 3.10009E-12|
231 | 11| 0.353648 +i* -0.93537| 0.999992| 1.43463E-12 +i* 1.47159E-13|
232 | 12| 0.641284 +i* 0.767294| 0.999992|-7.43627E-13 +i* 2.49052E-11|
233 | 13| -0.983293 +i* 0.181987| 0.999992|-8.33267E-12 +i*-2.27485E-12|
234 | 14| 0.324173 +i* -0.94599| 0.999992| 1.35322E-11 +i* 9.09395E-12|
235 | 15| 0.665006 +i* 0.746827| 0.999992| 6.51013E-12 +i*-1.23073E-11|
236 | 16| -0.977144 +i* 0.212687| 1.00002|-3.41559E-08 +i*-3.75875E-08|
237 | 17| 0.294407 +i* -0.955704| 1.00002| 3.17084E-08 +i*-1.83133E-08|
238 | 18| 0.688082 +i* 0.725665| 1.00002|-2.92714E-08 +i*-3.99441E-08|
239 | 19| -0.969961 +i* 0.243227| 0.999992|-1.20224E-11 +i* 1.50763E-12|
240 | 20| 0.264275 +i* -0.964439| 0.999992|-8.33844E-12 +i* 1.64252E-12|
241 +---+----------------------------+------------+----------------------------+
242 300000 racines de module = 0.999992
243 100000 racines de module = 1.00002
245 (1 +i*0)*x^0 + (-0.1 +i*0)*x^200000 + (-10 +i*0)*x^300000 + (1 +i*0)*x^500000
247 (-20000 +i*0)*x^199999 + (-3E+06 +i*0)*x^299999 + (500000 +i*0)*x^499999
249 zone limite de 'log-exp' 1.00071
250 dimgrid 1954 dimblock 256 degrePoly 500000
251 proc 0, start 0 size 500224
252 proc 0 start 0 size 500224
253 iter : 1 Arret : 0.000654726 s/iter 18.210937
254 iter : 2 Arret : 0.0043136 s/iter 18.208086
255 iter : 3 Arret : 0.00506466 s/iter 18.179157
256 iter : 4 Arret : 0.0130274 s/iter 18.214735
257 iter : 5 Arret : 0.021465 s/iter 18.454666
258 iter : 6 Arret : 0.0211337 s/iter 18.404779
259 iter : 7 Arret : 0.0107502 s/iter 18.779190
260 iter : 8 Arret : 0.0220598 s/iter 18.483878
261 iter : 9 Arret : 0.0231567 s/iter 18.532205
262 iter : 10 Arret : 0.0356725 s/iter 18.579730
263 iter : 11 Arret : 0.0312683 s/iter 18.549278
264 iter : 12 Arret : 0.0152442 s/iter 18.237418
265 iter : 13 Arret : 0.0125645 s/iter 18.230460
266 iter : 14 Arret : 0.00340307 s/iter 18.193971
267 iter : 15 Arret : 0.00635289 s/iter 18.198984
268 iter : 16 Arret : 0.0015628 s/iter 18.181859
269 iter : 17 Arret : 0.000392249 s/iter 18.198159
270 iter : 18 Arret : 0.000277941 s/iter 18.166677
271 iter : 19 Arret : 8.85451E-05 s/iter 18.208276
272 iter : 20 Arret : 7.03292E-05 s/iter 18.178517
273 iter : 21 Arret : 8.15806E-07 s/iter 18.191805
274 iter : 22 Arret : 1.14718E-08 s/iter 18.194655
275 iter : 23 Arret : 1.61853E-10 s/iter 18.210465
276 iter : 24 Arret : 2.28253E-12 s/iter 18.207024
277 iter : 25 Arret : 3.2179E-14 s/iter 18.211234
278 temps : 457.576 seconde(s)
280 Nb de depassements de capacite exponentielle : 0
281 Precision : 1.32052E-08
282 Stabilite : 3.2179E-14
283 +---+----------------------------+------------+----------------------------+
284 | i | Zi | mod(Zi) | P(Zi) |
285 +---+----------------------------+------------+----------------------------+
286 | 1| 0.540307 +i* 0.841459| 0.999992|-1.19362E-11 +i*-9.05032E-12|
287 | 2| 0.561258 +i* 0.827655| 1.00001| 2.3059E-10 +i* 2.96606E-09|
288 | 3| 0.571586 +i* 0.820533| 0.999992|-7.69917E-12 +i*-9.08884E-12|
289 | 4| 0.581835 +i* 0.813298| 0.999992| 8.15192E-12 +i* -1.8458E-11|
290 | 5| 0.591992 +i* 0.805934| 0.999992| -1.4418E-11 +i*-5.03328E-12|
291 | 6| 0.602072 +i* 0.798432| 0.999992|-1.14042E-11 +i* -4.5941E-12|
292 | 7| 0.61202 +i* 0.790857| 1.00001|-1.75659E-10 +i*-1.26024E-09|
293 | 8| 0.621881 +i* 0.783102| 0.999992| 8.42737E-12 +i*-9.22235E-12|
294 | 9| 0.631656 +i* 0.775238| 0.999992| 4.94815E-12 +i* 2.88148E-11|
295 | 10| 0.641332 +i* 0.767253| 0.999992| 3.71225E-12 +i* 1.15249E-11|
296 | 11| 0.650923 +i* 0.759134| 0.999992|-1.41334E-11 +i* 4.90278E-12|
297 | 12| 0.660376 +i* 0.75095| 1.00001| 2.31005E-09 +i* 8.36898E-10|
298 | 13| 0.669732 +i* 0.742592| 0.999992| 1.96547E-11 +i* 7.83706E-12|
299 | 14| 0.678995 +i* 0.734132| 0.999992|-3.14309E-11 +i* 7.8838E-12|
300 | 15| 0.688152 +i* 0.725556| 0.999992|-3.69482E-12 +i*-1.48935E-11|
301 | 16| 0.6972 +i* 0.716866| 0.999992|-2.21156E-11 +i* 6.37795E-12|
302 | 17| 0.706137 +i* 0.708092| 1.00001| 4.73455E-09 +i* 2.18669E-09|
303 | 18| 0.714951 +i* 0.699164| 0.999992| 6.56786E-12 +i*-9.19531E-12|
304 | 19| 0.723665 +i* 0.69014| 0.999992|-9.73066E-12 +i*-4.22218E-13|
305 | 20| 0.732266 +i* 0.681007| 0.999992|-1.48057E-11 +i*-2.14301E-12|
306 +---+----------------------------+------------+----------------------------+
307 300000 racines de module = 0.999992
308 200000 racines de module = 1.00001
310 (1 +i*0)*x^0 + (-0.1 +i*0)*x^200000 + (-10 +i*0)*x^400000 + (1 +i*0)*x^600000
312 (-20000 +i*0)*x^199999 + (-4E+06 +i*0)*x^399999 + (600000 +i*0)*x^599999
314 zone limite de 'log-exp' 1.00059
315 dimgrid 2344 dimblock 256 degrePoly 600000
316 proc 0, start 0 size 600064
317 proc 0 start 0 size 600064
318 iter : 1 Arret : 7.64945E-05 s/iter 26.271835
319 iter : 2 Arret : 0.000806183 s/iter 26.253007
320 iter : 3 Arret : 0.000942488 s/iter 26.241833
321 iter : 4 Arret : 0.00180805 s/iter 26.245661
322 iter : 5 Arret : 0.00369298 s/iter 26.250976
323 iter : 6 Arret : 0.00763289 s/iter 26.250500
324 iter : 7 Arret : 0.00825756 s/iter 26.623129
325 iter : 8 Arret : 0.0162086 s/iter 26.743961
326 iter : 9 Arret : 0.10278 s/iter 27.131676
327 iter : 10 Arret : 11.8504 s/iter 27.630886
328 iter : 11 Arret : 1.63964 s/iter 27.895345
329 iter : 12 Arret : 3.64019 s/iter 27.700428
330 iter : 13 Arret : 0.927608 s/iter 27.433160
331 iter : 14 Arret : 3.4015 s/iter 27.350784
332 iter : 15 Arret : 1.02037 s/iter 27.566179
333 iter : 16 Arret : 1.10246 s/iter 27.443741
334 iter : 17 Arret : 1.29418 s/iter 27.044718
335 iter : 18 Arret : 2.62408 s/iter 27.094720
336 iter : 19 Arret : 1.14775 s/iter 26.975747
337 iter : 20 Arret : 0.485019 s/iter 26.887222
338 iter : 21 Arret : 1.53782 s/iter 26.817507
339 iter : 22 Arret : 0.658576 s/iter 26.755061
340 iter : 23 Arret : 0.301361 s/iter 26.509138
341 iter : 24 Arret : 0.291405 s/iter 26.453293
342 iter : 25 Arret : 0.0780785 s/iter 26.383146
343 iter : 26 Arret : 0.013555 s/iter 26.280145
344 iter : 27 Arret : 0.00210954 s/iter 26.248620
345 iter : 28 Arret : 1.57021E-05 s/iter 26.253410
346 iter : 29 Arret : 6.38941E-09 s/iter 26.260786
347 iter : 30 Arret : 6.37826E-12 s/iter 26.251301
348 iter : 31 Arret : 6.3709E-15 s/iter 26.248007
349 temps : 829.71 seconde(s)
351 Nb de depassements de capacite exponentielle : 0
352 Precision : 4.15851E-08
353 Stabilite : 6.3709E-15
354 +---+----------------------------+------------+----------------------------+
355 | i | Zi | mod(Zi) | P(Zi) |
356 +---+----------------------------+------------+----------------------------+
357 | 1| 0.540312 +i* 0.841458| 0.999994| 1.62056E-11 +i* 1.50318E-11|
358 | 2| -0.553436 +i* -0.832885| 0.999994|-2.25986E-11 +i* 1.15206E-11|
359 | 3| -0.579286 +i* -0.815117| 0.999994|-9.51172E-12 +i*-3.78186E-12|
360 | 4| 0.592006 +i* 0.805927| 0.999994|-3.60267E-12 +i* 1.19892E-11|
361 | 5| -0.604566 +i* -0.796547| 0.999994|-2.52776E-12 +i*-5.35546E-12|
362 | 6| 0.616979 +i* 0.786972| 0.999994|-2.27955E-11 +i* 6.27034E-12|
363 | 7| -0.629239 +i* -0.777204| 0.999994|-8.09952E-12 +i* 2.92867E-11|
364 | 8| 0.641358 +i* 0.767235| 0.999994|-1.28961E-11 +i*-1.47377E-11|
365 | 9| -0.653306 +i* -0.757086| 0.999994|-1.65734E-12 +i*-1.07858E-11|
366 | 10| 0.665105 +i* 0.746742| 0.999994|-1.94866E-12 +i* 1.19335E-11|
367 | 11| -0.676729 +i* -0.736224| 0.999994| 1.49339E-11 +i* 2.83465E-12|
368 | 12| 0.688187 +i* 0.725525| 0.999994| 2.23388E-12 +i*-2.05627E-11|
369 | 13| -0.699476 +i* -0.714648| 0.999994| 4.9627E-14 +i*-1.17691E-11|
370 | 14| 0.710604 +i* 0.703584| 0.999994|-2.99494E-11 +i*-8.92773E-12|
371 | 15| -0.721546 +i* -0.692358| 0.999994|-1.93323E-11 +i* 2.32838E-11|
372 | 16| 0.732321 +i* 0.680951| 0.999994|-2.19358E-12 +i*-2.44729E-12|
373 | 17| -0.742906 +i* -0.669387| 0.999994| 4.37561E-12 +i*-5.72887E-13|
374 | 18| 0.753308 +i* 0.657659| 0.999994|-8.91731E-12 +i*-1.03275E-11|
375 | 19| -0.763525 +i* -0.64577| 0.999994| 4.63933E-11 +i* 1.31129E-11|
376 | 20| 0.773564 +i* 0.633709| 0.999994|-1.15374E-11 +i*-3.57616E-11|
377 +---+----------------------------+------------+----------------------------+
378 400000 racines de module = 0.999994
379 200000 racines de module = 1.00001
381 (1 +i*0)*x^0 + (-0.1 +i*0)*x^300000 + (-10 +i*0)*x^400000 + (1 +i*0)*x^700000
383 (-30000 +i*0)*x^299999 + (-4E+06 +i*0)*x^399999 + (700000 +i*0)*x^699999
385 zone limite de 'log-exp' 1.00051
386 dimgrid 2735 dimblock 256 degrePoly 700000
387 proc 0, start 0 size 700160
388 proc 0 start 0 size 700160
389 iter : 1 Arret : 0.00233752 s/iter 35.574051
390 iter : 2 Arret : 0.00386616 s/iter 35.661264
391 iter : 3 Arret : 0.0102365 s/iter 35.666090
392 iter : 4 Arret : 0.0168454 s/iter 35.898354
393 iter : 5 Arret : 0.0162691 s/iter 36.598991
394 iter : 6 Arret : 0.0313285 s/iter 36.597233
395 iter : 7 Arret : 0.0296126 s/iter 36.586180
396 iter : 8 Arret : 0.00684122 s/iter 36.115381
397 iter : 9 Arret : 0.00875063 s/iter 35.873930
398 iter : 10 Arret : 0.0205366 s/iter 35.854112
399 iter : 11 Arret : 0.0194411 s/iter 35.560088
400 iter : 12 Arret : 0.00397836 s/iter 35.587325
401 iter : 13 Arret : 0.00205454 s/iter 35.565898
402 iter : 14 Arret : 0.00123092 s/iter 35.566912
403 iter : 15 Arret : 0.00033401 s/iter 35.562568
404 iter : 16 Arret : 0.000274742 s/iter 35.541391
405 iter : 17 Arret : 4.1127E-05 s/iter 35.564505
406 iter : 18 Arret : 3.93109E-06 s/iter 35.564039
407 iter : 19 Arret : 2.94834E-08 s/iter 35.516012
408 iter : 20 Arret : 1.72153E-10 s/iter 35.538174
409 iter : 21 Arret : 2.36977E-12 s/iter 35.516648
410 iter : 22 Arret : 3.26026E-14 s/iter 35.518262
411 temps : 787.253 seconde(s)
413 Nb de depassements de capacite exponentielle : 0
414 Precision : 1.44548E-08
415 Stabilite : 3.26026E-14
416 +---+----------------------------+------------+----------------------------+
417 | i | Zi | mod(Zi) | P(Zi) |
418 +---+----------------------------+------------+----------------------------+
419 | 1| 0.540339 +i* 0.841441| 0.999994| 1.55423E-11 +i*-3.21137E-12|
420 | 2| -0.996033 +i* 0.0889146| 0.999994|-1.55997E-11 +i*-5.73445E-12|
421 | 3| 0.43988 +i* -0.89805| 0.999994| 3.89233E-12 +i*-2.03002E-11|
422 | 4| 0.38271 +i* -0.923862| 0.999994| 1.82103E-11 +i*-3.83834E-12|
423 | 5| -0.988497 +i* 0.151203| 0.999994|-2.36757E-11 +i*-2.02211E-12|
424 | 6| 0.641382 +i* 0.767214| 0.999994| 1.32709E-11 +i* -1.4984E-12|
425 | 7| 0.324034 +i* -0.946039| 0.999994|-6.77591E-12 +i*-7.98802E-12|
426 | 8| -0.977072 +i* 0.212881| 0.999994| 8.90621E-13 +i* 9.78296E-12|
427 | 9| 0.688221 +i* 0.725493| 0.999994|-2.62901E-12 +i* 1.4823E-11|
428 | 10| 0.264068 +i* -0.964498| 0.999994|-1.65676E-11 +i* 1.22603E-11|
429 | 11| -0.961803 +i* 0.273721| 0.999994|-6.28075E-12 +i*-5.80324E-12|
430 | 12| 0.732353 +i* 0.680916| 0.999994|-4.24105E-12 +i* 3.92653E-12|
431 | 13| 0.203078 +i* -0.979157| 0.999994|-1.05764E-11 +i* 3.92495E-12|
432 | 14| -0.942775 +i* 0.333454| 1.00001| 1.23271E-09 +i* 1.60621E-09|
433 | 15| 0.773614 +i* 0.633649| 0.999994|-2.14677E-11 +i* 5.01435E-12|
434 | 16| 0.141289 +i* -0.989963| 0.999994|-8.81695E-12 +i*-4.02872E-13|
435 | 17| -0.91998 +i* 0.39195| 0.999994|-1.45786E-11 +i*-1.68564E-11|
436 | 18| 0.811819 +i* 0.583899| 0.999994| 1.65953E-11 +i* 1.64316E-12|
437 | 19| 0.0789817 +i* -0.996884| 1.00001| 4.10806E-10 +i*-1.81025E-09|
438 | 20| -0.893597 +i* 0.448858| 0.999994| 4.98546E-12 +i* 1.13569E-11|
439 +---+----------------------------+------------+----------------------------+
440 400000 racines de module = 0.999994
441 300000 racines de module = 1.00001
443 (1 +i*0)*x^0 + (-0.1 +i*0)*x^300000 + (-10 +i*0)*x^500000 + (1 +i*0)*x^800000
445 (-30000 +i*0)*x^299999 + (-5E+06 +i*0)*x^499999 + (800000 +i*0)*x^799999
447 zone limite de 'log-exp' 1.00044
448 dimgrid 3125 dimblock 256 degrePoly 800000
449 proc 0, start 0 size 800000
450 proc 0 start 0 size 800000
451 iter : 1 Arret : 0.00185859 s/iter 46.444289
452 iter : 2 Arret : 0.0254943 s/iter 46.427983
453 iter : 3 Arret : 0.203244 s/iter 47.162919
454 iter : 4 Arret : 0.383832 s/iter 47.412714
455 iter : 5 Arret : 1.87157 s/iter 47.476345
456 iter : 6 Arret : 7.63844 s/iter 47.378185
457 iter : 7 Arret : 1.0857 s/iter 47.808058
458 iter : 8 Arret : 1.87496 s/iter 48.337913
459 iter : 9 Arret : 1.12622 s/iter 49.145130
460 iter : 10 Arret : 0.677381 s/iter 49.030556
461 iter : 11 Arret : 0.859913 s/iter 49.133184
462 iter : 12 Arret : 0.199336 s/iter 48.816933
463 iter : 13 Arret : 0.250324 s/iter 48.438119
464 iter : 14 Arret : 0.583623 s/iter 47.732716
465 iter : 15 Arret : 0.75581 s/iter 47.386084
466 iter : 16 Arret : 0.133131 s/iter 47.238423
467 iter : 17 Arret : 0.0853886 s/iter 47.058443
468 iter : 18 Arret : 0.240725 s/iter 46.796184
469 iter : 19 Arret : 0.215879 s/iter 46.559576
470 iter : 20 Arret : 0.0708063 s/iter 46.567408
471 iter : 21 Arret : 0.00601076 s/iter 46.410826
472 iter : 22 Arret : 0.000232687 s/iter 46.403965
473 iter : 23 Arret : 1.09394E-07 s/iter 46.388760
474 iter : 24 Arret : 1.58853E-09 s/iter 46.398815
475 iter : 25 Arret : 2.31802E-11 s/iter 46.406904
476 iter : 26 Arret : 3.38244E-13 s/iter 46.418145
477 temps : 1231.03 seconde(s)
479 Nb de depassements de capacite exponentielle : 0
480 Precision : 3.1101E-08
481 Stabilite : 3.38244E-13
482 +---+----------------------------+------------+----------------------------+
483 | i | Zi | mod(Zi) | P(Zi) |
484 +---+----------------------------+------------+----------------------------+
485 | 1| 0.540305 +i* 0.841464| 0.999995|-5.33817E-12 +i*-1.81878E-11|
486 | 2| 0.592014 +i* 0.805922| 0.999995|-1.82734E-11 +i* 2.10218E-11|
487 | 3| 0.617007 +i* 0.786952| 0.999995| 4.23442E-11 +i* -6.2147E-12|
488 | 4| 0.641392 +i* 0.767207| 0.999995| 6.90537E-12 +i*-5.12417E-11|
489 | 5| 0.665146 +i* 0.746707| 0.999995| 2.02977E-11 +i* 7.48579E-12|
490 | 6| 0.688245 +i* 0.725472| 0.999995|-1.73153E-11 +i* -1.2656E-11|
491 | 7| 0.710702 +i* 0.703487| 0.999995| 2.51867E-11 +i* 2.8813E-11|
492 | 8| 0.732388 +i* 0.68088| 0.999995| 9.45355E-12 +i* 2.09024E-11|
493 | 9| 0.753381 +i* 0.657577| 0.999995| 3.40094E-11 +i* 1.45989E-12|
494 | 10| 0.77364 +i* 0.633618| 0.999995|-1.72307E-11 +i* 1.22723E-11|
495 | 11| 0.793138 +i* 0.609034| 0.999995| 3.89222E-12 +i* 2.21356E-11|
496 | 12| 0.811855 +i* 0.583851| 0.999995|-1.28337E-11 +i*-5.47207E-12|
497 | 13| 0.829772 +i* 0.558094| 0.999995|-1.63114E-11 +i*-1.64246E-12|
498 | 14| 0.846873 +i* 0.531786| 0.999995|-1.80345E-12 +i* 5.96675E-11|
499 | 15| 0.863138 +i* 0.504984| 1.00001|-1.34542E-09 +i* 3.19094E-09|
500 | 16| 0.878557 +i* 0.477628| 0.999995|-2.16493E-12 +i* 1.10533E-11|
501 | 17| 0.893104 +i* 0.449841| 0.999995|-1.48552E-11 +i* 1.06063E-11|
502 | 18| 0.906777 +i* 0.4216| 0.999995|-1.38745E-11 +i* 5.33384E-12|
503 | 19| 0.919557 +i* 0.392944| 0.999995| 4.13796E-11 +i*-2.48189E-11|
504 | 20| 0.931433 +i* 0.363901| 0.999995| 4.93219E-11 +i*-2.82651E-11|
505 +---+----------------------------+------------+----------------------------+
506 500000 racines de module = 0.999995
507 300000 racines de module = 1.00001
509 (1 +i*0)*x^0 + (-0.1 +i*0)*x^400000 + (-10 +i*0)*x^500000 + (1 +i*0)*x^900000
511 (-40000 +i*0)*x^399999 + (-5E+06 +i*0)*x^499999 + (900000 +i*0)*x^899999
513 zone limite de 'log-exp' 1.00039
514 dimgrid 3516 dimblock 256 degrePoly 900000
515 proc 0, start 0 size 900096
516 proc 0 start 0 size 900096
517 iter : 1 Arret : 0.00608864 s/iter 58.616205
518 iter : 2 Arret : 0.0146722 s/iter 59.000776
519 iter : 3 Arret : 0.0134789 s/iter 59.298654
520 iter : 4 Arret : 0.0160321 s/iter 59.818073
521 iter : 5 Arret : 0.220711 s/iter 60.529494
522 iter : 6 Arret : 0.209255 s/iter 60.366814
523 iter : 7 Arret : 0.0340811 s/iter 60.111951
524 iter : 8 Arret : 0.0292795 s/iter 60.340609
525 iter : 9 Arret : 0.00831174 s/iter 59.461610
526 iter : 10 Arret : 0.0107556 s/iter 59.258654
527 iter : 11 Arret : 0.0124728 s/iter 58.962767
528 iter : 12 Arret : 0.00847525 s/iter 59.115894
529 iter : 13 Arret : 0.00524175 s/iter 58.811084
530 iter : 14 Arret : 0.00315085 s/iter 58.680916
531 iter : 15 Arret : 0.000430082 s/iter 58.613465
532 iter : 16 Arret : 0.000203544 s/iter 58.622904
533 iter : 17 Arret : 3.8928E-05 s/iter 58.617522
534 iter : 18 Arret : 1.36418E-05 s/iter 58.614772
535 iter : 19 Arret : 7.35952E-07 s/iter 58.607696
536 iter : 20 Arret : 9.56446E-09 s/iter 58.644389
537 iter : 21 Arret : 1.24876E-10 s/iter 58.653746
538 iter : 22 Arret : 1.62971E-12 s/iter 58.659057
539 iter : 23 Arret : 2.12173E-14 s/iter 58.613887
540 temps : 1360.28 seconde(s)
542 Nb de depassements de capacite exponentielle : 0
543 Precision : 1.48556E-08
544 Stabilite : 2.12173E-14
545 +---+----------------------------+------------+----------------------------+
546 | i | Zi | mod(Zi) | P(Zi) |
547 +---+----------------------------+------------+----------------------------+
548 | 1| 0.540305 +i* 0.841464| 0.999995|-2.16369E-11 +i* 2.73281E-11|
549 | 2| 0.641425 +i* 0.767193| 1.00001|-4.13838E-10 +i*-3.12328E-09|
550 | 3| 0.688263 +i* 0.725455| 0.999995| -1.6052E-11 +i* 1.13947E-11|
551 | 4| 0.732405 +i* 0.680878| 1.00001|-4.89738E-09 +i*-2.62297E-10|
552 | 5| 0.77368 +i* 0.633569| 0.999995| 1.89027E-12 +i*-4.10982E-12|
553 | 6| 0.811877 +i* 0.583821| 0.999995| 3.67913E-11 +i* 5.72664E-12|
554 | 7| 0.846906 +i* 0.531733| 0.999995|-4.94516E-11 +i*-1.19133E-11|
555 | 8| 0.878587 +i* 0.477572| 0.999995| 1.93007E-11 +i* 5.20278E-12|
556 | 9| 0.906825 +i* 0.421497| 0.999995|-2.04992E-12 +i*-5.73336E-12|
557 | 10| 0.931465 +i* 0.363819| 0.999995|-2.19003E-12 +i* 1.28761E-11|
558 | 11| 0.952465 +i* 0.304668| 1.00001| 2.41151E-09 +i*-1.99953E-10|
559 | 12| 0.969685 +i* 0.244341| 0.999995|-1.80025E-11 +i* 2.82213E-12|
560 | 13| 0.983108 +i* 0.18306| 1.00001|-2.19377E-09 +i* 1.8802E-09|
561 | 14| 0.992646 +i* 0.121018| 0.999995|-2.17162E-11 +i* 7.29261E-12|
562 | 15| 0.998281 +i* 0.0585381| 0.999995| 2.19857E-12 +i* 2.81219E-13|
563 | 16| 0.999987 +i* -0.0042097| 0.999995| 2.32575E-11 +i* 1.25245E-13|
564 | 17| 0.997754 +i* -0.0669158| 0.999995| 1.33051E-11 +i*-5.99909E-13|
565 | 18| 0.991588 +i* -0.129396| 0.999995|-7.26752E-12 +i* 8.29531E-12|
566 | 19| 0.981526 +i* -0.191304| 0.999995|-1.66676E-11 +i*-1.32172E-12|
567 | 20| 0.967597 +i* -0.252523| 1.00001|-3.23112E-09 +i* 7.49827E-10|
568 +---+----------------------------+------------+----------------------------+
569 500000 racines de module = 0.999995
570 400000 racines de module = 1.00001
572 (1 +i*0)*x^0 + (-0.1 +i*0)*x^400000 + (-10 +i*0)*x^600000 + (1 +i*0)*x^1000000
574 (-40000 +i*0)*x^399999 + (-6E+06 +i*0)*x^599999 + (1E+06 +i*0)*x^999999
576 zone limite de 'log-exp' 1.00035
577 dimgrid 3907 dimblock 256 degrePoly 1000000
578 proc 0, start 0 size 1000192
579 proc 0 start 0 size 1000192
580 iter : 1 Arret : 0.00147084 s/iter 72.417971
581 iter : 2 Arret : 0.00720604 s/iter 72.529718
582 iter : 3 Arret : 0.081961 s/iter 72.571925
583 iter : 4 Arret : 0.480529 s/iter 73.214197
584 iter : 5 Arret : 0.377941 s/iter 74.018259
585 iter : 6 Arret : 0.390277 s/iter 74.476154
586 iter : 7 Arret : 0.287207 s/iter 75.010054
587 iter : 8 Arret : 0.119773 s/iter 74.997818
588 iter : 9 Arret : 0.0681794 s/iter 74.952227
589 iter : 10 Arret : 0.0830483 s/iter 74.120526
590 iter : 11 Arret : 0.445279 s/iter 73.919717
591 iter : 12 Arret : 0.385306 s/iter 73.141650
592 iter : 13 Arret : 0.0782492 s/iter 72.748762
593 iter : 14 Arret : 0.00865587 s/iter 72.572841
594 iter : 15 Arret : 0.00318092 s/iter 72.405043
595 iter : 16 Arret : 0.000780752 s/iter 72.258477
596 iter : 17 Arret : 7.82567E-05 s/iter 72.248236
597 iter : 18 Arret : 2.14159E-05 s/iter 72.382746
598 iter : 19 Arret : 1.65239E-05 s/iter 72.383233
599 iter : 20 Arret : 1.11833E-05 s/iter 72.376667
600 iter : 21 Arret : 6.72811E-08 s/iter 72.414433
601 iter : 22 Arret : 2.1373E-10 s/iter 72.369665
602 iter : 23 Arret : 2.84229E-12 s/iter 72.380476
603 iter : 24 Arret : 4.00798E-14 s/iter 72.383421
604 temps : 1759.3 seconde(s)
606 Nb de depassements de capacite exponentielle : 0
607 Precision : 2.65132E-08
608 Stabilite : 4.00798E-14
609 +---+----------------------------+------------+----------------------------+
610 | i | Zi | mod(Zi) | P(Zi) |
611 +---+----------------------------+------------+----------------------------+
612 | 1| 0.5403 +i* 0.841468| 0.999996| 5.07216E-12 +i* 6.41236E-12|
613 | 2| 0.52971 +i* 0.848174| 0.999996|-2.56639E-12 +i*-3.27674E-11|
614 | 3| 0.524361 +i* 0.851491| 0.999996|-2.47296E-11 +i* 1.78327E-11|
615 | 4| 0.51901 +i* 0.854764| 0.999996| 9.45599E-12 +i* 2.07434E-11|
616 | 5| 0.513629 +i* 0.858008| 0.999996| 2.32483E-11 +i* 6.70747E-12|
617 | 6| 0.508237 +i* 0.861213| 0.999996|-1.34339E-11 +i* 9.87854E-12|
618 | 7| 0.502834 +i* 0.864379| 0.999996|-2.85585E-11 +i* 6.91519E-12|
619 | 8| 0.497384 +i* 0.867526| 0.999996| 1.87346E-11 +i* 4.7471E-11|
620 | 9| 0.491932 +i* 0.870629| 0.999996|-2.65525E-11 +i* 1.22525E-11|
621 | 10| 0.486452 +i* 0.873703| 0.999996| 3.0312E-11 +i* 1.02214E-11|
622 | 11| 0.480962 +i* 0.876737| 0.999996| 1.81546E-11 +i* 8.04012E-12|
623 | 12| 0.475463 +i* 0.879732| 0.999996|-5.09415E-12 +i*-3.20905E-11|
624 | 13| 0.469917 +i* 0.882706| 0.999996|-1.29106E-11 +i*-2.31489E-11|
625 | 14| 0.464361 +i* 0.885653| 1.00001| 7.56512E-10 +i* 7.15631E-09|
626 | 15| 0.458797 +i* 0.888537| 0.999996| 2.78862E-11 +i* 1.10441E-11|
627 | 16| 0.453214 +i* 0.891397| 0.999996| 2.45506E-11 +i* 3.1726E-11|
628 | 17| 0.447623 +i* 0.894218| 0.999996| -2.5447E-11 +i*-4.61239E-11|
629 | 18| 0.441986 +i* 0.897017| 0.999996| 2.72476E-11 +i* 3.22485E-11|
630 | 19| 0.436369 +i* 0.899774| 1.00001| 6.23535E-09 +i* 2.70034E-09|
631 | 20| 0.430689 +i* 0.902496| 0.999996|-1.25435E-11 +i* 3.86925E-13|
632 +---+----------------------------+------------+----------------------------+
633 600000 racines de module = 0.999996
634 400000 racines de module = 1.00001
636 (1 +i*0)*x^0 + (-0.1 +i*0)*x^400000 + (-10 +i*0)*x^700000 + (1 +i*0)*x^1100000
638 (-40000 +i*0)*x^399999 + (-7E+06 +i*0)*x^699999 + (1.1E+06 +i*0)*x^1099999
640 zone limite de 'log-exp' 1.00032
641 dimgrid 4297 dimblock 256 degrePoly 1100000
642 proc 0, start 0 size 1100032
643 proc 0 start 0 size 1100032
644 iter : 1 Arret : 0.00168659 s/iter 87.527008
645 iter : 2 Arret : 0.221172 s/iter 87.840462
646 iter : 3 Arret : 0.614718 s/iter 87.981884
647 iter : 4 Arret : 0.670847 s/iter 88.201309
648 iter : 5 Arret : 0.177782 s/iter 88.785514
649 iter : 6 Arret : 0.321923 s/iter 88.923359
650 iter : 7 Arret : 0.485272 s/iter 89.580757
651 iter : 8 Arret : 0.0532704 s/iter 89.020558
652 iter : 9 Arret : 0.0416459 s/iter 88.611245
653 iter : 10 Arret : 0.0178816 s/iter 88.275629
654 iter : 11 Arret : 0.0162585 s/iter 88.039372
655 iter : 12 Arret : 0.00199041 s/iter 87.719345
656 iter : 13 Arret : 0.00886005 s/iter 87.626111
657 iter : 14 Arret : 0.00940125 s/iter 87.513899
658 iter : 15 Arret : 0.00114498 s/iter 87.503163
659 iter : 16 Arret : 0.000114443 s/iter 87.497753
660 iter : 17 Arret : 8.32242E-07 s/iter 87.500527
661 iter : 18 Arret : 1.66614E-09 s/iter 87.511094
662 iter : 19 Arret : 1.76187E-11 s/iter 87.501779
663 iter : 20 Arret : 2.81916E-13 s/iter 87.511417
664 temps : 1760.96 seconde(s)
666 Nb de depassements de capacite exponentielle : 0
667 Precision : 4.69834E-08
668 Stabilite : 2.81916E-13
669 +---+----------------------------+------------+----------------------------+
670 | i | Zi | mod(Zi) | P(Zi) |
671 +---+----------------------------+------------+----------------------------+
672 | 1| 0.540304 +i* 0.841466| 0.999997| 3.05426E-11 +i* 2.22433E-11|
673 | 2| 0.486457 +i* 0.873701| 0.999997| 1.55667E-11 +i* 1.29141E-12|
674 | 3| 0.430685 +i* 0.902499| 0.999997|-2.73115E-13 +i* -1.1846E-11|
675 | 4| 0.373217 +i* 0.927741| 0.999997| 7.25919E-12 +i* 1.41316E-11|
676 | 5| 0.314287 +i* 0.949325| 0.999997| 6.92779E-12 +i*-1.65982E-11|
677 | 6| 0.25411 +i* 0.967172| 0.999997| 7.74336E-12 +i*-2.48442E-11|
678 | 7| 0.192932 +i* 0.981209| 0.999997|-2.38964E-12 +i*-6.63079E-12|
679 | 8| 0.131003 +i* 0.991379| 0.999997| 6.58806E-13 +i* 4.16117E-12|
680 | 9| 0.0685494 +i* 0.997644| 0.999997| 4.07008E-12 +i*-8.91343E-13|
681 | 10| 0.00582765 +i* 0.999989| 1.00001| 1.03606E-10 +i*-7.91025E-09|
682 | 11| -0.0569127 +i* 0.998376| 0.999997| 3.60831E-11 +i*-2.16827E-12|
683 | 12| -0.119435 +i* 0.992839| 0.999997| 2.51194E-11 +i* 3.43808E-13|
684 | 13| -0.181479 +i* 0.983392| 0.999997|-9.37095E-12 +i* 3.95944E-12|
685 | 14| -0.242816 +i* 0.970069| 0.999997| 4.4699E-11 +i*-1.48639E-11|
686 | 15| -0.303197 +i* 0.952925| 0.999997|-7.62945E-12 +i* 9.24305E-12|
687 | 16| -0.362375 +i* 0.932029| 0.999997|-1.84204E-11 +i* 1.52254E-11|
688 | 17| -0.420133 +i* 0.907459| 0.999997|-7.40252E-12 +i* 1.01516E-11|
689 | 18| -0.476237 +i* 0.879313| 0.999997| 2.6679E-11 +i*-3.98928E-12|
690 | 19| -0.530456 +i* 0.847708| 0.999997| 2.33888E-11 +i* 3.96226E-11|
691 | 20| -0.582594 +i* 0.812759| 0.999997| 4.87606E-11 +i*-7.17615E-12|
692 +---+----------------------------+------------+----------------------------+
693 700000 racines de module = 0.999997
694 400000 racines de module = 1.00001
696 (1 +i*0)*x^0 + (-0.1 +i*0)*x^500000 + (-10 +i*0)*x^700000 + (1 +i*0)*x^1200000
698 (-50000 +i*0)*x^499999 + (-7E+06 +i*0)*x^699999 + (1.2E+06 +i*0)*x^1199999
700 zone limite de 'log-exp' 1.0003
701 dimgrid 4688 dimblock 256 degrePoly 1200000
702 proc 0, start 0 size 1200128
703 proc 0 start 0 size 1200128
704 iter : 1 Arret : 0.0604903 s/iter 104.210438
705 iter : 2 Arret : 0.760333 s/iter 107.636956
706 iter : 3 Arret : 0.641059 s/iter 109.569108
707 iter : 4 Arret : 0.757859 s/iter 110.745638
708 iter : 5 Arret : 1.69949 s/iter 111.771660
709 iter : 6 Arret : 1.55905 s/iter 112.124579
710 iter : 7 Arret : 0.884393 s/iter 112.333970
711 iter : 8 Arret : 1.26041 s/iter 112.674332
712 iter : 9 Arret : 1.12297 s/iter 112.700332
713 iter : 10 Arret : 1.42651 s/iter 112.673480
714 iter : 11 Arret : 1.62385 s/iter 112.559546
715 iter : 12 Arret : 7.35975 s/iter 111.194509
716 iter : 13 Arret : 2.54034 s/iter 110.779844
717 iter : 14 Arret : 1.75526 s/iter 110.370370
718 iter : 15 Arret : 0.425229 s/iter 109.834772
719 iter : 16 Arret : 0.607512 s/iter 109.095342
720 iter : 17 Arret : 0.444185 s/iter 108.475703
721 iter : 18 Arret : 1.20306 s/iter 107.897625
722 iter : 19 Arret : 2.81295 s/iter 107.699977
723 iter : 20 Arret : 0.912082 s/iter 107.201771
724 iter : 21 Arret : 6.71454 s/iter 107.045634
725 iter : 22 Arret : 3.80497 s/iter 106.778980
726 iter : 23 Arret : 0.954853 s/iter 106.590998
727 iter : 24 Arret : 1.3231 s/iter 106.403666
728 iter : 25 Arret : 0.709645 s/iter 106.437843
729 iter : 26 Arret : 0.198616 s/iter 105.842242
730 iter : 27 Arret : 0.188959 s/iter 105.332388
731 iter : 28 Arret : 0.183899 s/iter 105.095751
732 iter : 29 Arret : 0.0134023 s/iter 104.451751
733 iter : 30 Arret : 0.00393877 s/iter 104.407487
734 iter : 31 Arret : 0.000648237 s/iter 104.002703
735 iter : 32 Arret : 2.11113E-07 s/iter 103.971125
736 iter : 33 Arret : 2.91835E-09 s/iter 103.990134
737 iter : 34 Arret : 4.10742E-11 s/iter 104.063058
738 iter : 35 Arret : 5.782E-13 s/iter 104.057611
739 temps : 3780.42 seconde(s)
741 Nb de depassements de capacite exponentielle : 0
742 Precision : 2.78618E-08
743 Stabilite : 5.782E-13
744 +---+----------------------------+------------+----------------------------+
745 | i | Zi | mod(Zi) | P(Zi) |
746 +---+----------------------------+------------+----------------------------+
747 | 1| 0.540331 +i* 0.841458| 1| 2.47704E-09 +i* 1.35675E-09|
748 | 2| 0.513629 +i* 0.858008| 0.999997| 3.02357E-11 +i* 3.41858E-11|
749 | 3| 0.486457 +i* 0.873701| 0.999997| 1.53235E-11 +i* 6.36435E-13|
750 | 4| 0.458797 +i* 0.888537| 0.999997| 1.72345E-11 +i* 1.48229E-11|
751 | 5| 0.430685 +i* 0.902499| 0.999997| 2.12053E-13 +i*-1.16324E-11|
752 | 6| 0.402126 +i* 0.915589| 1| 2.50282E-09 +i*-6.10471E-09|
753 | 7| 0.3732 +i* 0.927747| 0.999997| -2.5707E-11 +i* 3.11093E-13|
754 | 8| 0.3439 +i* 0.939003| 0.999997|-1.12714E-11 +i* 1.5453E-11|
755 | 9| 0.314261 +i* 0.949333| 0.999997| 1.93628E-11 +i* 2.50909E-11|
756 | 10| 0.284313 +i* 0.958728| 0.999997| 2.69426E-11 +i* 2.77974E-11|
757 | 11| 0.254084 +i* 0.967179| 0.999997| 1.5277E-11 +i* 4.73027E-12|
758 | 12| 0.223605 +i* 0.974676| 0.999997| -8.1017E-11 +i*-3.77299E-11|
759 | 13| 0.192915 +i* 0.981212| 0.999997| 1.07495E-11 +i* 5.766E-12|
760 | 14| 0.162017 +i* 0.986785| 0.999997| 4.59321E-12 +i*-4.42106E-13|
761 | 15| 0.130977 +i* 0.991382| 0.999997| 5.89659E-11 +i* 7.29122E-12|
762 | 16| 0.0998077 +i* 0.995003| 0.999997|-3.45761E-11 +i*-1.61701E-11|
763 | 17| 0.0685225 +i* 0.997646| 0.999997| 2.33641E-11 +i* 2.51787E-12|
764 | 18| 0.0371629 +i* 0.999314| 1| 1.55887E-09 +i*-4.23222E-09|
765 | 19| 0.00578048 +i* 0.99998| 0.999997| 3.46787E-11 +i* 1.94857E-13|
766 | 20| -0.0256056 +i* 0.999669| 0.999997| 2.01068E-11 +i*-1.22213E-12|
767 +---+----------------------------+------------+----------------------------+
768 500000 racines de module = 1
769 700000 racines de module = 0.999997
771 (1 +i*0)*x^0 + (-0.1 +i*0)*x^600000 + (-10 +i*0)*x^700000 + (1 +i*0)*x^1300000
773 (-60000 +i*0)*x^599999 + (-7E+06 +i*0)*x^699999 + (1.3E+06 +i*0)*x^1299999
775 zone limite de 'log-exp' 1.00027
776 dimgrid 5079 dimblock 256 degrePoly 1300000
777 proc 0, start 0 size 1300224
778 proc 0 start 0 size 1300224
779 iter : 1 Arret : 0.00159797 s/iter 122.190845
780 iter : 2 Arret : 0.00295805 s/iter 122.218210
781 iter : 3 Arret : 0.0268287 s/iter 122.695732
782 iter : 4 Arret : 0.0258978 s/iter 124.411318
783 iter : 5 Arret : 0.0100676 s/iter 124.385328
784 iter : 6 Arret : 0.010306 s/iter 124.585710
785 iter : 7 Arret : 0.00621108 s/iter 124.699270
786 iter : 8 Arret : 0.0546291 s/iter 123.615686
787 iter : 9 Arret : 0.0546239 s/iter 123.064882
788 iter : 10 Arret : 0.00861833 s/iter 122.522345
789 iter : 11 Arret : 0.00250313 s/iter 122.331967
790 iter : 12 Arret : 0.00148991 s/iter 122.312260
791 iter : 13 Arret : 0.000566499 s/iter 122.222747
792 iter : 14 Arret : 0.000671157 s/iter 122.112440
793 iter : 15 Arret : 0.00012293 s/iter 122.068177
794 iter : 16 Arret : 1.62145E-05 s/iter 122.077860
795 iter : 17 Arret : 1.74299E-07 s/iter 122.112922
796 iter : 18 Arret : 2.03739E-09 s/iter 122.105729
797 iter : 19 Arret : 2.49209E-11 s/iter 122.149682
798 iter : 20 Arret : 3.04643E-13 s/iter 122.130173
799 temps : 2456.38 seconde(s)
801 Nb de depassements de capacite exponentielle : 0
802 Precision : 1.81249E-08
803 Stabilite : 3.04643E-13
804 +---+----------------------------+------------+----------------------------+
805 | i | Zi | mod(Zi) | P(Zi) |
806 +---+----------------------------+------------+----------------------------+
807 | 1| 0.540304 +i* 0.841466| 0.999997| 3.11737E-11 +i* 2.17606E-11|
808 | 2| -0.999659 +i* 0.0262608| 1|-2.53959E-09 +i*-4.76805E-11|
809 | 3| 0.486447 +i* 0.873714| 1|-3.31895E-09 +i* 4.75356E-11|
810 | 4| -0.999331 +i* -0.0364881| 0.999997|-7.31148E-12 +i*-2.12924E-12|
811 | 5| 0.495351 +i* -0.868697| 1|-7.49992E-10 +i*-3.05039E-09|
812 | 6| 0.430683 +i* 0.902508| 1| 2.27321E-09 +i*-2.33069E-09|
813 | 7| -0.995071 +i* -0.0991289| 0.999997|-2.47551E-11 +i*-7.41962E-13|
814 | 8| 0.548886 +i* -0.835893| 0.999997| 1.45806E-11 +i* 2.7442E-11|
815 | 9| 0.373184 +i* 0.927762| 1| 2.83273E-09 +i*-1.84823E-09|
816 | 10| -0.986898 +i* -0.161367| 1|-7.18017E-10 +i* 2.17349E-09|
817 | 11| 0.600255 +i* -0.799813| 1|-1.35051E-09 +i* 3.1614E-09|
818 | 12| 0.314272 +i* 0.949337| 1|-9.78133E-10 +i*-2.49009E-09|
819 | 13| -0.974823 +i* -0.222966| 0.999997|-1.11207E-11 +i* 1.14155E-11|
820 | 14| 0.649243 +i* -0.760586| 1|-1.09706E-09 +i*-5.08704E-09|
821 | 15| 0.254067 +i* 0.967183| 0.999997| 2.38982E-11 +i* 1.80963E-11|
822 | 16| -0.958909 +i* -0.283702| 0.999997|-1.37188E-11 +i* 4.27691E-12|
823 | 17| 0.695705 +i* -0.718333| 1|-8.95195E-10 +i* 5.59437E-09|
824 | 18| 0.192872 +i* 0.981228| 1|-4.22421E-09 +i*-1.01597E-09|
825 | 19| -0.939235 +i* -0.343287| 1| 4.27818E-09 +i*-2.67367E-09|
826 | 20| 0.73938 +i* -0.673294| 1| 2.71154E-10 +i* 1.1786E-09|
827 +---+----------------------------+------------+----------------------------+
828 700000 racines de module = 0.999997
829 600000 racines de module = 1
831 (1 +i*0)*x^0 + (-0.1 +i*0)*x^600000 + (-10 +i*0)*x^800000 + (1 +i*0)*x^1400000
833 (-60000 +i*0)*x^599999 + (-8E+06 +i*0)*x^799999 + (1.4E+06 +i*0)*x^1399999
835 zone limite de 'log-exp' 1.00025
836 dimgrid 5469 dimblock 256 degrePoly 1400000
837 proc 0, start 0 size 1400064
838 proc 0 start 0 size 1400064
839 iter : 1 Arret : 0.00512465 s/iter 141.504161
840 iter : 2 Arret : 0.557949 s/iter 144.314966
841 iter : 3 Arret : 1.03552 s/iter 146.900316
842 iter : 4 Arret : 1.26494 s/iter 149.769586
843 iter : 5 Arret : 0.243662 s/iter 151.999632
844 iter : 6 Arret : 0.113493 s/iter 152.352638
845 iter : 7 Arret : 0.22902 s/iter 152.506482
846 iter : 8 Arret : 0.210565 s/iter 152.421770
847 iter : 9 Arret : 0.121218 s/iter 152.234909
848 iter : 10 Arret : 0.0762223 s/iter 151.862816
849 iter : 11 Arret : 0.0579704 s/iter 149.959275
850 iter : 12 Arret : 0.149029 s/iter 147.765839
851 iter : 13 Arret : 0.104545 s/iter 145.073068
852 iter : 14 Arret : 0.076237 s/iter 143.577829
853 iter : 15 Arret : 0.0498507 s/iter 142.760660
854 iter : 16 Arret : 0.038389 s/iter 142.018143
855 iter : 17 Arret : 0.00665308 s/iter 141.914157
856 iter : 18 Arret : 0.00165355 s/iter 141.591768
857 iter : 19 Arret : 0.000336387 s/iter 141.465259
858 iter : 20 Arret : 0.000107744 s/iter 141.458742
859 iter : 21 Arret : 2.19802E-05 s/iter 141.475880
860 iter : 22 Arret : 9.70758E-07 s/iter 141.447593
861 iter : 23 Arret : 2.79623E-09 s/iter 141.454973
862 iter : 24 Arret : 1.29858E-11 s/iter 141.457592
863 iter : 25 Arret : 6.03384E-14 s/iter 141.443467
864 temps : 3641.14 seconde(s)
866 Nb de depassements de capacite exponentielle : 0
867 Precision : 3.68867E-08
868 Stabilite : 6.03384E-14
869 +---+----------------------------+------------+----------------------------+
870 | i | Zi | mod(Zi) | P(Zi) |
871 +---+----------------------------+------------+----------------------------+
872 | 1| 0.5403 +i* 0.841469| 0.999997|-8.47142E-11 +i* 1.92466E-11|
873 | 2| 0.513623 +i* 0.858013| 0.999997|-2.15776E-11 +i*-2.98557E-11|
874 | 3| -0.52703 +i* -0.849843| 0.999997|-8.72191E-12 +i* 2.97079E-11|
875 | 4| 0.486439 +i* 0.873711| 0.999997| 5.60277E-11 +i* 4.36779E-11|
876 | 5| -0.500096 +i* -0.865967| 0.999997| 3.56147E-11 +i*-3.12713E-11|
877 | 6| 0.458776 +i* 0.888549| 0.999997|-1.89702E-11 +i* 4.08274E-12|
878 | 7| -0.472669 +i* -0.881237| 0.999997|-1.66496E-11 +i*-3.61498E-11|
879 | 8| 0.430661 +i* 0.902511| 0.999997|-1.60558E-11 +i*-1.29949E-11|
880 | 9| -0.444791 +i* -0.895631| 0.999997|-8.89955E-13 +i* 2.61938E-12|
881 | 10| 0.402136 +i* 0.915577| 0.999997| 6.5834E-12 +i* -1.3935E-11|
882 | 11| -0.416432 +i* -0.909164| 0.999997| 1.97816E-11 +i* 3.10848E-11|
883 | 12| 0.373171 +i* 0.927759| 0.999997|-2.17995E-11 +i*-2.96867E-12|
884 | 13| -0.387698 +i* -0.921783| 0.999997|-1.86324E-11 +i* -4.6545E-11|
885 | 14| 0.343875 +i* 0.939012| 0.999997| 3.06317E-11 +i* 7.08794E-11|
886 | 15| -0.358575 +i* -0.933498| 0.999997|-4.93405E-11 +i*-7.15173E-13|
887 | 16| 0.314233 +i* 0.949343| 0.999997| 1.02587E-11 +i*-4.25648E-11|
888 | 17| -0.329098 +i* -0.944293| 0.999997|-1.57903E-11 +i* 2.05052E-11|
889 | 18| 0.284281 +i* 0.958738| 0.999997| 2.51592E-11 +i* 2.09243E-11|
890 | 19| -0.299297 +i* -0.954157| 0.999997| 5.03608E-12 +i* 1.70503E-11|
891 | 20| 0.254048 +i* 0.967189| 0.999997|-2.81228E-11 +i*-1.66302E-11|
892 +---+----------------------------+------------+----------------------------+
893 800000 racines de module = 0.999997
894 600000 racines de module = 1