3 ALTauthor = {Peter Pacheco},
5 title = {Parallel Programming with MPI},
6 publisher = {Morgan Kaufmann},
21 title = "{OpenMP} Application Program Interface",
27 Edition = "4th edition",
28 URL = "http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.",
34 title = "Iteration Methods for Finding all Zeros of a Polynomial Simultaneously",
35 journal = "Mathematics of Computation",
45 title = "On the approximations of Newton",
46 journal = "Annual Sofia Univ",
56 title = "An alternative method of Newton for simultaneous calculation of all the roots of a given algebraic equation",
57 journal = "Phys. Math. J",
66 author = "\'E. Durand",
67 publisher = "Masson, Paris",
68 title = "Solutions num\'eriques des \'equations alg\'ebriques.
69 {T}ome {I}: \'{E}quations du type {$F(x)=0$}; racines
75 author = "Immo O. Kerner",
76 title = "{Ein Gesamtschrittverfahren zur Berechnung der
77 Nullstellen von Polynomen}. ({German}) [{A} Complete
78 Step Method for the Computation of Zeros of
80 journal = "Numerische Mathematik",
87 ISSN = "0029-599X (print), 0945-3245 (electronic)",
88 bibdate = "Mon Oct 18 01:28:20 MDT 1999",
89 bibsource = "http://www.math.utah.edu/pub/tex/bib/nummath.bib",
90 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
91 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
92 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
93 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
94 \path|beebe@acm.org|, \path|beebe@computer.org|
96 \path|http://www.math.utah.edu/~beebe/|",
97 fjournal = "Numerische Mathematik",
98 journal-url = "http://link.springer.com/journal/211",
102 @Article{Borch-Supan63,
103 author = "W. Boersch-Supan",
104 title = "A Posteriori Error Bounds for the Zeros of
106 journal = "Numerische Mathematik",
112 bibdate = "Fri Jan 12 11:37:56 1996",
113 acknowledgement = "Jon Rokne, Department of Computer Science, The
114 University of Calgary, 2500 University Drive N.W.,
115 Calgary, Alberta T2N 1N4, Canada",
119 title = "A modified Newton method for polynomials",
120 author = "Louis W. Ehrlich",
121 journal = "Commun. ACM",
125 bibdate = "2003-11-20",
127 http://dblp.uni-trier.de/db/journals/cacm/cacm10.html#Ehrlich67",
129 URL = "http://doi.acm.org/10.1145/363067.363115",
132 title = "Higher-order iteration functions for simultaneously approximating polynomial zeros",
133 journal = " Intern. J. Computer Math",
138 author = "G. Loizou",
142 title = "Calculating polynomial zeros on a local memory
144 author = "T. L. Freeman",
145 journal = "Parallel Computing",
149 bibdate = "2011-09-09",
151 http://dblp.uni-trier.de/db/journals/pc/pc12.html#Freeman89",
153 URL = "http://dx.doi.org/10.1016/0167-8191(89)90093-8",
155 @Article{Freemanall90,
156 title = " Asynchronous polynomial zero-finding algorithms",
157 journal = " Parallel Computing",
162 author = "T.L. Freeman AND R.K. Brankin",
168 author = {Couturier, Rapha\"el and Spies, Fran\c{c}ois},
169 title = {Extraction de racines dans des polyn\^omes creux de degr\'e \'elev\'e},
170 journal = {RSRCP (R\'eseaux et Syst\`emes R\'epartis, Calculateurs Parall\`eles), Num\'ero th\'ematique : Algorithmes it\'eratifs parall\`eles et distribu\'es},
171 publisher = {Herm\`es},
182 @Article{Ostrowski41,
183 title = " On a Theorem by {J. L. Walsh} Concerning the Moduli of Roots of Algebraic Equations. A.M.S.",
184 journal = " Algorithmes itératifs paralléles et distribués",
189 author = "A. Ostrowski",
194 title = {{CUDA} {C} programming guide},
195 OPTkey = {NVIDIA CUDA},
196 OPTorganization = {{NVIDIA}},
197 OPTmonth = {September},
199 URL = {{http://docs.nvidia.com/cuda/pdf/CUDA\_C\_Programming\_Guide.pdf}}
203 title = "Parallel implementation of the {D}urand-{K}erner algorithm for polynomial root-finding on {GPU}",
204 journal = "IEEE. Conf. on advanced Networking, Distributed Systems and Applications",
209 author = "K. Ghidouche AND R. Couturier AND A. Sider",
214 title = " Perfectionnements de la méthode asynchrone de {D}urand-{K}erner pour les polynômes complexes",
215 journal = " Calculateurs Parallèles",
220 author = "K. Rhofir AND F. Spies AND Jean-Claude Miellou",
224 title = "Numerical computation of polynomial zeros by means of
227 journal = "Numerical Algorithms",
231 bibdate = "2015-09-27",
233 http://dblp.uni-trier.de/db/journals/na/na13.html#Bini96",
235 URL = "http://dx.doi.org/10.1007/BF02207694",
238 title = " Parallel methods for approximating the roots of a function",
239 journal = " IBM Res Dev",
244 author = "WL. Mirankar",
248 title = " A survey of parallelism in numerical analysis",
249 journal = " SIAM Rev",
254 author = "WL. Mirankar",
258 title = " Parallel Numerical Methods for Solution of Equations",
259 journal = " Commun ACM ",
264 author = "GS. Schedler",
267 @InProceedings{Winogard72,
268 title = "Parallel Iteration Methods",
269 author = "S. Winograd",
270 bibdate = "2011-09-13",
272 http://dblp.uni-trier.de/db/conf/coco/cocc1972.html#Winograd72",
273 booktitle = "Complexity of Computer Computations",
274 publisher = "Plenum Press, New York",
276 editor = "Raymond E. Miller and James W. Thatcher",
277 ISBN = "0-306-30707-3",
279 series = "The IBM Research Symposia Series",
283 title = " A fast parallel algorithm for determining all roots of a polynomial with real roots",
284 journal = " Int: Proc of ACM",
289 author = "M. Ben-Or AND E. Feig AND D. Kozzen AND P. Tiwary",
293 title = " A highly parallel algorithm for root extraction",
294 journal = " IEEE Trans Comp",
299 author = "TA. Rice AND LH. Jamieson",
303 title = " Finding the roots of a polynomial on an MIMD multicomputer",
304 journal = " Parallel Comput",
309 author = "M. Cosnard AND P. Fraigniaud",
313 title = " Efficient parallel algorithms for finding polynomial zeroes",
314 journal = "Proc of the 6th int conference on advance computing, CDAC, Pune University Campus,India",
319 author = "PK. Jana AND BP. Sinha AND R. Datta Gupta",
323 title = " Polynomial interpolation and polynomial root finding on OTIS-Mesh",
324 journal = " Parallel Comput",
334 author = {B. Kalantari},
335 title = {Polynomial root finding and polynomiography},
336 publisher = {World Scientifict},
343 OPTmonth = {December},
349 title = " Structured matrix methods for polynomial root finding",
350 journal = " n: Proc of the 2007 Intl symposium on symbolic and algebraic computation",
355 author = "V. Skachek",
360 @InProceedings{Gemignani07,
361 author = "L. Gemignani",
362 title = "Structured matrix methods for polynomial
364 editor = "C. W. Brown",
365 booktitle = "Proceedings of the 2007 International Symposium on
366 Symbolic and Algebraic Computation, July 29--August 1,
367 2007, University of Waterloo, Waterloo, Ontario,
369 publisher = "ACM Press",
370 address = "pub-ACM:adr",
371 ISBN = "1-59593-743-9 (print), 1-59593-742-0 (CD-ROM)",
372 isbn-13 = "978-1-59593-743-8 (print), 978-1-59593-742-1
376 doi = "http://doi.acm.org/10.1145/1277548.1277573",
377 bibdate = "Fri Jun 20 08:46:50 MDT 2008",
378 bibsource = "http://portal.acm.org/;
379 http://www.math.utah.edu/pub/tex/bib/issac.bib",
380 abstract = "In this paper we discuss the use of structured matrix
381 methods for the numerical approximation of the zeros of
382 a univariate polynomial. In particular, it is shown
383 that root-finding algorithms based on floating-point
384 eigenvalue computation can benefit from the structure
385 of the matrix problem to reduce their complexity and
386 memory requirements by an order of magnitude.",
387 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
388 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
389 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
390 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
391 \path|beebe@acm.org|, \path|beebe@computer.org|
393 \path|http://www.math.utah.edu/~beebe/|",
394 keywords = "complexity; eigenvalue computation; polynomial
395 root-finding; rank-structured matrices",
396 doi-url = "http://dx.doi.org/10.1145/1277548.1277573",
400 title = "Probabilistic algorithm for finding roots of
401 linearized polynomials",
402 author = "V. Skachek AND M. Roth",
403 journal = "Des. Codes Cryptography",
407 bibdate = "2008-03-11",
409 http://dblp.uni-trier.de/db/journals/dcc/dcc46.html#SkachekR08",
411 URL = "http://dx.doi.org/10.1007/s10623-007-9125-y",
415 title = " A constrained learning algorithm for finding multiple real roots of polynomial",
416 journal = " In: Proc of the 2008 intl symposium on computational intelligence and design",
421 author = "X. Zhanc AND M. Wan,Z.Yi",
425 @InProceedings{Zhuall08,
426 title = "An Adaptive Algorithm Finding Multiple Roots of Polynomials",
427 author = "W. Zhu AND Z. Zeng AND Dm. Lin",
428 bibdate = "2008-09-25",
430 http://dblp.uni-trier.de/db/conf/isnn/isnn2008-2.html#ZhuZL08",
431 booktitle = "ISNN (2)",
432 publisher = "Springer",
435 editor = "Fuchun Sun and Jianwei Zhang 0001 and Ying Tan and
436 Jinde Cao and Wen Yu 0001",
437 ISBN = "978-3-540-87733-2",
439 series = "Lecture Notes in Computer Science",
440 URL = "http://dx.doi.org/10.1007/978-3-540-87734-9_77",
444 title = " The performance of synchronous parallel polynomial root extraction on a ring multicomputer",
445 journal = " Clust Comput ",
457 title = " Inverse power and Durand Kerner iterations for univariate polynomial root finding",
458 journal = " Comput Math Appl ",
463 author = "DA. Bini AND L. Gemignani",
467 title = " Finding polynomial zeroes on a Multi-mesh of trees (MMT)",
468 journal = " In: Proc of the 2nd int conference on information technology",
476 @Article{Weierstrass03,
477 title = " Neuer Beweis des Satzes, dass jede ganze rationale function einer veranderlichen dagestellt werden kann als ein product aus linearen functionen derselben veranderlichen",
478 journal = " Ges. Werke",
483 author = "K. Weierstrass",
486 title = {NVIDIA CUDA C Programming Guide},
488 OPTauthor = {NVIDIA Corporation},
489 OPTorganization = {Design Guide},
500 author = "K. Weierstrass",
501 title = "{\"U}ber continuirliche {F}unctionen eines reellen
502 {A}rguments, die f{\"u}r keinen {W}erth des letzteren
503 einen bestimmten {D}ifferentialquotienten besitzen",
505 publisher = "Berlin: Mayer \& {M\"u}ller ({H}erausgegeben unter
506 {M}itwirkung einer von der k{\"o}niglich
507 preu\ss{}ischen Akademie der {W}issenschaften
508 eingesetzten {C}ommission)",
511 series = "Mathematische Werke",
515 author = "H. Guggenheimer",
516 title = "Initial approximations in {Durand--Kerner}'s root
524 CODEN = "BITTEL, NBITAB",
525 doi = "http://dx.doi.org/10.1007/BF01935059",
526 ISSN = "0006-3835 (print), 1572-9125 (electronic)",
527 issn-l = "0006-3835",
528 bibdate = "Wed Jan 4 18:52:19 MST 2006",
529 bibsource = "http://springerlink.metapress.com/openurl.asp?genre=issue&issn=0006-3835&volume=26&issue=4;
530 http://www.math.utah.edu/pub/tex/bib/bit.bib",
531 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
532 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
533 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
534 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
535 \path|beebe@acm.org|, \path|beebe@computer.org|
537 \path|http://www.math.utah.edu/~beebe/|",
538 journal-url = "http://link.springer.com/journal/10543",
539 doi-url = "http://dx.doi.org/10.1007/BF01935059",
544 @InCollection{newt70,
545 author = "Isaac Newton",
547 title = "Tractatus de Methodis Serierum et Fluxionum",
548 booktitle = "The Mathematical Papers of Isaac Newton, III",
549 editor = "D. T. Whiteside",
551 publisher = "Cambridge University Press, Cambridge",
552 kwds = "na, history, Newton's method",