7 %% http://www.michaelshell.org/
8 %% for current contact information.
10 %% This is a skeleton file demonstrating the use of IEEEtran.cls
11 %% (requires IEEEtran.cls version 1.8b or later) with an IEEE
15 %% http://www.michaelshell.org/tex/ieeetran/
16 %% http://www.ctan.org/pkg/ieeetran
18 %% http://www.ieee.org/
20 %%*************************************************************************
22 %% This code is offered as-is without any warranty either expressed or
23 %% implied; without even the implied warranty of MERCHANTABILITY or
24 %% FITNESS FOR A PARTICULAR PURPOSE!
25 %% User assumes all risk.
26 %% In no event shall the IEEE or any contributor to this code be liable for
27 %% any damages or losses, including, but not limited to, incidental,
28 %% consequential, or any other damages, resulting from the use or misuse
29 %% of any information contained here.
31 %% All comments are the opinions of their respective authors and are not
32 %% necessarily endorsed by the IEEE.
34 %% This work is distributed under the LaTeX Project Public License (LPPL)
35 %% ( http://www.latex-project.org/ ) version 1.3, and may be freely used,
36 %% distributed and modified. A copy of the LPPL, version 1.3, is included
37 %% in the base LaTeX documentation of all distributions of LaTeX released
38 %% 2003/12/01 or later.
39 %% Retain all contribution notices and credits.
40 %% ** Modified files should be clearly indicated as such, including **
41 %% ** renaming them and changing author support contact information. **
42 %%*************************************************************************
45 % *** Authors should verify (and, if needed, correct) their LaTeX system ***
46 % *** with the testflow diagnostic prior to trusting their LaTeX platform ***
47 % *** with production work. The IEEE's font choices and paper sizes can ***
48 % *** trigger bugs that do not appear when using other class files. *** ***
49 % The testflow support page is at:
50 % http://www.michaelshell.org/tex/testflow/
54 \documentclass[conference]{IEEEtran}
55 % Some Computer Society conferences also require the compsoc mode option,
56 % but others use the standard conference format.
58 % If IEEEtran.cls has not been installed into the LaTeX system files,
59 % manually specify the path to it like:
60 % \documentclass[conference]{../sty/IEEEtran}
66 % Some very useful LaTeX packages include:
67 % (uncomment the ones you want to load)
70 % *** MISC UTILITY PACKAGES ***
73 % Heiko Oberdiek's ifpdf.sty is very useful if you need conditional
74 % compilation based on whether the output is pdf or dvi.
81 % The latest version of ifpdf.sty can be obtained from:
82 % http://www.ctan.org/pkg/ifpdf
83 % Also, note that IEEEtran.cls V1.7 and later provides a builtin
84 % \ifCLASSINFOpdf conditional that works the same way.
85 % When switching from latex to pdflatex and vice-versa, the compiler may
86 % have to be run twice to clear warning/error messages.
93 % *** CITATION PACKAGES ***
96 % cite.sty was written by Donald Arseneau
97 % V1.6 and later of IEEEtran pre-defines the format of the cite.sty package
98 % \cite{} output to follow that of the IEEE. Loading the cite package will
99 % result in citation numbers being automatically sorted and properly
100 % "compressed/ranged". e.g., [1], [9], [2], [7], [5], [6] without using
101 % cite.sty will become [1], [2], [5]--[7], [9] using cite.sty. cite.sty's
102 % \cite will automatically add leading space, if needed. Use cite.sty's
103 % noadjust option (cite.sty V3.8 and later) if you want to turn this off
104 % such as if a citation ever needs to be enclosed in parenthesis.
105 % cite.sty is already installed on most LaTeX systems. Be sure and use
106 % version 5.0 (2009-03-20) and later if using hyperref.sty.
107 % The latest version can be obtained at:
108 % http://www.ctan.org/pkg/cite
109 % The documentation is contained in the cite.sty file itself.
116 % *** GRAPHICS RELATED PACKAGES ***
119 \usepackage[pdftex]{graphicx}
121 % declare the path(s) where your graphic files are
122 % \graphicspath{{../pdf/}{../jpeg/}}
123 % and their extensions so you won't have to specify these with
124 % every instance of \includegraphics
125 % \DeclareGraphicsExtensions{.pdf,.jpeg,.png}
127 % or other class option (dvipsone, dvipdf, if not using dvips). graphicx
128 % will default to the driver specified in the system graphics.cfg if no
129 % driver is specified.
130 % \usepackage[dvips]{graphicx}
131 % declare the path(s) where your graphic files are
132 % \graphicspath{{../eps/}}
133 % and their extensions so you won't have to specify these with
134 % every instance of \includegraphics
135 % \DeclareGraphicsExtensions{.eps}
137 % graphicx was written by David Carlisle and Sebastian Rahtz. It is
138 % required if you want graphics, photos, etc. graphicx.sty is already
139 % installed on most LaTeX systems. The latest version and documentation
140 % can be obtained at:
141 % http://www.ctan.org/pkg/graphicx
142 % Another good source of documentation is "Using Imported Graphics in
143 % LaTeX2e" by Keith Reckdahl which can be found at:
144 % http://www.ctan.org/pkg/epslatex
146 % latex, and pdflatex in dvi mode, support graphics in encapsulated
147 % postscript (.eps) format. pdflatex in pdf mode supports graphics
148 % in .pdf, .jpeg, .png and .mps (metapost) formats. Users should ensure
149 % that all non-photo figures use a vector format (.eps, .pdf, .mps) and
150 % not a bitmapped formats (.jpeg, .png). The IEEE frowns on bitmapped formats
151 % which can result in "jaggedy"/blurry rendering of lines and letters as
152 % well as large increases in file sizes.
154 % You can find documentation about the pdfTeX application at:
155 % http://www.tug.org/applications/pdftex
161 % *** MATH PACKAGES ***
164 % A popular package from the American Mathematical Society that provides
165 % many useful and powerful commands for dealing with mathematics.
167 % Note that the amsmath package sets \interdisplaylinepenalty to 10000
168 % thus preventing page breaks from occurring within multiline equations. Use:
169 %\interdisplaylinepenalty=2500
170 % after loading amsmath to restore such page breaks as IEEEtran.cls normally
171 % does. amsmath.sty is already installed on most LaTeX systems. The latest
172 % version and documentation can be obtained at:
173 % http://www.ctan.org/pkg/amsmath
179 % *** SPECIALIZED LIST PACKAGES ***
181 \usepackage{algorithmic}
182 % algorithmic.sty was written by Peter Williams and Rogerio Brito.
183 % This package provides an algorithmic environment fo describing algorithms.
184 % You can use the algorithmic environment in-text or within a figure
185 % environment to provide for a floating algorithm. Do NOT use the algorithm
186 % floating environment provided by algorithm.sty (by the same authors) or
187 % algorithm2e.sty (by Christophe Fiorio) as the IEEE does not use dedicated
188 % algorithm float types and packages that provide these will not provide
189 % correct IEEE style captions. The latest version and documentation of
190 % algorithmic.sty can be obtained at:
191 % http://www.ctan.org/pkg/algorithms
192 % Also of interest may be the (relatively newer and more customizable)
193 % algorithmicx.sty package by Szasz Janos:
194 % http://www.ctan.org/pkg/algorithmicx
195 \usepackage[ruled,vlined]{algorithm2e}
199 % *** ALIGNMENT PACKAGES ***
202 % Frank Mittelbach's and David Carlisle's array.sty patches and improves
203 % the standard LaTeX2e array and tabular environments to provide better
204 % appearance and additional user controls. As the default LaTeX2e table
205 % generation code is lacking to the point of almost being broken with
206 % respect to the quality of the end results, all users are strongly
207 % advised to use an enhanced (at the very least that provided by array.sty)
208 % set of table tools. array.sty is already installed on most systems. The
209 % latest version and documentation can be obtained at:
210 % http://www.ctan.org/pkg/array
213 % IEEEtran contains the IEEEeqnarray family of commands that can be used to
214 % generate multiline equations as well as matrices, tables, etc., of high
220 % *** SUBFIGURE PACKAGES ***
221 %\ifCLASSOPTIONcompsoc
222 % \usepackage[caption=false,font=normalsize,labelfont=sf,textfont=sf]{subfig}
224 % \usepackage[caption=false,font=footnotesize]{subfig}
226 % subfig.sty, written by Steven Douglas Cochran, is the modern replacement
227 % for subfigure.sty, the latter of which is no longer maintained and is
228 % incompatible with some LaTeX packages including fixltx2e. However,
229 % subfig.sty requires and automatically loads Axel Sommerfeldt's caption.sty
230 % which will override IEEEtran.cls' handling of captions and this will result
231 % in non-IEEE style figure/table captions. To prevent this problem, be sure
232 % and invoke subfig.sty's "caption=false" package option (available since
233 % subfig.sty version 1.3, 2005/06/28) as this is will preserve IEEEtran.cls
234 % handling of captions.
235 % Note that the Computer Society format requires a larger sans serif font
236 % than the serif footnote size font used in traditional IEEE formatting
237 % and thus the need to invoke different subfig.sty package options depending
238 % on whether compsoc mode has been enabled.
240 % The latest version and documentation of subfig.sty can be obtained at:
241 % http://www.ctan.org/pkg/subfig
246 % *** FLOAT PACKAGES ***
248 %\usepackage{fixltx2e}
249 % fixltx2e, the successor to the earlier fix2col.sty, was written by
250 % Frank Mittelbach and David Carlisle. This package corrects a few problems
251 % in the LaTeX2e kernel, the most notable of which is that in current
252 % LaTeX2e releases, the ordering of single and double column floats is not
253 % guaranteed to be preserved. Thus, an unpatched LaTeX2e can allow a
254 % single column figure to be placed prior to an earlier double column
256 % Be aware that LaTeX2e kernels dated 2015 and later have fixltx2e.sty's
257 % corrections already built into the system in which case a warning will
258 % be issued if an attempt is made to load fixltx2e.sty as it is no longer
260 % The latest version and documentation can be found at:
261 % http://www.ctan.org/pkg/fixltx2e
264 %\usepackage{stfloats}
265 % stfloats.sty was written by Sigitas Tolusis. This package gives LaTeX2e
266 % the ability to do double column floats at the bottom of the page as well
267 % as the top. (e.g., "\begin{figure*}[!b]" is not normally possible in
268 % LaTeX2e). It also provides a command:
270 % to enable the placement of footnotes below bottom floats (the standard
271 % LaTeX2e kernel puts them above bottom floats). This is an invasive package
272 % which rewrites many portions of the LaTeX2e float routines. It may not work
273 % with other packages that modify the LaTeX2e float routines. The latest
274 % version and documentation can be obtained at:
275 % http://www.ctan.org/pkg/stfloats
276 % Do not use the stfloats baselinefloat ability as the IEEE does not allow
277 % \baselineskip to stretch. Authors submitting work to the IEEE should note
278 % that the IEEE rarely uses double column equations and that authors should try
279 % to avoid such use. Do not be tempted to use the cuted.sty or midfloat.sty
280 % packages (also by Sigitas Tolusis) as the IEEE does not format its papers in
282 % Do not attempt to use stfloats with fixltx2e as they are incompatible.
283 % Instead, use Morten Hogholm'a dblfloatfix which combines the features
284 % of both fixltx2e and stfloats:
286 % \usepackage{dblfloatfix}
287 % The latest version can be found at:
288 % http://www.ctan.org/pkg/dblfloatfix
293 % *** PDF, URL AND HYPERLINK PACKAGES ***
296 % url.sty was written by Donald Arseneau. It provides better support for
297 % handling and breaking URLs. url.sty is already installed on most LaTeX
298 % systems. The latest version and documentation can be obtained at:
299 % http://www.ctan.org/pkg/url
300 % Basically, \url{my_url_here}.
305 % *** Do not adjust lengths that control margins, column widths, etc. ***
306 % *** Do not use packages that alter fonts (such as pslatex). ***
307 % There should be no need to do such things with IEEEtran.cls V1.6 and later.
308 % (Unless specifically asked to do so by the journal or conference you plan
309 % to submit to, of course. )
312 % correct bad hyphenation here
313 \hyphenation{op-tical net-works semi-conduc-tor}
314 %\usepackage{graphicx}
315 \bibliographystyle{IEEEtran}
316 % argument is your BibTeX string definitions and bibliography database(s)
317 %\bibliography{IEEEabrv,../bib/paper}
318 \bibliographystyle{elsarticle-num}
322 % Titles are generally capitalized except for words such as a, an, and, as,
323 % at, but, by, for, in, nor, of, on, or, the, to and up, which are usually
324 % not capitalized unless they are the first or last word of the title.
325 % Linebreaks \\ can be used within to get better formatting as desired.
326 % Do not put math or special symbols in the title.
327 \title{A parallel implementation of Ehrlich-Aberth algorithm for root finding of polynomials
328 on Multi-GPU with OpenMP/MPI}
331 % author names and affiliations
332 % use a multiple column layout for up to three different
334 \author{\IEEEauthorblockN{Michael Shell}
335 \IEEEauthorblockA{School of Electrical and\\Computer Engineering\\
336 Georgia Institute of Technology\\
337 Atlanta, Georgia 30332--0250\\
338 Email: http://www.michaelshell.org/contact.html}
340 \IEEEauthorblockN{Homer Simpson}
341 \IEEEauthorblockA{Twentieth Century Fox\\
343 Email: homer@thesimpsons.com}
345 \IEEEauthorblockN{James Kirk\\ and Montgomery Scott}
346 \IEEEauthorblockA{Starfleet Academy\\
347 San Francisco, California 96678--2391\\
348 Telephone: (800) 555--1212\\
349 Fax: (888) 555--1212}}
351 % conference papers do not typically use \thanks and this command
352 % is locked out in conference mode. If really needed, such as for
353 % the acknowledgment of grants, issue a \IEEEoverridecommandlockouts
354 % after \documentclass
356 % for over three affiliations, or if they all won't fit within the width
357 % of the page, use this alternative format:
359 %\author{\IEEEauthorblockN{Michael Shell\IEEEauthorrefmark{1},
360 %Homer Simpson\IEEEauthorrefmark{2},
361 %James Kirk\IEEEauthorrefmark{3},
362 %Montgomery Scott\IEEEauthorrefmark{3} and
363 %Eldon Tyrell\IEEEauthorrefmark{4}}
364 %\IEEEauthorblockA{\IEEEauthorrefmark{1}School of Electrical and Computer Engineering\\
365 %Georgia Institute of Technology,
366 %Atlanta, Georgia 30332--0250\\ Email: see http://www.michaelshell.org/contact.html}
367 %\IEEEauthorblockA{\IEEEauthorrefmark{2}Twentieth Century Fox, Springfield, USA\\
368 %Email: homer@thesimpsons.com}
369 %\IEEEauthorblockA{\IEEEauthorrefmark{3}Starfleet Academy, San Francisco, California 96678-2391\\
370 %Telephone: (800) 555--1212, Fax: (888) 555--1212}
371 %\IEEEauthorblockA{\IEEEauthorrefmark{4}Tyrell Inc., 123 Replicant Street, Los Angeles, California 90210--4321}}
376 % use for special paper notices
377 %\IEEEspecialpapernotice{(Invited Paper)}
382 % make the title area
385 % As a general rule, do not put math, special symbols or citations
388 The abstract goes here.
396 % For peer review papers, you can put extra information on the cover
398 % \ifCLASSOPTIONpeerreview
399 % \begin{center} \bfseries EDICS Category: 3-BBND \end{center}
402 % For peerreview papers, this IEEEtran command inserts a page break and
403 % creates the second title. It will be ignored for other modes.
404 \IEEEpeerreviewmaketitle
408 \section{Introduction}
409 Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomena and to express any outcome in the form of a function of some unknown variables. Formally speaking, a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
412 {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
416 The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeros of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
418 {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
421 The problem of finding the roots of polynomials is encountered in different applications. Most of the numerical methods that deal with this problem are simultaneous ones. These methods start from the initial approximations of all the roots of the polynomial and give a sequence of approximations that converge to the roots of the polynomial. The first method of this group is Durand-Kerner method:
424 DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})}, i = 1, . . . , n,
427 where $z_i^k$ is the $i^{th}$ root of the polynomial $p$ at the
429 Another method discovered by
430 Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
431 in the following form by Ehrlich~\cite{Ehrlich67} and
432 Aberth~\cite{Aberth73} uses a different iteration formula given as:
436 EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, . . . , n,
439 where $p'(z)$ is the polynomial derivative of $p$ evaluated in the
442 %Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
443 %the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of %convergence.
445 The main problem of the simultaneous methods is that the necessary time needed for the convergence is increased with the increasing of the degree of the polynomial. Many authors have treated the problem of implementation of simultaneous methods in parallel. Freeman [10] implemented and compared DK, EA and another method of the fourth order proposed by Farmer
446 and Loizou [9], on a 8-processor linear chain, for polynomials of degree up to 8.
447 The third method often diverges, but the first two methods have speed-up equal to 5.5. Later, Freeman and Bane [11] considered asynchronous algorithms, in which each processor continues to update its approximations even though the latest values of other $z^{k}_{i}$ have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before
448 making a new iteration. Couturier and al. [12] proposed two methods of parallelization for a shared memory architecture with \textit{OpenMP} and for distributed memory one with \textit{MPI}. They were able to compute the roots of sparse polynomials of degree 10,000 in 116 seconds with \textit{OpenMP} and 135 seconds with \textit{MPI} only 8 personal computers and 2 communications per iteration. Comparing to the sequential implementation where it takes up to 3,300 seconds to obtain the same results, the authors show an interesting speedup.
450 Very few works had been performed since this last work until the appearing of the Compute Unified Device Architecture (CUDA) [13], a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche and al [14] proposed an implementation of the Durand-Kerner method on GPU. Their main result showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.
452 Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using a parallel programming paradigms (OpenMP, MPI) on GPUs. We consider two architectures: Shared memory with OpenMP API based on threads from the same system process, which each thread is attached to one GPU and after the various memory allocation, each thread throws its part of calculation ( to do this you must first load on the GPU required data and after Suddenly repatriate the result on the host). Distributed memory with MPI: The MPI library is often used for parallel programming [11] in
453 cluster systems because it is a message-passing programming language. Each GPU are attached to one process MPI, and a loop is in charge of the distribution of tasks between the MPI processes. this solution can be used on one GPU, or executed on a distributed cluster of GPUs, employing the Message Passing Interface (MPI) to communicate between separate CUDA cards. This solution permits scaling of the problem size to larger classes than would be possible on a single device and demonstrates the performance which users might expect from future
454 HPC architectures where accelerators are deployed.
456 This paper is organized as follows, in section 2 we recall the Ehrlich-Aberth method. In section 3 we present EA algorithm on single GPU. In section 4 we propose the EA algorithm implementation on MGPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In section 5 we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.
459 \section{Parallel Programmings Model}
462 Open Multi-Processing (OpenMP) is a shared memory architecture API that provides multi thread capacity~\cite{openmp13}. OpenMP is
463 a portable approach for parallel programming on shared memory systems based on compiler directives, that can be included in order
464 to parallelize a loop. In this way, a set of loops can be distributed along the different threads that will access to different data allo-
465 cated in local shared memory. One of the advantages of OpenMP is its global view of application memory address space that allows relatively fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of
466 performance in large scale applications. Although, in OpenMP a usage of threads ids and managing data explicitly as done in an MPI
467 code can be considered, it defeats the advantages of OpenMP.
469 %\subsection{OpenMP} %L'article en Français Programmation multiGPU – OpenMP versus MPI
470 %OpenMP is a shared memory programming API based on threads from
471 %the same system process. Designed for multiprocessor shared memory UMA or
472 %NUMA [10], it relies on the execution model SPMD ( Single Program, Multiple Data Stream )
473 %where the thread "master" and threads "slaves" asynchronously execute their codes
474 %communicate / synchronize via shared memory [7]. It also helps to build
475 %the loop parallelism and is very suitable for an incremental code parallelization
476 %Sequential natively. Threads share some or all of the available memory and can
477 %have private memory areas [6].
480 The library MPI allows to use a distributed memory architecture. The various processes have their own environment of execution and execute their codes in a asynchronous way, according to the model MIMD (Multiple Instruction streams, Multiple Dated streams); they communicate and synchronize by exchanges of messages~\cite{Peter96}. MPI messages are explicitly sent, while the exchanges are implicit within the framework of a programming multi-thread (OpenMP/Pthreads).
482 \subsection{CUDA}%L'article en anglais Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications
483 CUDA (an acronym for Compute Unified Device Architecture) is a parallel computing architecture developed by NVIDIA~\cite{NVIDIA12}. The
484 unit of execution in CUDA is called a thread. Each thread executes the kernel by the streaming processors in parallel. In CUDA,
485 a group of threads that are executed together is called thread blocks, and the computational grid consists of a grid of thread
486 blocks. Additionally, a thread block can use the shared memory on a single multiprocessor as while as the grid executes a single
487 CUDA program logically in parallel. Thus in CUDA programming, it is necessary to design carefully the arrangement of the thread
488 blocks in order to ensure low latency and a proper usage of shared memory, since it can be shared only in a thread block
489 scope. The effective bandwidth of each memory space depends on the memory access pattern. Since the global memory has lower
490 bandwidth than the shared memory, the global memory accesses should be minimized.
493 We introduced three paradigms of parallel programming. Our objective consist to implement an algorithm of root finding polynomial on multiple GPUs. It primordial to know how manage CUDA context of different GPUs. A direct method for controlling the various GPU is to use as many threads or processes that GPU. We can choose the GPU index based on the identifier of OpenMP thread or the rank of the MPI process. Both approaches will be created.
495 \section{The EA algorithm on single GPU}
496 \subsection{the EA method}
498 A cubically convergent iteration method to find zeros of
499 polynomials was proposed by O. Aberth~\cite{Aberth73}. The
500 Ehrlich-Aberth method contains 4 main steps, presented in what
503 %The Aberth method is a purely algebraic derivation.
504 %To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors
507 %w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
510 %And let a rational function $R_{i}(z)$ be the correction term of the
511 %Weistrass method~\cite{Weierstrass03}
514 %R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
517 %Differentiating the rational function $R_{i}(z)$ and applying the
518 %Newton method, we have:
521 %\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
523 %where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z
524 %Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.%
527 \subsubsection{Polynomials Initialization}
528 The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients $a_{i}$:
531 \label{eq:SimplePolynome}
532 p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
536 \subsubsection{Vector $Z^{(0)}$ Initialization}
537 \label{sec:vec_initialization}
538 As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , n.$
539 The initial guess is very important since the number of steps needed by the iterative method to reach
540 a given approximation strongly depends on it.
541 In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
542 equi-spaced points on a circle of center 0 and radius r, where r is
543 an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
544 performed this choice by selecting complex numbers along different
545 circles which relies on the result of~\cite{Ostrowski41}.
550 \sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
551 v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
556 u_{i}=2.|a_{i}|^{\frac{1}{i}};
557 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
560 \subsubsection{Iterative Function}
561 The operator used by the Aberth method is corresponding to the
562 following equation~\ref{Eq:EA} which will enable the convergence towards
563 polynomial solutions, provided all the roots are distinct.
565 %Here we give a second form of the iterative function used by the Ehrlich-Aberth method:
569 EA: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
570 {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n
573 \subsubsection{Convergence Condition}
574 The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function when the roots are sufficiently stable. We consider that the method converges sufficiently when:
577 \label{eq:Aberth-Conv-Cond}
578 \forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
582 %\begin{figure}[htbp]
584 % \includegraphics[angle=-90,width=0.5\textwidth]{EA-Algorithm}
585 %\caption{The Ehrlich-Aberth algorithm on single GPU}
589 %the Ehrlich-Aberth method is an iterative method, contain 4 steps, start from the initial approximations of all the
590 %roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer method to assure the distinction of the initial vector roots, than in step 3 we apply the the iterative function based on the Newton's method and Weiestrass operator[...,...], wich will make it possible to converge to the roots solution, provided that all the root are different. At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots
591 %are lower than a fixed value $ε$
594 \subsection{EA parallel implementation on CUDA}
595 Like any parallel code, a GPU parallel implementation first
596 requires to determine the sequential tasks and the
597 parallelizable parts of the sequential version of the
598 program/algorithm. In our case, all the operations that are easy
599 to execute in parallel must be made by the GPU to accelerate
600 the execution of the application, like the step 3 and step 4. On the other hand, all the
601 sequential operations and the operations that have data
602 dependencies between threads or recursive computations must
603 be executed by only one CUDA or CPU thread (step 1 and step 2). Initially we specifies the organization of threads in parallel, need to specify the dimension of the grid Dimgrid: the number of block per grid and block by DimBlock: the number of threads per block required to process a certain task.
605 we create the kernel, for step 3 we have two kernels, the
606 first named \textit{save} is used to save vector $Z^{K-1}$ and the kernel
607 \textit{update} is used to update the $Z^{K}$ vector. In step 4 a kernel is
608 created to test the convergence of the method. In order to
609 compute function H, we have two possibilities: either to use
610 the Jacobi method, or the Gauss-Seidel method which uses the
611 most recent computed roots. It is well known that the Gauss-
612 Seidel mode converges more quickly. So, we used the Gauss-Seidel mode of iteration. To
613 parallelize the code, we created kernels and many functions to
614 be executed on the GPU for all the operations dealing with the
615 computation on complex numbers and the evaluation of the
616 polynomials. As said previously, we managed both functions
617 of evaluation of a polynomial: the normal method, based on
618 the method of Horner and the method based on the logarithm
619 of the polynomial. All these methods were rather long to
620 implement, as the development of corresponding kernels with
621 CUDA is longer than on a CPU host. This comes in particular
622 from the fact that it is very difficult to debug CUDA running
623 threads like threads on a CPU host. In the following paragraph
624 Algorithm 1 shows the GPU parallel implementation of Ehrlich-Aberth method.
626 Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth method using CUDA.
629 \begin{algorithm}[htpb]
632 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
634 \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
635 threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z_{max}$ (Maximum value of stop condition)}
637 \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
641 \item Initialization of the of P\;
642 \item Initialization of the of Pu\;
643 \item Initialization of the solution vector $Z^{0}$\;
644 \item Allocate and copy initial data to the GPU global memory\;
646 \While {$\Delta z_{max} > \epsilon$}{
647 \item Let $\Delta z_{max}=0$\;
648 \item $ kernel\_save(ZPrec,Z)$\;
650 \item $ kernel\_update(Z,P,Pu)$\;
651 \item $kernel\_testConverge(\Delta z_{max},Z,ZPrec)$\;
654 \item Copy results from GPU memory to CPU memory\;
661 \section{The EA algorithm on Multi-GPU}
663 \subsection{MGPU (OpenMP-CUDA) approach}
664 Our OpenMP-CUDA implementation of EA algorithm is based on the hybrid OpenMP and CUDA programming model. It works
666 Based on the metadata, a shared memory is used to make data evenly shared among OpenMP threads. The shared data are the solution vector $Z$, the polynomial to solve $P$. vector of error of stop condition $\Delta z$. Let(T\_omp) number of OpenMP threads is equal to the number of GPUs, each threads OpenMP checks one GPU, and control a part of the shared memory, that is a part of the vector Z like: $(n/num\_gpu)$ roots, n: the polynomial's degrees, $num\_gpu$ the number of GPUs. Each OpenMP thread copies its data from host memory to GPU’s device memory.Than every GPU will have a grid of computation organized with its performances and the size of data of which it checks and compute kernels. %In principle a grid is set by two parameter DimGrid, the number of block per grid, DimBloc: the number of threads per block. The following schema shows the architecture of (CUDA,OpenMP).
668 %\begin{figure}[htbp]
670 % \includegraphics[angle=-90,width=0.5\textwidth]{OpenMP-CUDA}
671 %\caption{The OpenMP-CUDA architecture}
674 %Each thread OpenMP compute the kernels on GPUs,than after each iteration they copy out the data from GPU memory to CPU shared memory. The kernels are re-runs is up to the roots converge sufficiently. Here are below the corresponding algorithm:
676 $num\_gpus$ thread OpenMP are created using \verb=omp_set_num_threads();=function (line,Algorithm \ref{alg2-cuda-openmp}), the shared memory is created using \verb=#pragma omp parallel shared()= OpenMP function (line 5,Algorithm\ref{alg2-cuda-openmp}), than each OpenMP threads allocate and copy initial data from CPU memory to the GPU global memories, execute the kernels on GPU, and compute only his portion of roots indicated with variable \textit{index} initialized in (line 5, Algorithm \ref{alg2-cuda-openmp}), used as input data in the $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-openmp}). After each iteration, OpenMP threads synchronize using \verb=#pragma omp barrier;= to recuperate all values of vector $\Delta z$, to compute the maximum stop condition in vector $\Delta z$(line 12, Algorithm \ref{alg2-cuda-openmp}).Finally,they copy the results from GPU memories to CPU memory. The OpenMP threads execute kernels until the roots converge sufficiently.
678 \begin{algorithm}[htpb]
679 \label{alg2-cuda-openmp}
681 \caption{CUDA-OpenMP Algorithm to find roots with the Ehrlich-Aberth method}
683 \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
684 threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z$ ( Vector of errors of stop condition), $num_gpus$ (number of OpenMP threads/ number of GPUs), $Size$ (number of roots)}
686 \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
690 \item Initialization of the of P\;
691 \item Initialization of the of Pu\;
692 \item Initialization of the solution vector $Z^{0}$\;
693 \verb=omp_set_num_threads(num_gpus);=
694 \verb=#pragma omp parallel shared(Z,$\Delta$ z,P);=
695 \verb=cudaGetDevice(gpu_id);=
696 \item Allocate and copy initial data from CPU memory to the GPU global memories\;
697 \item index= $Size/num\_gpus$\;
699 \While {$error > \epsilon$}{
700 \item Let $\Delta z=0$\;
701 \item $ kernel\_save(ZPrec,Z)$\;
703 \item $ kernel\_update(Z,P,Pu,index)$\;
704 \item $kernel\_testConverge(\Delta z[gpu\_id],Z,ZPrec)$\;
705 %\verb=#pragma omp barrier;=
706 \item error= Max($\Delta z$)\;
709 \item Copy results from GPU memories to CPU memory\;
716 \subsection{Multi-GPU (MPI-CUDA) approach}
717 %\begin{figure}[htbp]
719 % \includegraphics[angle=-90,width=0.2\textwidth]{MPI-CUDA}
720 %\caption{The MPI-CUDA architecture }
723 Our parallel implementation of the Ehrlich-Aberth method to find root polynomial using (CUDA-MPI) approach, splits input data of the polynomial to solve between MPI processes. From Algorithm 3, the input data are the polynomial to solve $P$, the solution vector $Z$, the previous solution vector $zPrev$, and the Value of errors of stop condition $\Delta z$. Let $p$ denote the number of MPI processes on and $n$ the size of the polynomial to be solved. The algorithm performs a simple data partitioning by creating $p$ portions, of at most $⌈n/p⌉$ roots to find per MPI process, for each element mentioned above. Consequently, each MPI process $k$ will have its own solution vector $Z_{k}$,polynomial to be solved $p_{k}$, the error of stop condition $\Delta z_{k}$, Than each MPI processes compute only $⌈n/p⌉$ roots.
725 Since a GPU works only on data of its memory, all local input data, $Z_{k}, p_{k}$ and $\Delta z_{k}$, must be transferred from CPU memories to the corresponding GPU memories. Afterward, the same EA algorithm (Algorithm 1) is run by all processes but on different sub-polynomial root $ p(x)_{k}=\sum_{i=k(\frac{n}{p})}^{k+1(\frac{n}{p})} a_{i}x^{i}, k=1,...,p$. Each processes MPI execute the loop \verb=(While(...)...do)= contain the kernels. Than each process MPI compute only his portion of roots indicated with variable \textit{index} initialized in (line 5, Algorithm \ref{alg2-cuda-mpi}), used as input data in the $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-mpi}). After each iteration, MPI processes synchronize using \verb=MPI_Allreduce= function, in order to compute the maximum error stops condition $\Delta z_{k}$ computed by each process MPI line (line, Algorithm\ref{alg2-cuda-mpi}), and copy the values of new roots computed from GPU memories to CPU memories, than communicate her results to the neighboring processes,using \verb=MPI_Alltoallv=. If maximum stop condition $error > \epsilon$ the processes stay to execute the loop \verb= while(...)...do= until all the roots converge sufficiently.
728 \begin{algorithm}[htpb]
729 \label{alg2-cuda-mpi}
731 \caption{CUDA-MPI Algorithm to find roots with the Ehrlich-Aberth method}
733 \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
734 threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z$ ( error of stop condition), $num_gpus$ (number of MPI processes/ number of GPUs), Size (number of roots)}
736 \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
739 \item Initialization of the P\;
740 \item Initialization of the Pu\;
741 \item Initialization of the solution vector $Z^{0}$\;
742 \item Allocate and copy initial data from CPU memories to the GPU global memories\;
743 \item $index= Size/num_gpus$\;
745 \While {$error > \epsilon$}{
746 \item Let $\Delta z=0$\;
747 \item $ kernel\_save(ZPrec,Z)$\;
749 \item $ kernel\_update(Z,P,Pu,index)$\;
750 \item $kernel\_testConverge(\Delta z,Z,ZPrec)$\;
751 \item ComputeMaxError($\Delta z$,error)\;
752 \item Copy results from GPU memories to CPU memories\;
753 \item Send $Z[id]$ to all neighboring processes\;
754 \item Receive $Z[j]$ from neighboring process j\;
762 \section{experiments}
763 We study two categories of polynomials: sparse polynomials and full polynomials.\\
764 {\it A sparse polynomial} is a polynomial for which only some coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles:
766 \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
767 \end{equation}\noindent
768 {\it A full polynomial} is, in contrast, a polynomial for which all the coefficients are not null. A full polynomial is defined by:
770 %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
774 {\Large \forall a_{i} \in C, i\in N; p(x)=\sum^{n}_{i=0} a_{i}.x^{i}}
776 For our tests, a CPU Intel(R) Xeon(R) CPU E5620@2.40GHz and a GPU K40 (with 6 Go of ram) are used.
778 We performed a set of experiments on single GPU and Multi-GPU using (OpenMP/MPI) to find roots polynomials with EA algorithm, for both sparse and full polynomials of different sizes. We took into account the execution times and the polynomial size performed by sum or each experiment.
779 All experimental results obtained from the simulations are made in
780 double precision data, the convergence threshold of the methods is set
782 %Since we were more interested in the comparison of the
783 %performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on
784 %CPUs versus on GPUs.
785 The initialization values of the vector solution
786 of the methods are given in %Section~\ref{sec:vec_initialization}.
788 \subsection{Test with Multi-GPU (CUDA OpenMP) approach}
790 In this part we performed a set of experiments on Multi-GPU (CUDA OpenMP) approach for full and sparse polynomials of different degrees, compare it with Single GPU (CUDA).
791 \subsubsection{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using shared memory paradigm with OpenMP}
793 In this experiments we report the execution time of the EA algorithm, on single GPU and Multi-GPU with (2,3,4) GPUs, for different sparse polynomial degrees ranging from 100,000 to 1,400,000
797 \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_omp}
798 \caption{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using shared memory paradigm with OpenMP}
802 This figure~\ref{fig:01} shows that (CUDA OpenMP) Multi-GPU approach reduce the execution time up to the scale 100 whereas single GPU is of scale 1000 for polynomial who exceed 1,000,000. It shows the advantage to use OpenMP parallel paradigm to connect the performances of several GPUs and solve a polynomial of high degrees.
804 \subsubsection{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials on GPUs using shared memory paradigm with OpenMP}
806 This experiments shows the execution time of the EA algorithm, on single GPU (CUDA) and Multi-GPU (CUDA OpenMP) approach for full polynomials of degrees ranging from 100,000 to 1,400,000
810 \includegraphics[angle=-90,width=0.5\textwidth]{Full_omp}
811 \caption{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials on GPUs using shared memory paradigm with OpenMP}
815 The second test with full polynomial shows a very important saving of time, for a polynomial of degrees 1,4M (CUDA OpenMP) approach with 4 GPUs compute and solve it 4 times as fast as single GPU. We notice that curves are positioned one below the other one, more the number of used GPUs increases more the execution time decreases.
817 \subsection{Test with Multi-GPU (CUDA MPI) approach}
818 In this part we perform a set of experiment to compare Multi-GPU (CUDA MPI) approach with single GPU, for solving full and sparse polynomials of degrees ranging from 100,000 to 1,400,000.
820 \subsubsection{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using distributed memory paradigm with MPI}
824 \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_mpi}
825 \caption{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using distributed memory paradigm with MPI}
829 This figure shows 4 curves of execution time of EA algorithm, a curve with single GPU, 3 curves with Multi-GPUs (2, 3, 4) GPUs. We see clearly that the curve with single GPU is above the other curves, which shows consumption in execution time compared to the Multi-GPU. We can see the approach Multi-GPU (CUDA MPI) reduces the execution time up to the scale 100 for polynomial of degrees more than 1,000,000 whereas single GPU is of the scale 1000.
831 \subsubsection{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials on GPUs using distributed memory paradigm with MPI}
835 \includegraphics[angle=-90,width=0.5\textwidth]{Full_mpi}
836 \caption{Execution times in seconds of the Ehrlich-Aberth method for full polynomials on GPUs using distributed memory paradigm with MPI}
842 \includegraphics[angle=-90,width=0.5\textwidth]{Sparse}
843 \caption{Comparaison between MPI and OpenMP versions of the Ehrlich-Aberth method for solving sparse plynomials on GPUs}
849 \includegraphics[angle=-90,width=0.5\textwidth]{Full}
850 \caption{Comparaison between MPI and OpenMP versions of the Ehrlich-Aberth method for solving full polynomials on GPUs}
856 \includegraphics[angle=-90,width=0.5\textwidth]{MPI}
857 \caption{Comparaison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with distributed memory paradigm using MPI}
863 \includegraphics[angle=-90,width=0.5\textwidth]{OMP}
864 \caption{Comparaison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with shared memory paradigm using OpenMP}
868 % An example of a floating figure using the graphicx package.
869 % Note that \label must occur AFTER (or within) \caption.
870 % For figures, \caption should occur after the \includegraphics.
871 % Note that IEEEtran v1.7 and later has special internal code that
872 % is designed to preserve the operation of \label within \caption
873 % even when the captionsoff option is in effect. However, because
874 % of issues like this, it may be the safest practice to put all your
875 % \label just after \caption rather than within \caption{}.
877 % Reminder: the "draftcls" or "draftclsnofoot", not "draft", class
878 % option should be used if it is desired that the figures are to be
879 % displayed while in draft mode.
883 %\includegraphics[width=2.5in]{myfigure}
884 % where an .eps filename suffix will be assumed under latex,
885 % and a .pdf suffix will be assumed for pdflatex; or what has been declared
886 % via \DeclareGraphicsExtensions.
887 %\caption{Simulation results for the network.}
891 % Note that the IEEE typically puts floats only at the top, even when this
892 % results in a large percentage of a column being occupied by floats.
895 % An example of a double column floating figure using two subfigures.
896 % (The subfig.sty package must be loaded for this to work.)
897 % The subfigure \label commands are set within each subfloat command,
898 % and the \label for the overall figure must come after \caption.
899 % \hfil is used as a separator to get equal spacing.
900 % Watch out that the combined width of all the subfigures on a
901 % line do not exceed the text width or a line break will occur.
905 %\subfloat[Case I]{\includegraphics[width=2.5in]{box}%
906 %\label{fig_first_case}}
908 %\subfloat[Case II]{\includegraphics[width=2.5in]{box}%
909 %\label{fig_second_case}}
910 %\caption{Simulation results for the network.}
914 % Note that often IEEE papers with subfigures do not employ subfigure
915 % captions (using the optional argument to \subfloat[]), but instead will
916 % reference/describe all of them (a), (b), etc., within the main caption.
917 % Be aware that for subfig.sty to generate the (a), (b), etc., subfigure
918 % labels, the optional argument to \subfloat must be present. If a
919 % subcaption is not desired, just leave its contents blank,
923 % An example of a floating table. Note that, for IEEE style tables, the
924 % \caption command should come BEFORE the table and, given that table
925 % captions serve much like titles, are usually capitalized except for words
926 % such as a, an, and, as, at, but, by, for, in, nor, of, on, or, the, to
927 % and up, which are usually not capitalized unless they are the first or
928 % last word of the caption. Table text will default to \footnotesize as
929 % the IEEE normally uses this smaller font for tables.
930 % The \label must come after \caption as always.
933 %% increase table row spacing, adjust to taste
934 %\renewcommand{\arraystretch}{1.3}
935 % if using array.sty, it might be a good idea to tweak the value of
936 % \extrarowheight as needed to properly center the text within the cells
937 %\caption{An Example of a Table}
938 %\label{table_example}
940 %% Some packages, such as MDW tools, offer better commands for making tables
941 %% than the plain LaTeX2e tabular which is used here.
942 %\begin{tabular}{|c||c|}
952 % Note that the IEEE does not put floats in the very first column
953 % - or typically anywhere on the first page for that matter. Also,
954 % in-text middle ("here") positioning is typically not used, but it
955 % is allowed and encouraged for Computer Society conferences (but
956 % not Computer Society journals). Most IEEE journals/conferences use
957 % top floats exclusively.
958 % Note that, LaTeX2e, unlike IEEE journals/conferences, places
959 % footnotes above bottom floats. This can be corrected via the
960 % \fnbelowfloat command of the stfloats package.
966 The conclusion goes here~\cite{IEEEexample:bibtexdesign}.
971 % conference papers do not normally have an appendix
974 % use section* for acknowledgment
975 \section*{Acknowledgment}
978 The authors would like to thank...
984 % trigger a \newpage just before the given reference
985 % number - used to balance the columns on the last page
986 % adjust value as needed - may need to be readjusted if
987 % the document is modified later
988 %\IEEEtriggeratref{8}
989 % The "triggered" command can be changed if desired:
990 %\IEEEtriggercmd{\enlargethispage{-5in}}
994 % can use a bibliography generated by BibTeX as a .bbl file
995 % BibTeX documentation can be easily obtained at:
996 % http://mirror.ctan.org/biblio/bibtex/contrib/doc/
997 % The IEEEtran BibTeX style support page is at:
998 % http://www.michaelshell.org/tex/ieeetran/bibtex/
999 %\bibliographystyle{IEEEtran}
1000 % argument is your BibTeX string definitions and bibliography database(s)
1001 %\bibliography{IEEEabrv,../bib/paper}
1002 %\bibliographystyle{./IEEEtran}
1003 \bibliography{mybibfile}
1006 % <OR> manually copy in the resultant .bbl file
1007 % set second argument of \begin to the number of references
1008 % (used to reserve space for the reference number labels box)
1009 %\begin{thebibliography}{1}
1011 %\bibitem{IEEEhowto:kopka}
1012 %H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus
1013 % 0.5em minus 0.4em\relax Harlow, England: Addison-Wesley, 1999.
1015 %\bibitem{IEEEhowto:NVIDIA12}
1016 %NVIDIA Corporation, \textit{Whitepaper NVIDA’s Next Generation CUDATM Compute
1017 %Architecture: KeplerTM }, 1st ed., 2012.
1019 %\end{thebibliography}